-
Notifications
You must be signed in to change notification settings - Fork 3
/
12_Amazon_Staircase_problem.py
executable file
·62 lines (48 loc) · 1.41 KB
/
12_Amazon_Staircase_problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
'''
There exists a staircase with N steps, and you can climb up either 1 or 2 steps at a time.
Given N, write a function that returns the number of unique ways you can climb the staircase.
The order of the steps matters.
For example, if N is 4, then there are 5 unique ways:
1, 1, 1, 1
2, 1, 1
1, 2, 1
1, 1, 2
2, 2
What if, instead of being able to climb 1 or 2 steps at a time, you could climb any number from
a set of positive integers X? For example, if X = {1, 3, 5}, you could climb 1, 3, or 5 steps at a time.
'''
#!/bin/python3
import math
import os
import random
import re
import sys
memo_dict = {} # store the sum as key with number of ways as value
def stepArbiPrems(n, steps_list): # take steps backed on values in steps list
if n in memo_dict:
return memo_dict[n]
if n < 0:
return 0
if n == 0:
memo_dict[n] =1
return 1
memo_dict[n] = 0
for step in steps_list:
memo_dict[n]+= stepArbiPrems(n-step, steps_list)
return memo_dict[n]
def stepPerms(n): # step permutations
if n in memo_dict:
return memo_dict[n]
if n < 0:
return 0
if n == 0:
memo_dict[n] = 1
return 1
memo_dict[n] = stepPerms(n-1) + stepPerms(n-2)
return memo_dict[n]
if __name__ == '__main__':
N = 4 # steps in a stair case
step_list = [1, 3, 10]
# res = stepPerms(N)
res = stepArbiPrems(N, step_list)
print(res)