-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathSEP.m
354 lines (289 loc) · 9.63 KB
/
SEP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SEP: A Stable Election Protocol for clustered %
% heterogeneous wireless sensor networks %
% %
% (c) Georgios Smaragdakis %
% WING group, Computer Science Department, Boston University %
% %
% You can find full documentation and related information at: %
% http://csr.bu.edu/sep %
% %
% To report your comment or any bug please send e-mail to: %
% gsmaragd@cs.bu.edu %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% This is the SEP [1] code we have used. %
% %
% [1] Georgios Smaragdakis, Ibrahim Matta and Azer bestavros, %
% "SEP: A Stable Election Protocol for clustered %
% heterogeneous wireless sensor networks", %
% Second International Workshop on Sensor and Actor Network %
% Protocols and Applications (SANPA 2004),Boston MA, August %
% 2004. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Field Dimensions - x and y maximum (in meters)
xm=100;
ym=100;
%x and y Coordinates of the Sink
sink.x=0.5*xm;
sink.y=0.5*ym;
%Number of Nodes in the field
n=100;
%Optimal Election Probability of a node
%to become cluster head
p=0.1;
%Energy Model (all values in Joules)
%Initial Energy
Eo=0.5;
%Eelec=Etx=Erx
ETX=50*0.000000001;
ERX=50*0.000000001;
%Transmit Amplifier types
Efs=10*0.000000000001;
Emp=0.0013*0.000000000001;
%Data Aggregation Energy
EDA=5*0.000000001;
%Values for Hetereogeneity
%Percentage of nodes than are advanced
m=0.1;
%\alpha
a=1;
%maximum number of rounds
rmax=1000;
%%%%%%%%%%%%%%%%%%%%%%%%% END OF PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%
%Computation of do
do=sqrt(Efs/Emp);
%Creation of the random Sensor Network
figure(1);
for i=1:1:n
S(i).xd=rand(1,1)*xm;
XR(i)=S(i).xd;
S(i).yd=rand(1,1)*ym;
YR(i)=S(i).yd;
S(i).G=0;
%initially there are no cluster heads only nodes
S(i).type='N';
temp_rnd0=i;
%Random Election of Normal Nodes
if (temp_rnd0>=m*n+1)
S(i).E=Eo;
S(i).ENERGY=0;
%%%%plot(S(i).xd,S(i).yd,'o');
hold on;
end
%Random Election of Advanced Nodes
if (temp_rnd0<m*n+1)
S(i).E=Eo*(1+a)
S(i).ENERGY=1;
%%%%plot(S(i).xd,S(i).yd,'+');
hold on;
end
end
S(n+1).xd=sink.x;
S(n+1).yd=sink.y;
%%%%plot(S(n+1).xd,S(n+1).yd,'x');
%First Iteration
figure(1);
%counter for CHs
countCHs=0;
%counter for CHs per round
rcountCHs=0;
cluster=1;
countCHs;
rcountCHs=rcountCHs+countCHs;
flag_first_dead=0;
for r=0:1:rmax
% disp( r);
%Election Probability for Normal Nodes
pnrm=( p/ (1+a*m) );
%Election Probability for Advanced Nodes
padv= ( p*(1+a)/(1+a*m) );
%Operation for heterogeneous epoch
if(mod(r, round(1/pnrm) )==0)
for i=1:1:n
S(i).G=0;
S(i).cl=0;
end
end
%Operations for sub-epochs
if(mod(r, round(1/padv) )==0)
for i=1:1:n
if(S(i).ENERGY==1)
S(i).G=0;
S(i).cl=0;
end
end
end
hold off;
%Number of dead nodes
dead=0;
%Number of dead Advanced Nodes
dead_a=0;
%Number of dead Normal Nodes
dead_n=0;
%counter for bit transmitted to Bases Station and to Cluster Heads
packets_TO_BS=0;
packets_TO_CH=0;
%counter for bit transmitted to Bases Station and to Cluster Heads
%per round
PACKETS_TO_CH(r+1)=0;
PACKETS_TO_BS(r+1)=0;
figure(1);
for i=1:1:n
%checking if there is a dead node
if (S(i).E<=0)
plot(S(i).xd,S(i).yd,'red .');
dead=dead+1;
if(S(i).ENERGY==1)
dead_a=dead_a+1;
end
if(S(i).ENERGY==0)
dead_n=dead_n+1;
end
hold on;
end
if S(i).E>0
S(i).type='N';
if (S(i).ENERGY==0)
plot(S(i).xd,S(i).yd,'o');
end
if (S(i).ENERGY==1)
plot(S(i).xd,S(i).yd,'+');
end
hold on;
end
end
plot(S(n+1).xd,S(n+1).yd,'x');
