-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfl_train_clsPasData_async.py
555 lines (456 loc) · 28.5 KB
/
fl_train_clsPasData_async.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
from asyncore import write
from subprocess import check_output
from tabnanny import check
import torch
import os
import random
import numpy as np
import time
import copy
from torch import nn
from tqdm import tqdm
from datetime import datetime
import logging
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from dataset.data_utils import init_fn
from models import model
from utils.fl_utils import EMA_cls_Fs, avg_EW, cluster_Fs, getClsFeatures, getClsPrototypes, getClusDict, getPrototype
from utils.lr_scheduler import LR_Scheduler
from utils import criterions
from dataset.datasets import Brats_test, Brats_train, GLB_Brats_train
from options import args_parser
from utils.predict import global_test, local_test, test_softmax
from multiprocessing import Pool
import setproctitle
setproctitle.setproctitle("donot use 34567 gpu!")
def local_training(args, device, mask, dataloader, model, client_idx, global_Fs, global_round):
# set mode to train model
#masks = [[True, False, False,False], [False, True, False, False], [False, False, True, False], [False, False, False, True]]
lr_schedule = LR_Scheduler(args.lr, args.c_rounds)
model.train()
model = model.to(device)
start = time.time()
epoch_loss = {'total':[], 'fuse':[], 'prm':[], 'sep':[]}
# Set Optimizer for the local model update
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
elif args.optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
step_lr = lr_schedule(optimizer, global_round)
# writer.add_scalar('lr_lc', step_lr, global_step=round)
# logging.info('############# client_{} local training ############'.format(client_idx+1))
for iter in range(args.local_ep):
batch_loss = {'total':[], 'fuse':[], 'prm':[], 'sep':[]}
# step = epoch*len(dataloader) + len(dataloader)*round*args.local_ep
for batch_idx, data in enumerate(dataloader):
vol_batch, msk_batch = data[0].to(device), data[1].to(device)
names = data[-1]
# vol_batch - torch.Size([1, 1, 80, 80, 80]) # msk_batch - torch.Size([1, 4, 80, 80, 80])
# print(msk.shape, msk)
msk = torch.unsqueeze(mask, dim=0).repeat(len(names), 1) # change lh
msk = msk.to(device)
model.is_training = True
Px1, Px2, Px3, Px4 = global_Fs['x1'].to(device), global_Fs['x2'].to(device), global_Fs['x3'].to(device), global_Fs['x4'].to(device)
Px1, Px2 = Px1.reshape(-1, Px1.shape[-1]), Px2.reshape(-1, Px2.shape[-1])
Px3, Px4 = Px3.reshape(-1, Px3.shape[-1]), Px4.reshape(-1, Px4.shape[-1]) # torch.Size([40, C])
fuse_pred, prm_preds, _, sep_preds = model(vol_batch, msk, Px1, Px2, Px3, Px4)
# pred - torch.Size([1, 4, 80, 80, 80])
fuse_cross_loss = criterions.softmax_weighted_loss(fuse_pred, msk_batch, num_cls=args.num_class)
fuse_dice_loss = criterions.dice_loss(fuse_pred, msk_batch, num_cls=args.num_class)
fuse_loss = fuse_cross_loss + fuse_dice_loss
prm_cross_loss = torch.zeros(1).float().to(device)
prm_dice_loss = torch.zeros(1).float().to(device)
for prm_pred in prm_preds:
prm_cross_loss += criterions.softmax_weighted_loss(prm_pred, msk_batch, num_cls=args.num_class)
prm_dice_loss += criterions.dice_loss(prm_pred, msk_batch, num_cls=args.num_class)
prm_loss = prm_cross_loss + prm_dice_loss
sep_cross_loss = torch.zeros(1).float().to(device)
sep_dice_loss = torch.zeros(1).float().to(device)
for pi in range(sep_preds.shape[0]):
sep_pred = sep_preds[pi]
sep_cross_loss += criterions.softmax_weighted_loss(sep_pred, msk_batch, num_cls=args.num_class)
sep_dice_loss += criterions.dice_loss(sep_pred, msk_batch, num_cls=args.num_class)
sep_loss = sep_cross_loss + sep_dice_loss
loss = fuse_loss + prm_loss + sep_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
'''
if args.verbose and (batch_idx%10==0):
logging.info('| Global Round : {} | Client: {} | Local Epoch : {} | [{}/{} ({:.0f}%)] Loss: {:.3f} | FuseLoss: {:.3f} | PrmLoss : {:.3f} | sep_loss : {:.3f}'
