
RCP - WEBAPI-019 Validation Expression in the WebAPI

Submitter
Name

Joshua Darnell

Submitter
Organization

kurotek, LLC

Submitter
Email

josh@kurotek.com

Co-submitter
Name

Paul Stusiak

Co-submitter
Organization

Falcon Technologies Corp.

Co-submitter
Email

pstusiak@falcontechnologies.com

Attributions This proposal is based on the RETS Validation
Expression language as expressed in RETS
1.9 and RCP 61. Thanks to Libor Viktorin,
Mark Sleeman, Sergio Del Rio and Paul
Stusiak for that work. Thanks to Rob Larson
for his collaboration on the Rules Resource
proposal.

Document Name RESO Web API v1.1 Draft

Document Version 1.1.0 (MAY for Add/Edit Endorsement in
Web API)

Date Submitted 2018-04-12

Status IN DRAFT

Status Change Date

Related Documents RCP-019 ANTLR G4 Grammar

RCP-010 Add/Edit in the Web API

Web API 2.0.0

Table of Contents

Table of Contents
Synopsis
Rationale
Proposal

New Section: 2.7.7 Validation Rules for a Resource
New Section: 2.7.8 Session Information Tokens for a Session
Well-Known Information Tokens
New Section: 2.7.10 UpdateAction
New Section: 2.7.11 Validation Expression Language

New Section: 2.7.11.1 Actions
New Section: 2.7.11.2 Validation Expression BNF
New Section: 2.7.11.3 Atoms and Primitives

New Section: 2.7.11.4 Special Operands
New Section: 2.7.11.5 Time-Specific Atoms
New Section: 2.7.11.6 Functions and Operators

List of Functions
List of Operators

New Section: 2.7.11.7 Constraint Types
New Section: 2.7.11.7.1 Resource Constraints
New Section: 2.7.11.7.2 Process Constraints

Impact
Additional Information
Certification Impact

Rule Testing

Synopsis

The ability to express computer-executable rules has several uses. The ability to provide immediate feedback to users when adding a record is
valuable. The ability to consume rules has value in server systems that add or modify records or during a server system migration. Using the
existing BNF of the RETS 1.9 as a basis, it provides a rich language to express field validation and business rules and is proven in the field.
Some minor changes to the BNF have been made to better support the Web API and correct some minor errors.

Rationale

https://reso.atlassian.net/wiki/display/WebAPIv1d1/RESO+Web+API+v1.1+Draft
https://github.com/darnjo/rcp019
https://reso.atlassian.net/wiki/spaces/RESOWebAPIRCP/pages/2239399511/RCP+-+WEBAPI-010+Add+Functionality+to+Web+API+Specification
https://reso.atlassian.net/wiki/spaces/WebAPI2/overview?homepageId=8163853596

Substantial work was done to review the validation expression language of Odata as it compares with the validation expression language of
RETS 1.9. The findings in a RESO (DRAFT) written by Josh Darnell were that the Odata 4.01 validation expression BNF lacked white paper
several critical features that are used in RETS 1.9 to create valid records.

Excerpts of that white paper are included here.

In RETS 1.9, business rules are represented as an ordered list of field, action, expression tuples. These rules are intended to be
written from the perspective of the Business Object being upserted, for instance, a "Listing".

The Validation Expression scheme assumes that this sequence of rules will be run, in order, after each relevant change to the
intermediate payload being processed. Doing so guarantees that any expression that depends on the current instruction will be
re-processed accordingly.

Techniques exist to optimize the set of instructions being run so that only the dependent subset of rules is run when a given field
changes, making 1.9 Validation Expressions appropriate for implementations where "fast-fail" behavior is important.

...

While OData does not currently support the Actions used in RETS 1.9 Validation Expressions, parity (in this case) means that
both grammars support the same basic set of functionality, meaning the same set of Boolean Expressions, Arithmetic
Operations, Lists, Grouping Operators, and Function Calls.

This is important for the standard going forward because it means that once OData has a similar set of Actions in place, that any
RETS 1.9 Validation Expression can be represented in the OData 4.01 grammar. The parity between the expression grammars
also means that automatic translation may be done from 1.9 Validation Expressions to the OData 4.01 Validation grammar,
potentially using tools such as ANTLR.

However, as it is currently provided, Odata 4.01 does not have the concept of ACTION nor of the sequential processing of rules. Further, Odata
4.01 is not a ratified standard and may be subject to change.

Since there is not functional equivalence of the validation expression languages between RETS 1.9 and Odata 4.01, we propose that the existing
validation expression language of RETS 1.9 be used to support the Update transaction in RESO Web API 1.1

In addition to the grammar itself, information about a particular session (a client application, with a user in a particular role) may be needed to
resolve individual rules. This information is in the form of identical to those of RETS.info-session-tokens

The can be used as values to substitute in rules that are not available in the Resource that is being modified.info-session-tokens

The grammar is used to express the rules in a machine-readable form. The rules are expressed as a set of rule statements that MAY be limited
by the application, user role and user by the implementing system.

