-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
314 lines (253 loc) · 11.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
from argparse import ArgumentParser
from datasets.dataloader import get_loaders
import matplotlib.pyplot as plt
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from imutils import make_numpy_grid, de_norm
from logger_tool import Logger, Timer
from metric_tool import ConfuseMatrixMeter
from models.network import *
import torch
import torch.optim as optim
from models.losses import cross_entropy
import models.losses as losses
from pyutils import get_device
print(torch.cuda.is_available())
"""
the main function for training the CD networks
"""
class CDTrainer():
def __init__(self, args, dataloaders):
self.dataloaders = dataloaders
self.n_class = args.n_class
self.net_G = define_G(args=args, gpu_ids=args.gpu_ids)
self.device = torch.device("cuda:%s" % args.gpu_ids[0] if torch.cuda.is_available() and len(args.gpu_ids)>0
else "cpu")
print(self.device)
self.lr = args.lr
self.optimizer_G = optim.SGD(self.net_G.parameters(), lr=self.lr,
momentum=0.9,
weight_decay=5e-4)
self.exp_lr_scheduler_G = get_scheduler(self.optimizer_G, args)
self.running_metric = ConfuseMatrixMeter(n_class=2)
logger_path = os.path.join(args.checkpoint_dir, 'log.txt')
self.logger = Logger(logger_path)
self.logger.write_dict_str(args.__dict__)
self.timer = Timer()
self.batch_size = args.batch_size
self.epoch_acc = 0
self.best_val_acc = 0.0
self.best_epoch_id = 0
self.epoch_to_start = 0
self.max_num_epochs = args.max_epochs
self.global_step = 0
self.steps_per_epoch = len(dataloaders['train'])
self.total_steps = (self.max_num_epochs - self.epoch_to_start)*self.steps_per_epoch
self.G_pred = None
self.pred_vis = None
self.batch = None
self.G_loss = None
self.is_training = False
self.batch_id = 0
self.epoch_id = 0
self.checkpoint_dir = args.checkpoint_dir
self.vis_dir = args.vis_dir
if args.loss == 'ce':
self._pxl_loss = cross_entropy
elif args.loss == 'bce':
self._pxl_loss = losses.binary_ce
else:
raise NotImplemented(args.loss)
self.VAL_ACC = np.array([], np.float32)
if os.path.exists(os.path.join(self.checkpoint_dir, 'val_acc.npy')):
self.VAL_ACC = np.load(os.path.join(self.checkpoint_dir, 'val_acc.npy'))
self.TRAIN_ACC = np.array([], np.float32)
if os.path.exists(os.path.join(self.checkpoint_dir, 'train_acc.npy')):
self.TRAIN_ACC = np.load(os.path.join(self.checkpoint_dir, 'train_acc.npy'))
if os.path.exists(self.checkpoint_dir) is False:
os.mkdir(self.checkpoint_dir)
if os.path.exists(self.vis_dir) is False:
os.mkdir(self.vis_dir)
def _load_checkpoint(self, ckpt_name='last_ckpt.pt'):
if os.path.exists(os.path.join(self.checkpoint_dir, ckpt_name)):
self.logger.write('loading last checkpoint...\n')
checkpoint = torch.load(os.path.join(self.checkpoint_dir, ckpt_name),
map_location=self.device)
self.net_G.load_state_dict(checkpoint['model_G_state_dict'])
self.optimizer_G.load_state_dict(checkpoint['optimizer_G_state_dict'])
self.exp_lr_scheduler_G.load_state_dict(
checkpoint['exp_lr_scheduler_G_state_dict'])
self.net_G.to(self.device)
self.epoch_to_start = checkpoint['epoch_id'] + 1
self.best_val_acc = checkpoint['best_val_acc']
self.best_epoch_id = checkpoint['best_epoch_id']
self.total_steps = (self.max_num_epochs - self.epoch_to_start)*self.steps_per_epoch
self.logger.write('Epoch_to_start = %d, Historical_best_acc = %.4f (at epoch %d)\n' %
(self.epoch_to_start, self.best_val_acc, self.best_epoch_id))
self.logger.write('\n')
else:
print('training from scratch...')
