-
Notifications
You must be signed in to change notification settings - Fork 127
/
Copy pathbase_calibration_experiment.py
346 lines (286 loc) · 15.4 KB
/
base_calibration_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Base class for calibration-type experiments."""
from abc import ABC, abstractmethod
import functools
import logging
from typing import List, Optional, Sequence, Type, Union
import warnings
from qiskit import QuantumCircuit
from qiskit.providers.options import Options
from qiskit.pulse import ScheduleBlock
from qiskit.transpiler import StagedPassManager, PassManager, Layout, CouplingMap
from qiskit.transpiler.passes import (
EnlargeWithAncilla,
FullAncillaAllocation,
ApplyLayout,
SetLayout,
)
from qiskit_experiments.calibration_management.calibrations import Calibrations
from qiskit_experiments.calibration_management.update_library import BaseUpdater
from qiskit_experiments.framework.base_analysis import BaseAnalysis
from qiskit_experiments.framework.base_experiment import BaseExperiment
from qiskit_experiments.framework.experiment_data import ExperimentData
from qiskit_experiments.exceptions import CalibrationError
LOG = logging.getLogger(__name__)
class BaseCalibrationExperiment(BaseExperiment, ABC):
"""A mixin class to create calibration experiments.
This abstract class extends a characterization experiment by turning it into a
calibration experiment. Such experiments allow schedule management and updating of an
instance of :class:`.Calibrations`. Furthermore, calibration experiments also specify
an auto_update variable which, by default, is set to True. If this variable,
is True then the run method of the experiment will call :meth:`~.ExperimentData.block_for_results`
and update the calibrations instance once the backend has returned the data.
This mixin class inherits from the :class:`.BaseExperiment` class since calibration
experiments by default call :meth:`~.ExperimentData.block_for_results`. This ensures that the next
calibration experiment cannot proceed before the calibration parameters have been
updated. Developers that wish to create a calibration experiment must subclass this
base class and the characterization experiment. Therefore, developers that use this
mixin class must pay special attention to their class definition. Indeed, the first
class should be this mixin and the second class should be the characterization
experiment since the run method from the mixin must be used. For example, the rough
frequency calibration experiment is defined as
.. code-block:: python
RoughFrequencyCal(BaseCalibrationExperiment, QubitSpectroscopy)
This ensures that the ``run`` method of :class:`.RoughFrequencyCal` will be the
run method of the :class:`.BaseCalibrationExperiment` class. Furthermore, developers
must explicitly call the :meth:`__init__` methods of both parent classes.
Developers should strive to follow the convention that the first two arguments of
a calibration experiment are the qubit(s) and the :class:`.Calibrations` instance.
If the experiment uses custom schedules, which is typically the case, then
developers may chose to use the :meth:`get_schedules` method when creating the
circuits for the experiment. If :meth:`get_schedules` is used then the developer
must override at least one of the following methods used by :meth:`get_schedules`
to set the schedules:
#. :meth:`_get_schedules_from_options`
#. :meth:`_get_schedules_from_calibrations`
#. :meth:`_get_schedules_from_defaults`
These methods are called by :meth:`get_schedules`.
The :meth:`update_calibrations` method is responsible for updating the values of the parameters
stored in the instance of :class:`.Calibrations`. Here, :class:`BaseCalibrationExperiment`
provides a default update methodology that subclasses can override if a more elaborate behaviour
is needed. At the minimum the developer must set the variable :code:`_updater` which
should have an :code:`update` method and can be chosen from the library
:mod:`qiskit_experiments.calibration_management.update_library`. See also
:class:`qiskit_experiments.calibration_management.update_library.BaseUpdater`. If no updater
is specified the experiment will still run but no update of the calibrations will be performed.
"""
def __init_subclass__(cls, **kwargs):
"""Warn if BaseCalibrationExperiment is not the first parent."""
for mro_cls in cls.mro():
if mro_cls is BaseCalibrationExperiment:
break
if issubclass(mro_cls, BaseExperiment) and not issubclass(
mro_cls, BaseCalibrationExperiment
):
warnings.warn(
"Calibration experiments must inherit from BaseCalibrationExperiment "
f"before a BaseExperiment subclass: {cls}->{mro_cls}."
