-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbest_first_search_ALTERNATIVE.py
55 lines (43 loc) · 1.03 KB
/
best_first_search_ALTERNATIVE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from queue import PriorityQueue
v = 14
graph = [[] for i in range(v)]
# Function For Implementing Best First Search
# Gives output path having lowest cost
def best_first_search(actual_Src, target, n):
visited = [False] * n
pq = PriorityQueue()
pq.put((0, actual_Src))
visited[actual_Src] = True
while pq.empty() == False:
u = pq.get()[1]
# Displaying the path having lowest cost
print(u, end=" ")
if u == target:
break
for v, c in graph[u]:
if visited[v] == False:
visited[v] = True
pq.put((c, v))
print()
# Function for adding edges to graph
def addedge(x, y, cost):
graph[x].append((y, cost))
graph[y].append((x, cost))
# The nodes shown in above example(by alphabets) are
# implemented using integers addedge(x,y,cost);
addedge(0, 1, 3)
addedge(0, 2, 6)
addedge(0, 3, 5)
addedge(1, 4, 9)
addedge(1, 5, 8)
addedge(2, 6, 12)
addedge(2, 7, 14)
addedge(3, 8, 7)
addedge(8, 9, 5)
addedge(8, 10, 6)
addedge(9, 11, 1)
addedge(9, 12, 10)
addedge(9, 13, 2)
source = 0
target = 9
best_first_search(source, target, v)