-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_permotohedron.py
276 lines (242 loc) · 11 KB
/
plot_permotohedron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import numpy as np
from itertools import permutations
from scipy.spatial import SphericalVoronoi, geometric_slerp, Delaunay
from mayavi import mlab
def zero_sum_projection(d):
basis = np.array([[1.0] * i + [-i] + [0.0] * (d - i - 1) for i in range(1, d)])
return np.array([v / np.linalg.norm(v) for v in basis])
def get_permutation_points():
n_features = 4
p = np.array(list(permutations(np.arange(0, n_features)))) - 1.5
basis = zero_sum_projection(n_features)
points = p.dot(basis.T)
points /= np.linalg.norm(points[0])
return points
def mayavi_plot_cayley_3d():
p_int = np.array(list(permutations(np.arange(0, 4))))
points = get_permutation_points()
mlab.figure(1, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), size=(800, 600))
mlab.clf()
# Create and visualize the mesh
tri = Delaunay(points)
mlab.triangular_mesh(points[:, 0], points[:, 1], points[:, 2], tri.convex_hull, opacity=0.7,
color=(52 / 255, 168 / 255, 235 / 255))
poly = mlab.points3d(points[:, 0], points[:, 1], points[:, 2], scale_factor=0.05,
color=(0.2, 0.2, 0.2))
poly.actor.property.backface_culling = True
for i in range(points.shape[0]):
mlab.text3d(points[i][0] * 1.05, points[i][1] * 1.05, points[i][2] * 1.05,
str(np.argsort(p_int[i]) + 1),
scale=0.05)
mlab.view(focalpoint=(0, 0, 0), distance=4.5)
mlab.savefig("figures/cayley.png")
# mlab.show()
def mayavi_plot_cayley_2d():
p_int = list(permutations(np.arange(0, 3)))
points = np.array(p_int)
points_nsphere = np.array([x / np.linalg.norm(x) for x in points - 1])
mlab.figure(1, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), size=(800, 600))
mlab.clf()
# axis
mlab.quiver3d(0, 0, 0, 1, 0, 0, color=(1, 0, 0))
mlab.quiver3d(0, 0, 0, 0, 1, 0, color=(0, 1, 0))
mlab.quiver3d(0, 0, 0, 0, 0, 1, color=(0, 0, 1))
# norm
n_len = np.sqrt(3)
mlab.quiver3d(1, 1, 1, n_len, n_len, n_len, color=(0, 0, 0))
# Create and visualize the mesh
tri = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [4, 3, 5]]
mlab.triangular_mesh(points[:, 0], points[:, 1], points[:, 2], tri, opacity=0.7,
color=(52 / 255, 168 / 255, 235 / 255))
poly = mlab.points3d(points[:, 0], points[:, 1], points[:, 2], scale_factor=0.05,
color=(0.2, 0.2, 0.2))
circle = np.array(geometric_slerp(points_nsphere[2], points_nsphere[1], np.linspace(0, 1, 100)))
circle = np.append(circle, np.array(
geometric_slerp(points_nsphere[1], points_nsphere[5], np.linspace(0, 1, 100))), axis=0)
circle = np.append(circle, np.array(
geometric_slerp(points_nsphere[5], points_nsphere[2], np.linspace(0, 1, 100))), axis=0)
circle = (circle * np.sqrt(2)) + 1
mlab.plot3d(circle[:, 0],
circle[:, 1],
circle[:, 2],
color=(0.8, 0.8, 0.8), opacity=0.9, tube_radius=None)
poly.actor.property.backface_culling = True
for i in range(points.shape[0]):
mlab.text3d(points[i][0] * 1.05, points[i][1] * 1.05, points[i][2] * 1.05,
str(np.argsort(p_int[i]) + 1),
scale=0.10)
mlab.view(focalpoint=(1, 1, 1), distance=6, elevation=80, azimuth=5)
mlab.savefig("figures/cayley2d.png")