STATISTICS(r+1).DEAD=dead;
DEAD(r+1)=dead;
DEAD_N(r+1)=dead_n;
DEAD_A(r+1)=dead_a;
%When the first node dies
if (dead==1)
if(flag_first_dead==0)
first_dead=r
flag_first_dead=1;
end
end
countCHs=0;
cluster=1;
for i=1:1:n
if(S(i).E>0)
temp_rand=rand;
if ( (S(i).G)<=0)
%Election of Cluster Heads for normal nodes
if( ( S(i).ENERGY==0 && ( temp_rand <= ( pnrm / ( 1 - pnrm * mod(r,round(1/pnrm)) )) ) ) )
countCHs=countCHs+1;
packets_TO_BS=packets_TO_BS+1;
PACKETS_TO_BS(r+1)=packets_TO_BS;
S(i).type='C';
S(i).G=100;
C(cluster).xd=S(i).xd;
C(cluster).yd=S(i).yd;
plot(S(i).xd,S(i).yd,'k*');
distance=sqrt( (S(i).xd-(S(n+1).xd) )^2 + (S(i).yd-(S(n+1).yd) )^2 );
C(cluster).distance=distance;
C(cluster).id=i;
X(cluster)=S(i).xd;
Y(cluster)=S(i).yd;
cluster=cluster+1;
%Calculation of Energy dissipated
distance;
if (distance>do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance ));
end
if (distance<=do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Efs*4000*( distance * distance ));
end
end
%Election of Cluster Heads for Advanced nodes
if( ( S(i).ENERGY==1 && ( temp_rand <= ( padv / ( 1 - padv * mod(r,round(1/padv)) )) ) ) )
countCHs=countCHs+1;
packets_TO_BS=packets_TO_BS+1;
PACKETS_TO_BS(r+1)=packets_TO_BS;
S(i).type='C';
S(i).G=100;
C(cluster).xd=S(i).xd;
C(cluster).yd=S(i).yd;
plot(S(i).xd,S(i).yd,'k*');
distance=sqrt( (S(i).xd-(S(n+1).xd) )^2 + (S(i).yd-(S(n+1).yd) )^2 );
C(cluster).distance=distance;
C(cluster).id=i;
X(cluster)=S(i).xd;
Y(cluster)=S(i).yd;
cluster=cluster+1;
%Calculation of Energy dissipated
distance;
if (distance>do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance ));
end
if (distance<=do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Efs*4000*( distance * distance ));
end
end
end
end
end
STATISTICS(r+1).CLUSTERHEADS=cluster-1;
CLUSTERHS(r+1)=cluster-1;
%Election of Associated Cluster Head for Normal Nodes
for i=1:1:n
if ( S(i).type=='N' && S(i).E>0 )
if(cluster-1>=1)
min_dis=sqrt( (S(i).xd-S(n+1).xd)^2 + (S(i).yd-S(n+1).yd)^2 );
min_dis_cluster=1;
for c=1:1:cluster-1
temp=min(min_dis,sqrt( (S(i).xd-C(c).xd)^2 + (S(i).yd-C(c).yd)^2 ) );
if ( temp<min_dis )
min_dis=temp;
min_dis_cluster=c;
end
end
%Energy dissipated by associated Cluster Head
min_dis;
if (min_dis>do)
S(i).E=S(i).E- ( ETX*(4000) + Emp*4000*( min_dis * min_dis * min_dis * min_dis));
end
if (min_dis<=do)
S(i).E=S(i).E- ( ETX*(4000) + Efs*4000*( min_dis * min_dis));
end
%Energy dissipated
if(min_dis>0)
S(C(min_dis_cluster).id).E = S(C(min_dis_cluster).id).E- ( (ERX + EDA)*4000 );
PACKETS_TO_CH(r+1)=n-dead-cluster+1;
end
S(i).min_dis=min_dis;
S(i).min_dis_cluster=min_dis_cluster;
end
end
end
hold on;
countCHs;
rcountCHs=rcountCHs+countCHs;
%Code for Voronoi Cells
%Unfortynately if there is a small
%number of cells, Matlab's voronoi
%procedure has some problems
%[vx,vy]=voronoi(X,Y);
%plot(X,Y,'r*',vx,vy,'b-');
% hold on;
% voronoi(X,Y);
% axis([0 xm 0 ym]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STATISTICS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% DEAD : a rmax x 1 array of number of dead nodes/round
% DEAD_A : a rmax x 1 array of number of dead Advanced nodes/round
% DEAD_N : a rmax x 1 array of number of dead Normal nodes/round
% CLUSTERHS : a rmax x 1 array of number of Cluster Heads/round
% PACKETS_TO_BS : a rmax x 1 array of number packets send to Base Station/round
% PACKETS_TO_CH : a rmax x 1 array of number of packets send to ClusterHeads/round
% first_dead: the round where the first node died
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%