-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNewtonMethodAlgorithm.py
128 lines (95 loc) · 3.89 KB
/
NewtonMethodAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
'''Unconstrained Optimization Algorithm'''
'''Newton Method Algorithm'''
# Please change the function value as per our requirement and also change it's derivative
import numpy as np
from numpy import linalg as LA
import matplotlib.pyplot as plt
import sympy
from sympy.utilities.lambdify import lambdify
# Extracting main function
def f_x(f_expression, values):
f = lambdify((v[0],v[1]), f_expression)
return f(values[0],values[1])
#Extract gradients
def df_x(f_expression, values):
df1_sympy = np.array([sympy.diff(f_expression, i) for i in v]) #first order derivatives
dfx_0 = lambdify((v[0],v[1]), df1_sympy[0]) #derivative w.r.t x_0
dfx_1 = lambdify((v[0],v[1]), df1_sympy[1]) #derivative w.r.t x_1
evx_0 = dfx_0(values[0], values[1]) #evaluating the gradient at given values
evx_1 = dfx_1(values[0], values[1])
return(np.array([evx_0,evx_1]))
#Extract Hessian
def hessian(f_expression):
df1_sympy = np.array([sympy.diff(f_expression, i) for i in v]) #first order derivatives
hessian = np.array([sympy.diff(df1_sympy, i) for i in v]).astype(np.float) #hessian
return(hessian)
# Plotting the selected function
def loss_surface(sympy_function):
return(sympy.plotting.plot3d(sympy_function, adaptive=False, nb_of_points=400))
#Function to create a countour plot
def contour(sympy_function):
x = np.linspace(-3, 3, 100)
y = np.linspace(-3, 3, 100)
x, y = np.meshgrid(x, y)
func = f_x(sympy_function, np.array([x,y]))
return plt.contour(x, y, func)
#Function to plot contour along with the travel path of the algorithm
def contour_travel(x_array, sympy_function):
x = np.linspace(-2, 2, 100) #x-axis
y = np.linspace(-2, 2, 100) #y-axis
x, y = np.meshgrid(x, y) #creating a grid using x & y
func = f_x(sympy_function, np.array([x,y]))
plt.contour(x, y, func)
plot = plt.plot(x_array[:,0],x_array[:,1],'x-')
return (plot)
v = sympy.Matrix(sympy.symbols('x[0] x[1]'))
#creating functions for use
# Here we I have choosen thee functions to evaluate our algorithms
f_sympy1 = v[0]**2 - 2.0 * v[0] * v[1] + 4 * v[1]**2
f_sympy2 = 0.5*v[0]**2 + 2.5*v[1]**2
f_sympy3 = 4*v[0]**2 + 2*v[1]**2 + 4*v[0]*v[1] - 3*v[0]
# take any one function
f = f_sympy3
# Extracting the function
f = f_x(f, v)
print('The selected function is: ',f)
print()
# Finding the gradient of the function
df = df_x(f, v)
print('Gradient of the function is: ',df)
print()
# Finding the hessian of the function
hess_f = hessian(f)
print('Hessian of the function is: ',hess_f)
print('')
# Visualizing the selected function
fun = loss_surface(f)
# Plotting the contour
con = contour(f)
def Newton(sympy_function, max_iter, start, step_size = 1, epsilon = 10**-2):
i = 0
x_values = np.zeros((max_iter+1,2))
x_values[0] = start
norm_values = []
while i < max_iter:
norm = LA.norm(df_x(sympy_function, x_values[i]))
if norm < epsilon:
break
else:
grad = df_x(sympy_function, x_values[i])
hessian_inv = LA.inv(hessian(sympy_function))
p = -np.dot(grad, hessian_inv)
x_values[i+1] = x_values[i] + step_size*p
norm_values.append(norm)
i+=1
print("No. of steps Newton's method took to converge: ", len(norm_values))
print('')
return(x_values, norm_values)
x_NM, norm_values = Newton(sympy_function=f, max_iter=1000, start =[1,1] , step_size = 1, epsilon = 10**-2)
print(x_NM)
print()
print("contour path through Newton's method")
Contour_path = contour_travel(x_NM, f)