To correctly implement the system, a client would implement a parser-generator to execute the rules. For an Entity that is being modified, the
client would request the current state of the Entity. For either a new or modified Entity, the client would request the set of rules for the Resource
type of the Entity. For either a new or modified Entity, the client would request the for the current session. The client can then info-session-tokens
guide the user through the Entity, executing the rules as the user moves between the fields of the Entity. When the user is complete, the client
can submit the Entity to the server. The client SHOULD expect that the server may issue warnings and errors against the Entity despite the client
passing the rules.

Proposal

The following new sections be added to the Web API 1.1 document,

New Section: 2.7.7 Validation Rules for a Resource

A service MAY provide business rules to permit complex validation of data before submission to the service. Clients should use these validation
rules to provide the user with a more responsive experience. A service MAY have additional rules that are not provided to the client and SHOULD
validate any changes to an Entity on the service when the client submits a changed Entity.

Validation Rules are for a specific Resource and MAY be constrained by the client application, role or other system specific limitation.

Validation Rules for a Resource will change over time. To allow the evolution of the rules, an opaque token is provided to uniquely identify the
state of the set of rules. Clients MAY cache Validation Rules.

vrHash base64 A base64 opaque token, calculated in the service to uniquely identify the state of the Validation Rule set

Validation Rules are returned as a JSON response body from the service. The response body includes the for that rule set.vrHash

Accessing a rule set must adhere to the OData standard taking the following form:

https://odata.reso.org/RESO/OData/[Resource]/ValidationRules('<vrHash|null>')

A service should treat the endpoint identically to the endpoint ./ValidationRules ./ValidationRules('')

https://docs.google.com/document/d/1jV25Zlt0Auoz-3gYEaAekkb1O7U442ldYClBqtiYJRA/edit?usp=sharing

Changing rules, roles or other constraints MUST change the value returned by the service. If a client submits a stale , the client vrHash vrHash
SHOULD use the Validation Rule set returned in the response body and discard any cached validation rules. A client SHOULD submit the vrHash
 on a ValidationRules request to allow the service to limit the response body to just the . That is, when the request matches that vrHash vrHash
of the service, the service MAY return only the in the response body.vrHash

The rule set may be further filtered by adding the action that the client will use the rule set for. The action is defined in section 2.7.8.4.1.

https://odata.reso.org/RESO/OData/[Resource]/ValidationRules('<vrHash|null>')?$filter=action

The response body is JSON formatted consisting of the , which is an ordered list of validation expressions, and the . The ruleSet ruleHash rul
 is the collection of rules the service provides for the selected Resource during creation or modification of an Entity of that Resource type. eSet

The is optional, since there may be no rules available for the client for that Resource. In this case, the service MUST return an HTTP ruleSet
status of 204.

The request below returns the collection of validation expression rules for the Property resource:all

Request:

GET RESO/OData/Property/ValidationRules(‘32248c144')

Response body:

 HTTP/1.1 200 OK
 Content-Type: application/json; odata.metadata=minimal; odata.
streaming=true
 OData-Version: 4.0
 Date: Sat, 28 Jun 2018 01:05:32 GMT
 Content-Length: xxxx

 {
 "@odata.context": "https://odata.reso.org/RESO/OData/Property
/ValidationRules('32248c144')",
 "value": {
 "vrHash": "667qa3321158",
 "ruleSet": [
 {"sequence": 1, "field": "ListPrice", "action": "SET_REQUIRED",
"expression": ".TRUE.", message: "ListPrice is Required."},
 {"sequence": 2, "field": "ListingId", "action": "REJECT",
"expression": "UserLevel != 'Admin' .AND. ListPrice <= 0", message:
"ListPrice must be greater than zero."}
]
 }
 }

The ValidationRules URL allows filtering by UpdateAction, where update_action is one of those specified in 2.7.10.

GET Property/ValidationRules('32248c144')?$filter=update_action eq 'Add'

The response is similar to that shown above, except that the rules will be only those for the requested update_action.

New Section: 2.7.8 Session Information Tokens for a Session

Validation Rules for a Resource may depend on values that are part of a different Resource or values that depend on the session. To provide this
information, a URL is provided to allow the client to receive this information. See section 2.7.9 for more information on Session Information
Tokens

Accessing the Session Information Tokens must adhere to the OData standard taking the following form:

https://odata.reso.org/RESO/OData/InfoTokens

The response body contains the collection of InfoTokens for this service.