)
break
super().__init_subclass__(**kwargs)
# pylint: disable=super-init-not-called
def __init__(
self,
calibrations: Calibrations,
*args,
schedule_name: Optional[str] = None,
cal_parameter_name: Optional[str] = None,
updater: Optional[Type[BaseUpdater]] = None,
auto_update: bool = True,
**kwargs,
):
"""Setup the calibration experiment object.
Args:
calibrations: The calibrations instance with which to initialize the experiment.
args: Arguments for the characterization class.
schedule_name: An optional string which specifies the name of the schedule in
the calibrations that will be updated.
cal_parameter_name: An optional string which specifies the name of the parameter in
the calibrations that will be updated. If None is given then no parameter will
be updated. Subclasses may assign default values in their init.
updater: The updater class that updates the Calibrations instance. Different
calibration experiments will use different updaters.
auto_update: If set to True (the default) then the calibrations will automatically be
updated once the experiment has run and :meth:`.block_for_results` will be called.
kwargs: Keyword arguments for the characterization class.
"""
super().__init__(*args, **kwargs)
self._cals = calibrations
self._sched_name = schedule_name
self._param_name = cal_parameter_name
self._updater = updater
self.auto_update = auto_update
@property
def calibrations(self) -> Calibrations:
"""Return the calibrations."""
return self._cals
@property
def analysis(self) -> Union[BaseAnalysis, None]:
"""Return the analysis instance for the experiment.
.. note::
Analysis instance set to calibration experiment is implicitly patched to run
calibration updater to update the parameters in the calibration table.
"""
return self._analysis
@analysis.setter
def analysis(self, analysis: Union[BaseAnalysis, None]) -> None:
"""Set the analysis instance for the experiment"""
if analysis is None:
return
# Create direct alias to the original run method to avoid infinite recursion.
# .run method is overruled by the wrapped method
# and thus .run method cannot be called within the wrapper function.
analysis_run = getattr(analysis, "run")
@functools.wraps(analysis_run)
def _wrap_run_analysis(*args, **kwargs):
experiment_data = analysis_run(*args, **kwargs)
if self.auto_update:
experiment_data.add_analysis_callback(self.update_calibrations)
return experiment_data
# Monkey patch run method.
# This calls update_calibrations immediately after standard analysis.
# This mechanism allows a composite experiment to invoke updater.
# Note that the composite experiment only takes circuits from individual experiment
# and the composite analysis calls analysis.run of each experiment.
# This is only place the updater function can be called from the composite experiment.
analysis.run = _wrap_run_analysis
BaseExperiment.analysis.fset(self, analysis)
@classmethod
def _default_experiment_options(cls) -> Options:
"""Default values for a calibration experiment.
Experiment Options:
result_index (int): The index of the result from which to update the calibrations.
group (str): The calibration group to which the parameter belongs. This will default
to the value "default".
"""
options = super()._default_experiment_options()
options.update_options(result_index=-1, group="default")
return options
@classmethod
def _default_transpile_options(cls) -> Options:
"""Return empty default transpile options as optimization_level is not used."""
return Options()
def set_transpile_options(self, **fields):
r"""Add a warning message.
.. note::
If your experiment has overridden `_transpiled_circuits` and needs
transpile options then please also override `set_transpile_options`.
"""
warnings.warn(f"Transpile options are not used in {self.__class__.__name__ }.")
def update_calibrations(self, experiment_data: ExperimentData):
"""Update parameter values in the :class:`.Calibrations` instance.
The default behaviour is to call the update method of the class variable
:code:`__updater__` with simplistic options. Subclasses can override this
method to update the instance of :class:`.Calibrations` if they require a
more sophisticated behaviour as is the case for the :class:`.Rabi` and
:class:`.FineAmplitude` calibration experiments.
