-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgptscan.py
284 lines (245 loc) · 10.9 KB
/
gptscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import tkinter as tk
import os
import tkinter.ttk as ttk
import tensorflow as tf
import json
from functools import partial
import tkinter.font
import openai
from pathlib import Path
import tkinter.filedialog
MAXLEN=1024
EXPECTED_KEYS = ["administrator", "end-user", "threat-level"]
MAX_RETRIES = 3
gpt_cache = {}
def load_file(filename, mode='single_line'):
try:
with open(filename, 'r') as file:
if mode == 'single_line':
return file.readline().strip()
elif mode == 'multi_line':
return file.read().splitlines()
except FileNotFoundError:
return ''
apikey = load_file('apikey.txt')
if not apikey:
print("OpenAI key file not found. No GPT data will be included in report...")
taskdesc = load_file('task.txt')
if not taskdesc:
print("Task description file not found. No GPT data will be included in report...")
apikey = '' #if task description missing, null the API key to not waste tokens
extensions = load_file('extensions.txt', mode='multi_line')
if not extensions:
print("Extensions list not found! Will not be able to scan, exiting.")
sys.exit()
def update_progress(value):
progress['value'] = value
root.update_idletasks()
def browse_button_click():
folder_selected = tkinter.filedialog.askdirectory()
textbox.delete(0, tk.END)
textbox.insert(0, folder_selected)
def extract_data_from_gpt_response(response):
try:
json_data = json.loads(response.choices[0].message.content)
missing_keys = [key for key in EXPECTED_KEYS if key not in json_data]
if missing_keys:
raise ValueError(f"Missing keys: {', '.join(missing_keys)}")\
threat_level_str=json_data.get("threat-level", None)
try:
threat_level = int(threat_level_str)
except ValueError:
raise ValueError(f"The 'threat-level' value '{threat_level_str}' is not a valid integer.")
if not 0 <= threat_level <= 100:
raise ValueError(f"The 'threat-level' value {threat_level} is not between 0 and 100 inclusive.")
return json_data
except (json.JSONDecodeError, ValueError) as e:
return str(e)
def handle_gpt_response(snippet, taskdesc):
retries = 0
json_data = None
cache_key = hash(snippet)
if cache_key in gpt_cache:
return gpt_cache[cache_key]
messages = [
{"role": "system", "content": taskdesc},
{"role": "user", "content": snippet}
]
openai.api_key = apikey
while retries < MAX_RETRIES and (json_data is None or isinstance(json_data, str)):
try:
response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
except Exception as e:
print(f"An unexpected error occurred: {e}")
break
if response:
extracted_data = extract_data_from_gpt_response(response)
if isinstance(extracted_data, dict):
json_data = extracted_data
else:
print(extracted_data)
messages.append({"role": "assistant", "content": response.choices[0].message.content})
messages.append({"role": "user", "content": f"I encountered an issue: {extracted_data}. Could you correct your response?"})
retries += 1
if isinstance(json_data, dict):
gpt_cache[cache_key] = json_data
return json_data
else:
print("Failed to obtain a valid response from GPT after multiple retries.")
return None
def motion_handler(tree, event):
f = tkinter.font.Font(font='TkDefaultFont')
# A helper function that will wrap a given value based on column width
def adjust_newlines(val, width, pad=10):
if not isinstance(val, str):
return val
else:
words = val.split()
lines = [[],]
for word in words:
line = lines[-1] + [word,]
if f.measure(' '.join(line)) < (width - pad):
lines[-1].append(word)
else:
lines[-1] = ' '.join(lines[-1])
lines.append([word,])
if isinstance(lines[-1], list):
lines[-1] = ' '.join(lines[-1])
return '\n'.join(lines)
if (event is None) or (tree.identify_region(event.x, event.y) == "separator"):
# You may be able to use this to only adjust the two columns that you care about
# print(tree.identify_column(event.x))
col_widths = [tree.column(cid)['width'] for cid in tree['columns']]
for iid in tree.get_children():
new_vals = []
for (v,w) in zip(tree.item(iid)['values'], col_widths):
new_vals.append(adjust_newlines(v, w))
tree.item(iid, values=new_vals)
def list_files(path):
path = Path(path)
return [p for p in path.rglob('*') if p.is_file()]
def sort_column(tv, col, reverse):
l = [(tv.set(k, col), k) for k in tv.get_children("")]
if col == "own_conf" or col =="gpt_conf":
# Convert percentage strings to floats for sorting
l = [(float(val.strip("%")), k) for val, k in l]
else:
# Treat other columns as text
l = [(val, k) for val, k in l]
l.sort(reverse=reverse)
for index, (val, k) in enumerate(l):
tv.move(k, "", index)
# Reverse sort order on subsequent clicks of the same column header
tv.heading(col, command=lambda: sort_column(tv, col, not reverse))
def button_click():
modelscript = tf.keras.models.load_model('scripts.h5')
file_list=list_files(textbox.get())
progress_bar["maximum"] = len(file_list)
for index, file_path in enumerate(file_list):
extension = Path(file_path).suffix
if any(extension == ext.lower() for ext in extensions):
print(file_path)
with open(file_path, 'rb') as f:
data = list(f.read())
resultchecks=[]
if len(data)<=MAXLEN:
numtoadd=MAXLEN-len(data)
data.extend([13]*numtoadd)
file_size=max(MAXLEN,len(data))
tf_data = tf.expand_dims(tf.constant(data), axis=0)
maxconf_pos=0
maxconf=0
for i in range(0, file_size-MAXLEN+1, MAXLEN):
#end is file_size-MAXLEN because last bytes will be later scanned in a full buffer
if i >= MAXLEN and not deep_var.get():
continue
print ("Scanning at:", i)
result=modelscript.predict(tf_data[:, i:i+1024], batch_size=1, steps=1)[0][0]
resultchecks.append(result)
if result>maxconf:
maxconf_pos=i
maxconf=result
#if greater than MAXLEN, always scan last MAXLEN, even if some bytes get scanned twice.
