-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDay 03 - Conditional Probability.py
52 lines (39 loc) Β· 1.16 KB
/
Day 03 - Conditional Probability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# ========================
# Information
# ========================
# Direct Link: https://www.hackerrank.com/challenges/s10-mcq-4/problem
# Difficulty: Easy
# Max Score: 10
# Language: Python
# Multiple Choice Question - No code required but checked with code
# ========================
# Solution
# ========================
import itertools
from fractions import Fraction
# Sample space
SAMPLE_SPACE = list(itertools.product(("b", "g"), ("b", "g")))
# Event b at least one boy [A]
EVENT_B = []
for i in SAMPLE_SPACE:
if i[0] == "b" or i[1] == "g":
EVENT_B.append(i)
# Event 2b two boys [B]
EVENT_2B = []
for i in SAMPLE_SPACE:
if i[0] == "b" and i[1] == "b":
EVENT_2B.append(i)
# Conditional probability -> p(2b | b) = p (b | 2b) * p (2b) / p(b)
# Where -> p (b) = p(b|2b)* p(b) + p(b|2b')*p(b')
# For p(b|2b)
PB_2B = []
for i in EVENT_2B:
PB_2B.append(i)
PROB_PB_2B = Fraction(len(PB_2B), len(EVENT_2B))
# For p(2b)
PROB_2B = Fraction(len(EVENT_2B), len(SAMPLE_SPACE))
# For p(b)
PROB_B = Fraction(len(EVENT_B), len(SAMPLE_SPACE))
# Solving for p(2b | b) = p (b | 2b) * p (2b) / p(b)
print(PROB_PB_2B*PROB_2B/PROB_B)
# >>> 1/3