def _timer_update(self):
self.global_step = (self.epoch_id-self.epoch_to_start) * self.steps_per_epoch + self.batch_id
self.timer.update_progress((self.global_step + 1) / self.total_steps)
est = self.timer.estimated_remaining()
imps = (self.global_step + 1) * self.batch_size / self.timer.get_stage_elapsed()
return imps, est
def _visualize_pred(self):
pred = torch.argmax(self.G_pred, dim=1, keepdim=True)
pred_vis = pred * 255
return pred_vis
def _save_checkpoint(self, ckpt_name):
torch.save({
'epoch_id': self.epoch_id,
'best_val_acc': self.best_val_acc,
'best_epoch_id': self.best_epoch_id,
'model_G_state_dict': self.net_G.state_dict(),
'optimizer_G_state_dict': self.optimizer_G.state_dict(),
'exp_lr_scheduler_G_state_dict': self.exp_lr_scheduler_G.state_dict(),
}, os.path.join(self.checkpoint_dir, ckpt_name))
def _update_lr_schedulers(self):
self.exp_lr_scheduler_G.step()
def _update_metric(self):
"""
update metric
"""
target = self.batch['L'].to(self.device).detach()
G_pred = self.G_pred.detach()
G_pred = torch.argmax(G_pred, dim=1)
current_score = self.running_metric.update_cm(pr=G_pred.cpu().numpy(), gt=target.cpu().numpy())
return current_score
def _collect_running_batch_states(self):
running_acc = self._update_metric()
m = len(self.dataloaders['train'])
if self.is_training is False:
m = len(self.dataloaders['val'])
imps, est = self._timer_update()
if np.mod(self.batch_id, 100) == 1:
message = 'Is_training: %s. [%d,%d][%d,%d], imps: %.2f, est: %.2fh, G_loss: %.5f, running_mf1: %.5f\n' %\
(self.is_training, self.epoch_id, self.max_num_epochs-1, self.batch_id, m,
imps*self.batch_size, est,
self.G_loss.item(), running_acc)
self.logger.write(message)
if np.mod(self.batch_id, 500) == 1:
vis_input = make_numpy_grid(de_norm(self.batch['A']))
vis_input2 = make_numpy_grid(de_norm(self.batch['B']))
vis_pred = make_numpy_grid(self._visualize_pred())
vis_gt = make_numpy_grid(self.batch['L'])
vis = np.concatenate([vis_input, vis_input2, vis_pred, vis_gt], axis=0)
vis = np.clip(vis, a_min=0.0, a_max=1.0)
file_name = os.path.join(
self.vis_dir, 'istrain_'+str(self.is_training)+'_'+
str(self.epoch_id)+'_'+str(self.batch_id)+'.jpg')
plt.imsave(file_name, vis)
def _collect_epoch_states(self):
scores = self.running_metric.get_scores()
self.epoch_acc = scores['mf1']
self.logger.write('Is_training: %s. Epoch %d / %d, epoch_mF1= %.5f\n' %
(self.is_training, self.epoch_id, self.max_num_epochs-1, self.epoch_acc))
message = ''
for k, v in scores.items():
message += '%s: %.5f ' % (k, v)
self.logger.write(message+'\n')
self.logger.write('\n')
def _update_checkpoints(self):
self._save_checkpoint(ckpt_name='last_ckpt.pt')
self.logger.write('Lastest model updated. Epoch_acc=%.4f, Historical_best_acc=%.4f (at epoch %d)\n'
% (self.epoch_acc, self.best_val_acc, self.best_epoch_id))
self.logger.write('\n')
if self.epoch_acc > self.best_val_acc:
self.best_val_acc = self.epoch_acc
self.best_epoch_id = self.epoch_id
self._save_checkpoint(ckpt_name='best_ckpt.pt')
self.logger.write('*' * 10 + 'Best model updated!\n')
self.logger.write('\n')
def _update_training_acc_curve(self):
self.TRAIN_ACC = np.append(self.TRAIN_ACC, [self.epoch_acc])
np.save(os.path.join(self.checkpoint_dir, 'train_acc.npy'), self.TRAIN_ACC)