#getting last full MAXLEN into buffer is important because of appending viruses
if file_size>MAXLEN:
print ("Scanning at:", -MAXLEN)
result=modelscript.predict(tf_data[:, -MAXLEN:], batch_size=1, steps=1)[0][0]
resultchecks.append(result)
if result>maxconf:
maxconf_pos=file_size-MAXLEN
maxconf=result
percent = f"{maxconf:.0%}"
snippet=''.join(map(chr,bytes(data[maxconf_pos:maxconf_pos+1024]))).strip()
if max(resultchecks) > .5 and gpt_var.get():
json_data = handle_gpt_response(snippet, taskdesc)
if json_data is None:
admin_desc = 'JSON Parse Error'
enduser_desc = 'JSON Parse Error'
chatgpt_conf_percent = 'JSON Parse Error'
else:
admin_desc = json_data["administrator"]
enduser_desc = json_data["end-user"]
chatgpt_conf_percent = "{:.0%}".format(int(json_data["threat-level"]) / 100.)
#threat-level checked for validity during retrieval, and entire
#structure would be None if any check failed.
else:
admin_desc = ''
enduser_desc = ''
chatgpt_conf_percent = ''
snippet=''.join([s for s in snippet.strip().splitlines(True) if s.strip()])
if max(resultchecks)>.5 or all_var.get()==True:
tree.insert("", tk.END, values=(file_path,percent,admin_desc,enduser_desc,
chatgpt_conf_percent,snippet))
progress_bar["value"] = index + 1
root.update_idletasks()
root = tk.Tk()
root.geometry("800x500")
root.title("GPT Virus Scanner")
label = tk.Label(root, text="Path to scan")
label.pack()
textbox = tk.Entry(root)
textbox.pack()
select_dir_btn = tk.Button(root, text="Select Directory", command=browse_button_click)
select_dir_btn.pack()
deep_var = tk.BooleanVar()
deep_checkbox = tk.Checkbutton(root, text="Deep scan", variable=deep_var)
deep_checkbox.pack()
all_var = tk.BooleanVar()
all_checkbox = tk.Checkbutton(root, text="Show all files", variable=all_var)
all_checkbox.pack()
gpt_var = tk.BooleanVar()
gpt_checkbox = tk.Checkbutton(root, text="Use ChatGPT", variable=gpt_var)
gpt_checkbox.pack()
button = tk.Button(root, text="Scan now", command=button_click)
button.pack()
progress_bar = ttk.Progressbar(root, orient=tk.HORIZONTAL, length=100, mode='determinate')
progress_bar.pack()
style = ttk.Style(root)
style.configure('Scanner.Treeview', rowheight=100)
tree = ttk.Treeview(root, style='Scanner.Treeview')
tree["columns"] = ("path", "own_conf", "admin_desc", "end-user_desc", "gpt_conf", "snippet")
tree.column("#0", width=0, stretch=tk.NO)
tree.column("path", width=200, stretch=tk.NO, anchor="w")
tree.column("own_conf", width=50, stretch=tk.NO, anchor="e")
tree.column("admin_desc", width=200, stretch=tk.NO, anchor="w")
tree.column("end-user_desc", width=200, stretch=tk.NO, anchor="w")
tree.column("gpt_conf", width=50, stretch=tk.NO, anchor="e")
tree.column("snippet", width=50, stretch=tk.NO, anchor="w")
tree.heading("#0", text="")
tree.heading("path", text="File Path", command=lambda: sort_column(tree, "path", False))
tree.heading("own_conf", text="Own confidence",
command=lambda: sort_column(tree, "own_conf", False))
tree.heading("admin_desc", text="Administrator Description",
command=lambda: sort_column(tree, "admin_desc", False))
tree.heading("end-user_desc", text="End-User Description",
command=lambda: sort_column(tree, "end-user_desc", False))
tree.heading("gpt_conf", text="ChatGPT confidence",
command=lambda: sort_column(tree, "gpt_conf", False))
tree.heading("snippet", text="Snippet", command=lambda: sort_column(tree, "snippet", False))
tree.pack(fill=tk.BOTH, expand=True)
scrollbar = ttk.Scrollbar(tree, orient="vertical", command=tree.yview)
scrollbar.pack(side=tk.RIGHT, fill=tk.Y)
tree.configure(yscrollcommand=scrollbar.set)
tree.bind('<B1-Motion>', partial(motion_handler, tree))
motion_handler(tree, None) # Perform initial wrapping
root.mainloop()