Skip to content

Latest commit

 

History

History
71 lines (53 loc) · 2.13 KB

File metadata and controls

71 lines (53 loc) · 2.13 KB

Detection and Segmentation Pipeline

By Scott Kinder scott.kinder@cuanschutz.edu

Overview

This repo is broken down into 3 main parts:

  1. detection Detection
  2. segmentation Segmentation
  3. pipeline Pipeline end-to-end

Architecture

End-to-end

Data

End-to-end

We used 9 public datasets:

Python environment

There are requirements.txt files here. This repo really just uses a couple standard Deep Learning libaries

  • Pytorch
  • OpenCV (cv2), PIL
  • Numpy, Pandas, Matplotlib
  • Ultralytics (for YOLO model)
  • Albumentations (for image augmentations)

Complete setup

Download the models

See Detection and Segmentation modules for link to downloads

Run from nothing to segmentation output

# Clone repo
git clone https://github.com/QTIM-Lab/fundus_detection_segmentation_pipeline.git
# Change dir
cd fundus_detection_segmentation_pipeline
# Create a venv (recommended)
python3 -m venv venv
# Activate venv
source venv/bin/activate
# Intall packages
pip install -r requirements.txt
# Install repo module
pip install -e .
# Run end to end pipeline with params
python pipeline/scripts/end_to_end.py \
    --detection_model_path /path/to/detect/model.pt \
    --segmentation_model_path /path/to/seg/model.pt \
    --input_dir /path/to/input/images \
    --output_dir /path/to/output/folder \
    --dataset_mean 0.768 0.476 0.290 \
    --dataset_std 0.220 0.198 0.166 \
    --cuda_num 0