Request

GET RESO/OData/InfoTokens

Response

 HTTP/1.1 200 OK
 Content-Type: application/json; odata.metadata=minimal; odata.
streaming=true
 OData-Version: 4.0
 Date: Sat, 28 Jun 2018 01:05:32 GMT
 Content-Length: xxxx

 {
 "@odata.context": "https://odata.reso.org/RESO/OData/InfoTokens",
 "value": {
 "USERID": "ag332354",
 "USERLEVEL": "Agent",
 "AGENTCODE": "22456",
 "BROKERCODE": "553",
 "BROKEROFFICE": "M33"
 }
 }

New Section: 2.7.9 Session Information Tokens

The following tokens are defined:

info-token-
key

::= [;] ; Info = info-token-name info-token-type info-token-value CRLF

info-token-
name

::= RETSNAME

info-token-
type

::= TOKEN

info-token-
value

::= TEXT

An information token is a named and typed piece of information about the current session. This information is sent by the server to the
client for use in various contexts. For example in Validation Expressions.
Any number of information tokens can be sent in the response, provided all of them have unique names.
The may be any of the DataTypes defined in this document or in the Odata standard. The MUST info-token-type info-token-value
conform to the token's data type.
If the is null or missing, the data type of the token is Character. In this case, the MUST NOT include info-token-type info-token-value
semicolons. When the is a string as defined in the table below, Servers MUST use the DataType described therein. info-token-name
Clients SHOULD be permissive, that is, when a Server has omitted an info-token-type for a well-known name, Clients should infer the
DataType based on the name defined in the table below.
Names and types of well known tokens are listed in the table. The server MUST send all names shown in bold in that info-token-name
table. The server MUST use the well-known name for optional names when providing information for those arguments. info-token-name
For forward compatibility, Clients MUST use the Session Information Token info-token-value.

Well-Known Information Tokens

Special Operand
Name

Special Token Name Notes

USERID user-id

USERCLASS user-class

USERLEVEL user-level

AGENTCODE agent-code

BROKERCODE broker-code

BROKERBRANCH broker-branch

MEMBERNAME member-name

OfficeList Character The value of the OfficeList token will be comma-delimited, rather than semicolon-delimited
as it was in the case of the OfficeList response argument

StandardNamesVersi
on

Character

VendorName Character

ServerProductName Character

ServerProductVersi
on

Character

OperatorName Character

RoleName Character

SupportContactInform
ation

Character

The user tokens contain basic information about the user that is stored on the server. If a server does not support a property then it MUST set the
returned value to empty (a zero-length string).

user-id ::= 1*30ALPHANUM

user-class ::= 1*30ALPHANUM

user-level ::= 1*5DIGIT

The is the code that is stored in the property records for the listing agent, selling agent, etc.agent-code

agent-code ::= 1*30ALPHANUM

In some implementations this may be the same as the user-id. The property user-class and user-level are implementation dependent and may
not exist on some systems, in which case, an empty string should be returned. These parameters are used in the validation expression language
for the Update transaction.

The and parameters are used in the validation expressions of the Update transaction.broker-code broker-branch

broker-code ::= 1*24ALPHANUM

broker-branch ::= 1*24ALPHANUM

The is the member's full name (display name) as it is to appear on any printed output, for example "Jane T. Row".member-name

member-name ::= 1*48TEXT

The indicates the date version of StandardNames that this system supports. A system is only expected to support a standard-names-version
single version of the StandardNames and, in most cases, this will be the current version.

standard-names-version ::= 1*128TEXT

Server systems that do not provide this optional property make no representation about the version of StandardNames that they support,
therefore, client applications should not assume any specific version of the StandardNames.
Server systems that do provide this optional property return a value for the standard-names-version that matches one of the MUST
values from the Adopted StandardNames List from Real Estate Transaction Standard website.
The format of the is a string that contains numeric characters of the form M.m where M is the major version and standard-names-version
has a range of '1-9' and m is a range of '1-99'. For example, a version of the StandardNames is 1.6.
VendorName is the name of the product vendor. It is required.
ServerProductName is the name of the server product provided by the vendor. It is required.
ServerProductVersion is the version of the server product. It is required.
OperatorName is the name of the MLS or Association operating the system. It is required.
RoleName is the name of the role restriction where the metadata may be restricted. It is optional.
SupportContactInformation is free text that provides a contact email, phone or website for development support. It is optional.
Vendors may provide additional Session Information Tokens to meet local business needs. Clients MUST ignore info-token-name
Session Information Tokens that they do not understand.

More well-known Session Information Tokens may be added in later version of this document.

New Section: 2.7.10 UpdateAction

The list of well-known update actions is provided in this table. Subsequent versions of this standard may add actions or deprecate actions.
Vendors may add actions specific to their business case, but clients are not required to support extensions to be compliant with the standard.

UpdateActi
on

ALPHANUM This identifies the nature of the update, such as "add" or "modify". Some update types, such as changes to a
properties record (e.g. "Sell", "Back on Market"), will imply a set of business rules specific to the server.
However, where possible, the following standard type names should be used:

Add Add a new record

Clone Create a new record by copying an old record

Change Change an existing record

Delete Delete an existing record

New Section: 2.7.11 Validation Expression Language

A Validation Expression Language allows the implementation of rules of the form field, action, expression tuples. These rules are intended to be
written from the perspective of the Business Object being upserted, for example, a "Property".