# mlab.show()
def mayavi_plot_cayley_voronai():
points = get_permutation_points()
p_int = list(permutations(np.arange(0, 4)))
mlab.figure(1, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), size=(800, 600))
mlab.clf()
sphere = mlab.points3d(0, 0, 0, scale_mode='none',
scale_factor=2,
color=(0.67, 0.77, 0.93),
resolution=50,
opacity=1.0
)
sphere.actor.property.backface_culling = True
sphere.actor.property.interpolation = 'flat'
radius = 1
center = np.array([0, 0, 0])
sv = SphericalVoronoi(points, radius, center)
# sort vertices (optional, helpful for plotting)
sv.sort_vertices_of_regions()
mlab.points3d(points[:, 0], points[:, 1], points[:, 2], scale_factor=0.05,
color=(0.2, 0.2, 0.2))
mlab.points3d(sv.vertices[:, 0], sv.vertices[:, 1], sv.vertices[:, 2], scale_factor=0.05,
color=(0.2, 0.5, 0.2))
# indicate Voronoi regions (as Euclidean polygons)
t_vals = np.linspace(0, 1, 100)
for region in sv.regions:
n = len(region)
for i in range(n):
start = sv.vertices[region][i]
end = sv.vertices[region][(i + 1) % n]
result = np.array(geometric_slerp(start, end, t_vals))
mlab.plot3d(result[:, 0],
result[:, 1],
result[:, 2],
color=(0.8, 0.8, 0.8), opacity=0.5, tube_radius=None)
for i in range(points.shape[0]):
mlab.text3d(points[i][0] * 1.05, points[i][1] * 1.05, points[i][2] * 1.05,
str(np.argsort(p_int[i]) + 1),
scale=0.05)
mlab.view(focalpoint=(0, 0, 0), distance=4.5, azimuth=50)
mlab.savefig("figures/cayley_voronoi.png")
# mlab.show()
def mayavi_plot_cayley_orthogonal():
import algorithms
mlab.figure(1, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), size=(800, 600))
mlab.clf()
sphere = mlab.points3d(0, 0, 0, scale_mode='none',
scale_factor=2,
color=(0.67, 0.77, 0.93),
resolution=50,
opacity=0.6
)
basis = zero_sum_projection(4)
orthogonal_sample = algorithms.get_orthogonal_vectors(3, 4)
orthogonal_sample = np.concatenate(
(orthogonal_sample, -orthogonal_sample))
valid_permutations = np.zeros((orthogonal_sample.shape[0], 4), dtype=np.int64)
valid_permutations_projection = np.zeros((orthogonal_sample.shape[0], 3))
for i, s in enumerate(orthogonal_sample):
valid_permutations[i] = np.argsort(s)
valid_permutations_projection[i] = np.argsort(valid_permutations[i]).dot(basis.T)
valid_permutations_projection[i] /= np.linalg.norm(valid_permutations_projection[i])
orthogonal_sample_reduced = orthogonal_sample.dot(basis.T)
arrow_origin = np.zeros(orthogonal_sample_reduced.shape[0])
mlab.quiver3d(arrow_origin, arrow_origin, arrow_origin,
orthogonal_sample_reduced[:, 0], orthogonal_sample_reduced[:, 1],
orthogonal_sample_reduced[:, 2])
sphere.actor.property.backface_culling = True
sphere.actor.property.interpolation = 'flat'
mlab.points3d(valid_permutations_projection[:, 0], valid_permutations_projection[:, 1],
valid_permutations_projection[:, 2], scale_factor=0.05,
color=(0.2, 0.2, 0.2))
for i in range(valid_permutations.shape[0]):
mlab.text3d(valid_permutations_projection[i][0] * 1.05,
valid_permutations_projection[i][1] * 1.05,
valid_permutations_projection[i][2] * 1.05,
str(valid_permutations[i] + 1),
scale=0.05)
mlab.view(focalpoint=(0, 0, 0), distance=4.5, azimuth=79, elevation=20)
mlab.savefig("figures/ortho.png")