"""
if self._updater is not None:
self._updater.update(
self._cals,
experiment_data,
parameter=self._param_name,
schedule=self._sched_name,
)
def _validate_channels(self, schedule: ScheduleBlock, physical_qubits: Sequence[int]):
"""Check that the physical qubits are contained in the schedule.
This is a helper method that experiment developers can call in their implementation
of :meth:`validate_schedules` when checking the schedules.
Args:
schedule: The schedule for which to check the qubits.
physical_qubits: The qubits that should be included in the schedule.
Raises:
CalibrationError: If a physical qubit is not contained in the channels schedule.
"""
for qubit in physical_qubits:
if qubit not in set(ch.index for ch in schedule.channels):
raise CalibrationError(
f"Schedule {schedule.name} does not contain a channel "
f"for the physical qubit {qubit}."
)
def _validate_parameters(self, schedule: ScheduleBlock, n_expected_parameters: int):
"""Check that the schedule has the expected number of parameters.
This is a helper method that experiment developers can call in their implementation
of :meth:`validate_schedules` when checking the schedules.
Args:
schedule: The schedule for which to check the qubits.
n_expected_parameters: The number of free parameters the schedule must have.
Raises:
CalibrationError: If the schedule does not have n_expected_parameters parameters.
"""
if len(schedule.parameters) != n_expected_parameters:
raise CalibrationError(
f"The schedules {schedule.name} for {self.__class__.__name__} must have "
f"{n_expected_parameters} parameters. Found {len(schedule.parameters)}."
)
def _metadata(self):
"""Add standard calibration metadata."""
metadata = super()._metadata()
metadata["cal_group"] = self.experiment_options.group
metadata["cal_param_name"] = self._param_name
metadata["cal_schedule"] = self._sched_name
# Store measurement level and meas return if they have been
# set for the experiment
for run_opt in ["meas_level", "meas_return"]:
if hasattr(self.run_options, run_opt):
metadata[run_opt] = getattr(self.run_options, run_opt)
return metadata
def _transpiled_circuits(self) -> List[QuantumCircuit]:
"""Override the transpiled circuits method to bring in the inst_map.
The transpilation should do the strict minimum to make the circuits hardware compatible.
Indeed, calibration experiments are designed with a specific gate sequence in mind. Any
transpiler operation that changes this gate sequence may compromise the validity of the
calibration experiment. Sub-classes may override this method to define their own
transpilation if need be.
Returns:
A list of transpiled circuits.
"""
transpiled = []
for circ in self.circuits():
circ = self._map_to_physical_qubits(circ)
self._attach_calibrations(circ)
transpiled.append(circ)
return transpiled
def _map_to_physical_qubits(self, circuit: QuantumCircuit) -> QuantumCircuit:
"""Map program qubits to physical qubits.
Args:
circuit: The quantum circuit to map to device qubits.
Returns:
A quantum circuit that has the same number of qubits as the backend and where
the physical qubits of the experiment have been properly mapped.
"""
initial_layout = Layout.from_intlist(list(self.physical_qubits), *circuit.qregs)
coupling_map = self._backend_data.coupling_map
if coupling_map is not None:
coupling_map = CouplingMap(self._backend_data.coupling_map)
layout = PassManager(
[
SetLayout(initial_layout),
FullAncillaAllocation(coupling_map),
EnlargeWithAncilla(),
ApplyLayout(),
]
)
return StagedPassManager(["layout"], layout=layout).run(circuit)
@abstractmethod
def _attach_calibrations(self, circuit: QuantumCircuit):
"""Attach the calibrations to the quantum circuit.
This method attaches calibrations from the `self._cals` instance to the transpiled
quantum circuits. Given how important this method is it is made abstract to force
potential calibration experiment developers to implement it and think about how
schedules are attached to the circuits. The implementation of this method is delegated
to the sub-classes so that they can map gate instructions to the schedules stored in the
``Calibrations`` instance. This method is needed for most calibration experiments. However,
some experiments already attach circuits to the logical circuits and do not needed to run
``_attach_calibrations``. In such experiments a simple ``pass`` statement will suffice.
"""