To accomplish this a formal grammar is provided to make the implementation of these tuples possible and the transmission of rules in this
grammar that can be provided as input to a rules engine for the purposes of validation.

Rules are provided as the response body for a particular Resource. In a Resource, the rules for a specific field are evaluated when that field is
completed by the user. For example, entering data into a field for ListingStatus then moving to another field will cause those rules associated with
ListingStatus to be executed. Expressions for that field in the Resource MUST be evaluated in the order that they appear in the Resource.

New Section: 2.7.11.1 Actions

Actions identify the functional behaviour that the rule enforces.

Keyword Type Purpose

ACCEPT BOOLEAN If the expression is true, the field value is considered accepted without further testing. Immediately
following SET expressions MUST be executed. If the expression is false, following validation
expressions MUST be executed. If the expression is ERROR (evaluation failed) in client, the client
SHOULD act as if the field was accepted, allowing the server to make the final decision.

REJECT BOOLEAN If the expression is true, the field value is considered rejected without further testing. Subsequent SET
expressions MUST NOT be evaluated. If the expression is false, following validation expressions MUST
be executed. If the expression is ERROR, evaluation failed in client, the client SHOULD act as if the
field was accepted, allowing the server to make the final decision.

WARNING BOOLEAN If the expression is true, the client should show a warning message to the user, and if the warning is
okayed by the user, include a Warning-Response in the UPDATE request. If the user does not okay the
warning, the field is considered rejected and following SET validation expressions MUST NOT be
evaluated.

If the expression is false, the following validation expressions MUST be evaluated.

SET TYPEOF(EXP) The expression MUST begin with a field name and an equal sign ("=") .

The following expression is evaluated and the result stored in the designated field.

SET_DEFAULT TYPEOF(EXP) This expression MUST be executed ONLY when a NEW record is created. Supersedes the default
value as indicated in the Update Metadata.

SET_REQUIRED BOOLEAN Expressions of this type are designed to evaluate an expression and set the field that the rule is applied
on to Required if the expression returns true and to Non Required if the expression returns false.

SET_READ_ONLY BOOLEAN Expressions of this type are designed to evaluate an expression and set the field that the rule is being
applied on to Read Only if the expression returns true and to Updateable if the expression returns false.
The client application is expected to lock the value of the field the rule is being executed on to the value
at the time the SET_REQUIRED expression is evaluated.

RESTRICT_PIC
KLIST

List of CHAR Expressions of this type are designed to return one or more LOOKUP values that are to be removed
from the LOOKUP list that is defined for the field the rule is being executed on. This is always the entire
set of values to remove from the lookup. In other words, if this returns a blank list or .EMPTY., the
entire set of LOOKUP values is to be displayed. The value of this expression MUST be a <List>, rather
than <Exp>, as defined in 11.4.9.1. All members of the list MUST be of the same type as the type of the
field the rule is being executed on.

SET_PICKLIST List of CHAR Expressions of this type are designed to return one or more LOOKUP values that are to be used in the
LOOKUP list that is defined for the field the rule is being executed on. The value of this expression
MUST be a <List>, rather than <Exp>, as defined in 11.4.9.1. Every member of the list MUST exist in
the Lookup list as defined in the metadata for the field the rule is being executed on.

SET_DISPLAY BOOLEAN Expressions of this type are designed to allow a client to make fields visible or invisible based on the
evaluation of an expression. The result of this expression has no effect on whether a field is READ
ONLY or not.

New Section: 2.7.11.2 Validation Expression BNF

Exp ::= OrExp

List ::= LPAREN RPAREN
 | LPAREN Exp *(COMMA Exp) RPAREN

OrExp ::= AndExp *(OR AndExp)

AndExp ::= NotExp *(AND NotExp)

NotExp ::= NOT NotExp
 | EqExp

EqExp ::= CmpExp
 | CmpExp EQ CmpExp
 | CmpExp NE CmpExp

CmpExp ::= CntExp
 | CntExp LTE CntExp
 | CntExp GTE CntExp
 | CntExp LT CntExp
 | CntExp GT CntExp

CntExp ::= SumExp
 | SumExp CONTAINS SumExp
 | SumExp IN List

SumExp ::= ProdExp *((PLUS|MINUS|CONCAT) ProdExp)

1.
2.
3.

4.
5.

6.

7.

