-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoco2xml.py
148 lines (113 loc) · 4.04 KB
/
coco2xml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import xml.etree.ElementTree as ET
import pandas as pd
import cv2
import json
import random
def randrf(low, high):
return random.uniform(0, 1) * (high - low) + low
def write_to_xml(image_name, image_dict, data_folder, save_folder, xml_template='XML_Template.xml'):
# get bboxes
bboxes = image_dict[image_name]
# read xml file
tree = ET.parse(xml_template)
root = tree.getroot()
# modify
folder = root.find('folder')
folder.text = 'darkface'
fname = root.find('filename')
fname.text = image_name
path = root.find('path')
path.text = 'Images/darkface/' + image_name
src = root.find('source')
database = src.find('database')
database.text = 'DaekFace'
# size
img = cv2.imread(os.path.join(data_folder, image_name))
h,w,d = img.shape
size = root.find('size')
width = size.find('width')
width.text = str(w)
height = size.find('height')
height.text = str(h)
depth = size.find('depth')
depth.text = str(d)
for box in bboxes:
# append object
obj = ET.SubElement(root, 'object')
name = ET.SubElement(obj, 'name')
name.text = box[0]
pose = ET.SubElement(obj, 'pose')
pose.text = 'Unspecified'
truncated = ET.SubElement(obj, 'truncated')
truncated.text = str(0)
difficult = ET.SubElement(obj, 'difficult')
difficult.text = str(0)
bndbox = ET.SubElement(obj, 'bndbox')
xmin = ET.SubElement(bndbox, 'xmin')
xmin.text = str(int(box[1]))
ymin = ET.SubElement(bndbox, 'ymin')
ymin.text = str(int(box[2]))
xmax = ET.SubElement(bndbox, 'xmax')
xmax.text = str(int(box[3]))
ymax = ET.SubElement(bndbox, 'ymax')
ymax.text = str(int(box[4]))
# save .xml to anno_path
anno_path = os.path.join(save_folder, image_name.split('.')[0] + '.xml')
print(anno_path)
tree.write(anno_path)
# main routine
if __name__=='__main__':
# read annotations file
annotations_path = 'DarkFace_Train_COCO.json'
# specify image locations
image_folder = 'Image_MSRCR'
# specify savepath - where to save .xml files
savepath = 'Annotations_MSRCR'
if not os.path.exists(savepath):
os.makedirs(savepath)
# read in .json format
with open(annotations_path,'rb') as file:
doc = json.load(file)
# get annotations
annotations = doc['annotations']
images = doc['images']
id2names = {}
for name_dt in images:
id2names[name_dt['id']] = name_dt['file_name']
# iscrowd allowed? 1 for ok, else set to 0
iscrowd_allowed = 1
# initialize dict to store bboxes for each image
image_dict = {}
# loop through the annotations in the subset
for anno in annotations:
# get annotation for image name
image_id = anno['image_id']
image_name = id2names[image_id]
# get category
category = 'face'
# add as a key to image_dict
if not image_name in image_dict.keys():
image_dict[image_name]=[]
# append bounding boxes to it
box = anno['bbox']
# since bboxes = [xmin, ymin, width, height]:
image_dict[image_name].append([category, box[0], box[1], box[0]+box[2], box[1]+box[3]])
# generate .xml files
for image_name in image_dict.keys():
write_to_xml(image_name, image_dict, image_folder, savepath)
print('generated for: ', image_name)
# if __name__=='__main__':
# files = os.listdir('image')
# train_list = []
# val_list = []
# for file in files:
# file = file.split('.')[0]
# if(randrf(0,1) <0.8):
# train_list.append(file)
# else:
# val_list.append(file)
# with open('train.txt','w') as f:
# f.write('\n'.join(train_list))
# with open('val.txt','w') as f:
# f.write('\n'.join(val_list))