# mlab.show()
def plot_sobol_sphere():
from sobol_sphere import sobol_sphere
points = sobol_sphere(200, 3)
mlab.figure(1, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), size=(800, 600))
mlab.clf()
sphere = mlab.points3d(0, 0, 0, scale_mode='none',
scale_factor=2,
color=(0.67, 0.77, 0.93),
resolution=50,
opacity=1.0
)
sphere.actor.property.backface_culling = True
sphere.actor.property.interpolation = 'flat'
mlab.points3d(points[:, 0], points[:, 1], points[:, 2], scale_factor=0.05,
color=(0.5, 0.2, 0.2))
mlab.view(focalpoint=(0, 0, 0), distance=4.5)
mlab.savefig("figures/sobol_sphere.png")
# mlab.show()
def orthogonal_samples_kt():
import kernel_methods
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import algorithms
plt.style.use("seaborn")
n = 10000
num_features = [10, 100]
kernel = kernel_methods.KTKernel()
df = pd.DataFrame(columns=["sample", "kernel"])
for d in num_features:
for _ in range(n):
# sample 2 orthogonal vectors
orth = algorithms._orthogonal_permutations((d - 1) * 2, d)
sigma = orth[0]
rand = np.random.permutation(d)
df = df.append({"sample": "random", "kernel": kernel(sigma, rand)}, ignore_index=True)
df = df.append({"sample": "orth",
"kernel": kernel(sigma, orth[np.random.randint(1, orth.shape[0])])},
ignore_index=True)
# sns.set(rc={'figure.figsize': (5.2, 3.62)})
sns.set_style({'font.family': 'serif'})
sns.displot(df, x="kernel", hue="sample", kind="kde", fill=True, height=3.62,
aspect=4.4 / 3.62)
plt.xlabel("$K_{\\tau}(\sigma,\sigma')$")
plt.xlim((-1, 1))
plt.tight_layout()
plt.savefig("figures/orthogonal_kt_d" + str(d) + ".png", dpi=200)
plt.show()
def orthogonal_dot_product():
import kernel_methods
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
plt.style.use("seaborn")
n = 10000
d = 15
kernel = kernel_methods.KTKernel()
I = np.arange(d)
df = pd.DataFrame(columns=["sample", "dot", "kernel"])
p = np.sqrt(d * (d ** 2 - 1) / 12)
mu = (I + 1).mean()
A = lambda y: ((y + 1) - mu) / p
upper_bound = lambda k: 2 + 3 * k - 4 * np.power((1 + k) / 2, 3 / 2)
lower_bound = lambda k: -2 + 3 * k + 4 * np.power((1 - k) / 2, 3 / 2)
for _ in range(n):
rand = np.random.permutation(d)
dot = A(I).dot(A(rand))
df = df.append({"sample": "random", "dot": dot, "kernel": kernel(I, rand)},
ignore_index=True)
for k in np.linspace(-1, 1, 1000):
df = df.append({"sample": "upper bound", "dot": upper_bound(k), "kernel": k},
ignore_index=True)
df = df.append({"sample": "lower bound", "dot": lower_bound(k), "kernel": k},
ignore_index=True)
sns.set(rc={'figure.figsize': (5.2, 3.62)})
sns.set_style({'font.family': 'serif'})
markers = {"random": "X", "upper bound": ".", "lower bound": ".", "new upper bound": "."}
sns.scatterplot(data=df, x="kernel", y="dot", s=5, style="sample", markers=markers,
hue="sample", linewidth=0)
plt.xlabel("$K_{\\tau}(I,\sigma)$")
plt.ylabel("$A(I)^TA(\sigma)$")
plt.xlim((-1, 1))
plt.tight_layout()
plt.savefig("figures/orthogonal_dot_product" + str(d) + ".png", dpi=200)
# plt.show()
# mayavi_plot_cayley_3d()
# mayavi_plot_cayley_2d()
# mayavi_plot_cayley_voronai()
# mayavi_plot_cayley_orthogonal()
# plot_sobol_sphere()
# orthogonal_samples_kt()
# orthogonal_dot_product()