ProdExp ::= AtomExp *((ASTERISK|SLASH|MOD) AtomExp)

AtomExp ::= LPAREN Exp RPAREN
 | Value
 | FuncExp

FuncExp ::= Func LPAREN Param *(COMMA Param) RPAREN

Func ::= ALPHA *(ALPHANUM)

Param ::= Exp

Value ::= SpecValue
 | CharValue
 | IntValue
 | FloatValue
 | TimeValue
 | TimeSpanValue
 | FieldName

Concat ::= PIPE
SpecValue := DOT FieldName DOT

FieldName ::= (RETSNAME|RESONAME)
 | LBRACKET (RETSNAME|RESONAME) RBRACKET

CharValue ::= SQUOTE PLAINTEXT SQUOTE
 | QUOTE PLAINTEXT QUOTE

TimeValue ::= HASH (RETSDATE|RESODATE) HASH
FloatValue ::= IntValue DOT *(DIGIT)
IntValue ::= 0*1(PLUS|MINUS) 1*(DIGIT

Notes:

SEE: .ANTLR G4 Grammar for RCP-019 for latest version of the grammar parser specification
SpecValue is further constrained - see Special Operands
The value of a Validation Expression MUST conform to the Exp syntax in the grammar above, except
for RESTRICT_PICKLIST and SET_PICKLIST expressions, whose value MUST conform to the List syntax. Any expression with
keyword starting with “X-” MAY have a List value as well.
The text in CharValue must not include the (single or double) quote used to delimit the value.
TimeValue must be expressed in the constrained ISO8601 format described below and is enclosed in hashmarks(#) (ex. #2018-09-
11T14:30:00#).

ISO 8601, RFC 3339 and the W3C note provide for additional constraints to the formats. Based on common usage patterns, this
standard applies the following additional constraints to improve interoperability and compatibility. The representation of the time offset
UTC character 'Z' and the date-time separator character 'T' MUST be upper case.

The time-secfrac is limited to one digit only. The date and time representations are intended for machine processing, therefore, no
whitespace is expected in any of the atoms. Examples of the format are similar to that of the W3C note, for example, 2018-07- 16T19:20:
30.4+01:00 or 2018-07-16T18:20:30.4Z. Servers and Clients MUST treat the time-offset 'Z' and "+00:00" as identical times. Servers and
Clients MAY use the interpretation of RFC 3339 section 4.3 Unknown Local Offset Convention where the time-offset "-00:00" is
semantically different from "+00:00" and represents a known UTC time but unknown local time.
A FieldName is a bracketed name of a field belonging to the same class as the field to which this expression is attached, and has a type
of that field specified by the metadata. If used with the LAST keyword, its value is the value of the field as it was in the database before
the current updates took place. If used without LAST, the updated value of the field MUST be used.

https://raw.githubusercontent.com/darnjo/rcp019/master/rcp019.g4

7.
8.
9.

10.
11.

A TimeValue has TIME type.
A CharValue has CHAR type.
A IntValue has INT type.
A FloatValue has FLOAT type.
FieldName can be expressed with or without brackets by the . RCP 61 spec

The SpecValue uses the tokens defined in Section 2.7.8.4 Special Operands. See that section for valid values. These values may change
between versions of the standard.

New Section: 2.7.11.3 Atoms and Primitives

Token Definition

ALPHA ::= %x41-5A | %x61-7A
1; A-Z | a-z

CHAR ::= %x01-7F

; ANY 7-BIT US-ASCII CHARACTER,

; EXCLUDING NULL

CTL ::= %x00-1F | %x7F

; controls

DIGIT ::= %x30-39

; 0-9

HEXDIG ::= DIGIT | "A" | "B" | "C" | "D" | "E" | "F"

OCTET := %x00-FF ; any 8-bit sequence of data

BOOLEAN ::= TRUE | FALSE

TRUE ::= "1"

FALSE ::= "0"

LAST ::= "LAST"

RETSNAME ::= 1*64IDALPHANUM

IDALPHANUM ::= ALPHANUM | "_"

ALPHANUM ::= ALPHA | DIGIT

CR ::= <US-ASCII CR, carriage return (13)>

LF ::= <US-ASCII LF, linefeed (10)>

SP ::= <US-ASCII SP, space (32)>

HT ::= <US-ASCII HT, horizontal-tab (9)>

QUOTE ::= %x22

NULL ::= <no character>

CRLF or ::= CR LF; special character U+21B5

LWS ::= [CRLF] 1*(SP | HT)

HEX ::= "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

LHEX ::= "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

OPTNONNEGATIVENUM ::= NULL | NONNEGATIVENUM ; null or >= 0

OPTPOSITIVENUM ::= NULL | POSITIVENUM ; null or >= 1

NONNEGATIVENUM ::= "0" | POSITIVENUM ; also known as cardinal numbers or counting numbers ;
consisting of integers greater than 0

https://reso.atlassian.net/wiki/display/RETS180a/RCP+61+-+Validation+Expression+Replacement

NONZERODIGIT ::= %x31-39 ; 1-9

PLAINTEXT ::= <any OCTET except CTL+S>

POSITIVENUM ::= NONZERODIGIT *DIGIT

; > 0

SERIAL ::= "-1" | NONNEGATIVENUM;

TEXT ::= <any OCTET except CTL+S, but including LWS >

TOKENCHAR ::= <any CHAR except CTL s or TSPECIALS >

TOKEN ::= 1*TOKENCHAR

TSPECIALS ::= "(" | ")" | "<" | ">" | "@" | "," | ";" | ":" | "\" | <"> | "/" | "[" | "]" | "?"
| "=" | "}" | "{" | SP | HT

quoted-string ::= (<"> *(QDTEXT) <">)

