-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm_data_analysis.py
116 lines (83 loc) · 3.21 KB
/
llm_data_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import csv
import csv
import itertools
import json
from palm_sequence import prompt_gemini
import pandas as pd
with open("data/h1_corrected_format.json") as f:
household_responses = json.load(f)
# def remove_columns(filename):
# h1_2 = pd.read_csv(filename)
# h1_2_cols = [col for col in h1_2.columns if col.startswith("Anticipated")]
# h1_2 = h1_2[h1_2_cols]
# print(h1_2.columns)
# h1_2.to_csv("data/h1_corrected_task.csv", index=False)
# def divide_into_groups(lst, group_size):
# return [lst[i : i + group_size] for i in range(0, len(lst), group_size)]
# def csv_to_json(csv_file):
# json_data = {}
# with open(csv_file, "r") as file:
# reader = csv.DictReader(file)
# k = 0
# for row in reader:
# col_names = divide_into_groups(list(row.keys()), 4)
# for cols in col_names:
# answers = [row[key] for key in cols]
# if f"user_{k}" in json_data.keys():
# json_data[f"user_{k}"].append(answers)
# else:
# json_data[f"user_{k}"] = [answers]
# k += 1
# return json_data
# remove_columns("data/h1_corrected.csv")
# csv_file = "data/h1_corrected_task.csv"
# json_data = csv_to_json(csv_file)
# with open("data/h1_corrected.json", "w") as file:
# json.dump(json_data, file, indent=2)
# breakpoint()
# # Pretty print the JSON data
# print(json.dumps(json_data, indent=2))
# print(json_data.keys())
# def rearrange_json(json_file):
# h1_2 = json.load(open(json_file, "r"))
# final_data = {}
# for scn_id in range(0, 10):
# final_data[f"scene_{scn_id}"] = {"details": "lorem ipsum"}
# for scn_id in range(0, 5):
# for question_number in range(0, 4):
# for user in h1_2.keys():
# # breakpoint()
# try:
# final_data[f"scene_{scn_id}"][user] = h1_2[user][scn_id]
# except:
# breakpoint()
# return final_data
# final_data = rearrange_json("data/h1_corrected.json")
# with open("data/h1_corrected_format.json", "w") as file:
# json.dump(final_data, file, indent=2)
# # breakpoint()
# def find_common_tasks(scene_data):
# common_tasks = {}
# for scene, users in scene_data.items():
# common_tasks[scene] = {}
# user_tasks = users.values()
# combinations = itertools.combinations(user_tasks, 2)
# for pair in combinations:
# breakpoint()
# common = set(pair[0]).intersection(pair[1])
# common_tasks[scene][pair] = common
# return common_tasks
# with open("data/h1_corrected_format.json") as f:
# data = json.load(f)
# def compute_overlap(scene_data):
# user_keys = list(scene_data.keys())[1:]
# common_tasks = set(user_tasks[0])
# for user_task in user_tasks[1:]:
# common_tasks &= set(user_task)
# # Calculate percentage overlap
# total_tasks = len(user_tasks[0])
# overlap_percentage = (len(common_tasks) / total_tasks) * 100
# breakpoint()
# return overlap_percentage
# overlap_percentage_scene_0 = compute_overlap(data["scene_0"])
# print(f"Percentage overlap in scene_0: {overlap_percentage_scene_0:.2f}%")