def _update_val_acc_curve(self):
self.VAL_ACC = np.append(self.VAL_ACC, [self.epoch_acc])
np.save(os.path.join(self.checkpoint_dir, 'val_acc.npy'), self.VAL_ACC)
def _clear_cache(self):
self.running_metric.clear()
def _forward_pass(self, batch):
self.batch = batch
img_in1 = batch['A'].to(self.device)
img_in2 = batch['B'].to(self.device)
self.G_pred = self.net_G(img_in1, img_in2)
def _backward_G(self):
gt = self.batch['L'].to(self.device).long()
self.G_loss = self._pxl_loss(self.G_pred, gt)
self.G_loss.backward()
def train_models(self):
self._load_checkpoint()
for self.epoch_id in range(self.epoch_to_start, self.max_num_epochs):
self._clear_cache()
self.is_training = True
self.net_G.train()
self.logger.write('lr: %0.7f\n' % self.optimizer_G.param_groups[0]['lr'])
for self.batch_id, batch in enumerate(self.dataloaders['train'], 0):
self._forward_pass(batch)
# update G
self.optimizer_G.zero_grad()
self._backward_G()
self.optimizer_G.step()
self._collect_running_batch_states()
self._timer_update()
self._collect_epoch_states()
self._update_training_acc_curve()
self._update_lr_schedulers()
################## Eval ##################
self.logger.write('Begin evaluation...\n')
self._clear_cache()
self.is_training = False
self.net_G.eval()
# Iterate over data.
for self.batch_id, batch in enumerate(self.dataloaders['val'], 0):
with torch.no_grad():
self._forward_pass(batch)
self._collect_running_batch_states()
self._collect_epoch_states()
########### Update_Checkpoints ###########
self._update_val_acc_curve()
self._update_checkpoints()
def train(args):
dataloaders = get_loaders(args)
model = CDTrainer(args=args, dataloaders=dataloaders)
model.train_models()
if __name__ == '__main__':
# ------------
# args
# ------------
parser = ArgumentParser()
parser.add_argument('--gpu_ids', type=str, default='1', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--project_name', default='train', type=str)
parser.add_argument('--checkpoint_root', default='checkpoints', type=str)
# data
parser.add_argument('--num_workers', default=0, type=int)
parser.add_argument('--dataset', default='CDDataset', type=str)
parser.add_argument('--data_name', default='WHU-CD', type=str)
parser.add_argument('--batch_size', default=6, type=int)
parser.add_argument('--split', default="train", type=str)
parser.add_argument('--split_val', default="val", type=str)
parser.add_argument('--img_size', default=256, type=int)
# model
parser.add_argument('--n_class', default=2, type=int)
parser.add_argument('--net_G', default='CTD-Former', type=str,)
parser.add_argument('--loss', default='ce', type=str)
parser.add_argument('--optimizer', default='sgd', type=str)
parser.add_argument('--lr', default=0.01, type=float)
parser.add_argument('--max_epochs', default=1000, type=int)
parser.add_argument('--lr_policy', default='linear', type=str,
help='linear | step')
parser.add_argument('--lr_decay_iters', default=100, type=int)
args = parser.parse_args()
get_device(args)
print(args.gpu_ids)
# checkpoints dir
args.checkpoint_dir = os.path.join(args.checkpoint_root, args.project_name)
os.makedirs(args.checkpoint_dir, exist_ok=True)
# visualize dir
args.vis_dir = os.path.join('vis', args.project_name)
os.makedirs(args.vis_dir, exist_ok=True)
train(args)