QDTEXT ::= <any TEXT except <">>

RETSDATETIME ::= date-time | partial-date-time

RETSTIME ::= full-time | partial-time

DATE ::= <Date using the format defined in RFC 2616 as rfc1123-date>

OR ::= DOT "OR" DOT

AND ::= DOT "AND" DOT

NOT ::= DOT "NOT" DOT

CONTAINS ::= DOT "CONTAINS" DOT

IN ::= DOT "IN" DOT

MOD ::= DOT "MOD" DOT

LPAREN ::= %x28 ; ASCII left parenthesis character (

RPAREN ::= %x29 ; ASCII right parenthesis character)

SQUOTE ::= %x27 ; ASCII single quote character '

QUOTE ::= %x22 ; ASCII double quote character "

DOT ::= %x2E ; ASCII period character .

COMMA ::= %x2C ; ASCII comma character ,

HASH ::= %x23 ; ASCII hash character #

PIPE ::= %x7C ; ASCII pipe character |

PLUS ::= %x2B ; ASCII plus character +

MINUS ::= %x2D ; ASCII minus character -

LBRACKET ::= %x5B ; ASCII left bracket [

RBRACKET ::= %x5D ; ASCII right bracket]

SLASH ::= %x2F ; ASCII forward slash /

ASTERISK ::= %x2A ; ASCII asterisk *

EQ ::= %x3D ; ASCII equals =

EXCLAMATION ::= %x21 ; ASCII exclamation mark !

GT ::= %x3E ; ASCII less than >

LT ::= %x3C ; ASCII less than <

CTRL_S ::= %x13 ; ASCII CTRL+S

LTE ::= LT EQ ; "<="

GTE ::= GT EQ ; ">="

NE ::= EXCLAMATION EQ ; "!="

CONCAT ::= PIPE ; "|"

PLAINTEXT ::= *(~[CTRL_S]) ; Zero or more characters, no CTRL_S

New Section: 2.7.11.4 Special Operands

Token Data Type Description

.EMPTY. EMPTY A value that matches an empty or all-blank field. Supplies an empty (zero-length) field when used in a SET
expression.

.TRUE. BOOLEAN Boolean value of TRUE (1)

.FALSE. BOOLEAN Boolean value of FALSE (0)

.TODAY. TIME The current date.

.NOW. TIME The current time.

.ENTRY. TYPEOF
(FIELD)

The current field text.

.OLDVALUE. TYPEOF
(FIELD)

The value that was in the field as returned from the host in the search operation. If the field is new, .
OLDVALUE. is .EMPTY.

.USERID. CHAR The value of the user-id field returned by the function on the resource, see Section 2.7.9.3

.
USERCLASS.

CHAR The value of the user-class field returned by the function on the resource, see Section 2.7.9.3.

.
USERLEVEL.

CHAR The value of the user-level field returned by the function on the resource, see Section 2.7.9.3.

.
AGENTCODE.

CHAR The value of the agent-code field returned by the function on the resource, see Section 2.7.9.3.

.
BROKERCODE.

CHAR The value of the broker-code field returned by the function on the resource, see Section 2.7.9.3.

.
BROKERBRAN
CH.

CHAR The value of the broker-branch field returned by the function on the resource, see Section 2.7.9.3.

.
UPDATEACTI
ON.

CHAR Name of the UpdateAction for which this validation is performed. (See table below, and UpdateAction
Section 2.7 Update in the Web API 1.1 document)

.any. See
Description

If the name of the (stripped of the first and last dot) is equal to a name of one of the SpecValue info-token-
 returned as part of the function on the Resource, then the type and value of this is defined keys SpecValue

by that . If no such exists, the value is .info-token-key info-token-key ERROR

New Section: 2.7.11.5 Time-Specific Atoms

Token Definition

date-fullyear ::= 4DIGIT

date-month ::= 2DIGIT ; 01 - 12

date-mday ::= 2DIGIT ; 01 - 28, 01-29, 01-30, 01-31, based on month/year

1.
2.

3.

time-hour ::= 2DIGIT ; 00 - 23

time-minute ::= 2DIGIT ; 00 - 59

time-second ::= 2DIGIT ; 00 - 58, 00 - 59, 00 - 60 based on leap second rules

time-secfrac ::= "."1DIGIT

time-numoffset ::= ("+"|"-") time-hour ":" time-minute

time-offset ::= "Z" | time-numoffset

partial-time ::= time-hour ":" time-minute ":" time-second [time-secfrac]

full-date ::= date-fullyear " - " date-month " - " date-mday

full-time ::= partial-time time-offset

date-time ::= full-date "T" full-time

partial-date-time ::= full-date "T" partial-time

Notes:

The definitions for ALPHA , CHAR , CTL , DIGIT , HEXDIG and OCTET are derived from RFC 2234.
ISO 8601, RFC 3339 and the W3C note provide for additional constraints to the formats. Based on common usage patterns, this
standard applies the following additional constraints to improve interoperability and compatibility. The representation of the time offset
UTC character 'Z' and the date-time separator character 'T' MUST be upper case.
The time-secfrac is limited to one digit only. The date and time representations are intended for machine processing, therefore, no
whitespace is expected in any of the atoms. Examples of the format are similar to that of the W3C note, for example, 2018-07- 16T19:20:
30.4+01:00 or 2018-07-16T18:20:30.4Z. Servers and Clients MUST treat the time-offset 'Z' and "+00:00" as identical times. Servers and
Clients MAY use the interpretation of RFC 3339 section 4.3 Unknown Local Offset Convention where the time-offset "-00:00" is
semantically different from "+00:00" and represents a known UTC time but unknown local time.

New Section: 2.7.11.6 Functions and Operators

A Validation Expression may use Functions. We define <FuncExp> as a function with parameters. The following functions are defined:

List of Functions

Function Parameter Types Type Comments

BOOL BOOLEAN, CHAR BOOLEAN

CHAR Exp, TYPEOF(Exp) NE
FLOAT

CHAR

CHARF FLOAT, INT CHAR The CHARF function converts a Float number, and in the second parameter specifies how
many decimal digits MUST appear after the point.

TIME TIME, CHAR TIME

DATE TIME, CHAR TIME

INT INT, FLOAT, BOOL,
CHAR

INT

FLOAT INT, FLOAT, BOOL,
CHAR

FLOAT

SUBSTR CHAR, INT, INT CHAR The SUBSTR function returns a substring of its first parameter. Second parameter is a
starting position of the substring, third parameter is the ending position of the substring.
Positions are 1-based.

STRLEN CHAR INT The STRLEN function returns the length if its parameter.

LOWER CHAR CHAR The LOWER function returns its parameter lower-cased.

UPPER CHAR CHAR The UPPER function returns its parameter upper-cased.

IIF BOOLEAN, Exp, Exp TYPEOF
(Exp)

The IIF function returns the value of its second parameter if the first parameter evaluates
to true, or the value of its third parameter otherwise. Types of second and third parameter
must be same, and it is the type of the result. These parameters are also known as CondE

, , and , respectively.xp TrueExp FalseExp

YEAR TIME INT

1.

2.

3.

4.
5.

6.

7.

8.

9.

MONTH TIME INT

DAY TIME INT

WEEKDAY TIME INT

TYPEOF Exp CHAR The input parameter, can be any valid expression in the grammar. This function willExp,

return a CHAR representation of the given expression's type, one of:

{BOOLEAN, CHAR, FLOAT, INT, TIME}

MATCH CHAR, Exp BOOLEAN Takes a as a CHAR and an expression Exp, and returns True if Regular Expression regex
expression matches and False otherwise.regex

Notes:

The BOOL, CHAR, TIME, DATE, INT and FLOAT functions are used just to change a type of expression. The DATE and TIME functions
are synonyms. Note that any of these functions may fail (return an ERROR value) if the parameter can not be transformed to the
appropriate type.
In conversion from BOOLEAN to INT or FLOAT, .TRUE. is converted to 1 and .FALSE. is converted to 0.
Casting FLOAT to INTEGER discards the fractional part.
When converting to CHAR, BOOL values are represented as “0” and “1”, TIME values are represented using format defined in RFC 1123
with digital timezone, INT values are represented with no leading zeros.
When converting from CHAR to BOOL, values “0”,”1”,”YES”,”NO”,”TRUE” and “FALSE” (no matter what the case) MUST be understood.
When converting from CHAR to TIME, any RFC 1123 –compliant format MUST be understood. A leading and/or trailing # MUST be
removed before conversion.
When converting from CHAR to INT or FLOAT, usual formats MUST be understood. Scientific format (with exponent) MUST NOT be
understood. FLOAT numbers with empty integral part (.5, -.4) MUST be understood as long as there is at least one digit after the
decimal point.
The YEAR, MONTH, DAY and WEEKDAY parse the date part of TIME value. They return values ranging from 1 to the appropriate
maximum. WEEKDAY returns 1 for Sunday, 2 for Monday etc.
Other functions may be defined later (HOUR and MINUTE are first candidates). If a server uses a function the client does not recognize,
the client MUST evaluate it as ERROR.
A Validation Expression may have Operations applied to the parameters. The Operators may be applied on certain types that determine
the result type. The input types and resulting output type is defined in the Validation Expression Table (below).List of Operators

List of Operators

Operator Left Operand Right Operand Result Meaning

.MOD. INT INT INT Arithmetic MODULO operation

/, * INT INT INT Integer division and multiplication

/, * INT FLOAT FLOAT Division and multiplication

/, * FLOAT INT FLOAT Division and multiplication

/, * FLOAT FLOAT FLOAT Division and multiplication

+,- INT INT INT Integer addition and subtraction.

+,- INT FLOAT FLOAT Addition and subtraction.

+,- FLOAT INT FLOAT Addition and subtraction.

+,- FLOAT FLOAT FLOAT Addition and subtraction.

+ FLOAT TIME TIME Time shift.

+ TIME FLOAT TIME Time shift.

- TIME FLOAT TIME Time shift.

- TIME TIME FLOAT Time shift.

|| CHAR CHAR CHAR String concatenation.

.CONTAINS. CHAR CHAR BOOLEAN String containment. The operation is TRUE if the left operand contains the right operand as
a substring anywhere within it.

.IN. Any List of
operands,
all of the
same type as
the left
operand

BOOLEAN List inclusion. The operation is TRUE if the left operand is equal to any member of the list.

.AND. BOOLEAN BOOLEAN BOOLEAN

https://reso.atlassian.net/wiki/spaces/RETS180a/pages/3718546206/11.4.5+Edit+Mask

1.

2.
3.

A Boolean operator that takes two Boolean operands, and whose value is TRUE if and
only if both of its operands are TRUE.

.OR. BOOLEAN BOOLEAN BOOLEAN A Boolean operator that takes two Boolean operands, and whose value is TRUE if either of
its operands is TRUE.

.NOT. BOOLEAN BOOLEAN BOOLEAN A Boolean operator that takes a single Boolean operand and returns its inverse.

=, != Any Same as left BOOLEAN Equality.

<,>,<=,>= INT,FLOAT INT,FLOAT BOOLEAN Numeric comparison.

<,>,<=,>= TIME TIME BOOLEAN Date and time comparison

<,>,<=,>= BOOLEAN BOOLEAN BOOLEAN Boolean comparison (TRUE > FALSE).

Notes:

Arithmetic operations between dates use number of days as the FLOAT parameter (or result); e.g. 0.25 represents a time span of 6
hours.
Any operation with an ERROR argument MUST evaluate to ERROR. An EMPTY value may be compared (=,!=) against any value.
Appropriate casting functions (BOOL, CHAR, TIME, INT, FLOAT) MUST be applied to the parameters. If a function or an operator is
applied to a data type different than shown in the above tables, the expression MUST evaluate to ERROR.

New Section: 2.7.11.7 Constraint Types

New Section: 2.7.11.7.1 Resource Constraints

OData provides a mechanism for constraining Resources by annotating the Resource. Examples of constraints are property data type, property
ranges or limits and control the values that a property within a Resource may take. These constrains may also be expressed using Validation
Expressions, so either MAY be used. Ideally vendors would choose a single, standard way to validation rules until OData has the ability transport
to express both Resource and Process constraints.

New Section: 2.7.11.7.2 Process Constraints

OData provide a mechanism for process constraints on a Resource at this time. The Validation Expression language MUST be used to does not
represent rules that define business processes, role constrained validations, sequence constraints or previous value constrains.

TODOs:

Review and use Odata BNF atoms as they exists - ensure that we don't redefine.

Review and remove atoms that are not used.

Please add any other items that need to be taken care of to the bottom of the list.

Impact

This change proposal only impacts the Upsert (Add/Modify a Resource Entity) functionality. Since this functionality did not exist in previous
versions, this is not a backward-compatible change, but it will have no impact on previous versions of the standard.

Additional Information

Attached is a zip containing a working minimal implementation of this BNF in an ANTLR .g4 file, along with a Parser generated in Java. There is
a README included with some example expressions.

https://github.com/darnjo/rets19

Here is a screenshot showing a sample expression and a parse tree:

Certification Impact

Here are some ideas for testing rules:

Rule Testing

With all the various ways to process rules, it's likely important to create a Rules testing reference implementation so servers, clients, and “fancy”
clients would all have a single source of truth to check their rules implementations against. In my view this is somewhat critical so that all clients
agree on what rules mean, regardless of their particular implementations.

What does testing look like? Perhaps creating a set of common rules that have some degree of interdependence and ordering.

Rule Testing Should:

Exercise simple independent rule validation on a payload with .SET_REQUIRED. operations and only constant-valued expressions. For
instance, set 10 fields to be .SET_REQUIRED., .TRUE.
Add independent rules with .USERLEVEL. constraints, for instance, set 10 fields as required, and 5 as required if the user is not an
admin.
Add independent rules which are to be conditionally executed based on .UPDATEACTION.
Add initialization rules using the .SET_DEFAULT. action for .UPDATEACTION. = "ADD"
Add independent SET rules for fields not already referenced in any previous rules, and not to be referenced afterwards.
Add dependent SET rules based on some of the fields that were initialized previously.
Add conditionally dependent SET rules (using IIF).
Add computations with 3-5 dependencies in the rule set, some conditional.
Add reciprocal calculations -- tests proper reevaluation and sequencing.

	RCP - WEBAPI-019 Validation Expression in the WebAPI