.format(global_round, client_idx+1, iter+1, batch_idx * len(data[0]),
len(dataloader.dataset),
100. * batch_idx / len(dataloader),
loss.item(), fuse_loss.item(), prm_loss.item(), sep_loss.item()))
'''
batch_loss['total'].append(loss.item())
batch_loss['fuse'].append(fuse_loss.item())
batch_loss['prm'].append(prm_loss.item())
batch_loss['sep'].append(sep_loss.item())
# torch.cuda.empty_cache()
epoch_loss['total'].append(sum(batch_loss['total'])/len(batch_loss['total']))
epoch_loss['fuse'].append(sum(batch_loss['fuse'])/len(batch_loss['fuse']))
epoch_loss['prm'].append(sum(batch_loss['prm'])/len(batch_loss['prm']))
epoch_loss['sep'].append(sum(batch_loss['sep'])/len(batch_loss['sep']))
epoch_loss['total'] = sum(epoch_loss['total'])/len(epoch_loss['total'])
epoch_loss['fuse'] = sum(epoch_loss['fuse'])/len(epoch_loss['fuse'])
epoch_loss['prm'] = sum(epoch_loss['prm'])/len(epoch_loss['prm'])
epoch_loss['sep'] = sum(epoch_loss['sep'])/len(epoch_loss['sep'])
msg = 'client_{} local training total time: {:.4f} hours'.format(client_idx+1, (time.time() - start)/3600)
print(msg)
logging.info(msg)
model = model.cpu()
return [model.c1_encoder.state_dict(), model.c2_encoder.state_dict(), model.c3_encoder.state_dict(),
model.c4_encoder.state_dict()], epoch_loss, model
def global_training(args, device, dataloader, model, modal_protos, round):
model.train()
model = model.to(device)
start = time.time()
Xscale_list = ['x1', 'x2', 'x3', 'x4']
glb_Fs = {'x1':[], 'x2':[], 'x3':[], 'x4':[]}
glb_Pnames = []
# Set Optimizer for the global model update
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
elif args.optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
step_lr = lr_schedule(optimizer, round)
writer.add_scalar('lr_glb', step_lr, global_step=round)
logging.info('############# global training on the server ############')
for epoch in range(args.global_ep):
e = time.time()
step = epoch*len(dataloader) + len(dataloader)*round*args.global_ep
for iter, data in enumerate(dataloader):
# step = step+1
vol, target, msk, p_name = data
glb_Pnames += p_name
vol_batch, msk_batch = vol.to(device), target.to(device)
mask = msk.to(device) # tensor([[True, True, True, True]], device='cuda:0')
# vol_batch - torch.Size([B, 4, 80, 80, 80])
# msk_batch - torch.Size([B, 4, 80, 80, 80])
# mask - torch.Size([B, 4])
model.is_training = True
fuse_pred, prm_preds, features, sep_preds = model(vol_batch, mask, None,None,None,None)
# fuse_pred - torch.Size([1, 4, 80, 80, 80])
# sep_preds - 4 * torch.Size([1, 4, 80, 80, 80])
# prm_preds - 4 * torch.Size([1, 4, 80, 80, 80])
fuse_cross_loss = criterions.softmax_weighted_loss(fuse_pred, msk_batch, num_cls=args.num_class)
fuse_dice_loss = criterions.dice_loss(fuse_pred, msk_batch, num_cls=args.num_class)
fuse_loss = fuse_cross_loss + fuse_dice_loss
prm_cross_loss = torch.zeros(1).float().to(device)
prm_dice_loss = torch.zeros(1).float().to(device)
for prm_pred in prm_preds:
prm_cross_loss += criterions.softmax_weighted_loss(prm_pred, msk_batch, num_cls=args.num_class)
prm_dice_loss += criterions.dice_loss(prm_pred, msk_batch, num_cls=args.num_class)
prm_loss = prm_cross_loss + prm_dice_loss
sep_cross_loss = torch.zeros(1).cuda().float()
sep_dice_loss = torch.zeros(1).cuda().float()
for pi in range(sep_preds.shape[0]):
sep_pred = sep_preds[pi]
sep_cross_loss += criterions.softmax_weighted_loss(sep_pred, msk_batch, num_cls=args.num_class)
sep_dice_loss += criterions.dice_loss(sep_pred, msk_batch, num_cls=args.num_class)
sep_loss = sep_cross_loss + sep_dice_loss
for i in range(len(features)):
scale = Xscale_list[i]
# 对应当前尺度下的融合模态特征图
fusion_features = features[i] # Fx4 - torch.Size([1, 128, 10, 10, 10])
cls_F = getClsPrototypes(fusion_features, msk_batch) # (cls, C)
glb_Fs[scale] += cls_F
loss = fuse_loss + prm_loss + sep_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
###log
writer.add_scalar('GlobalTrain/loss', loss.item(), global_step=step)
# writer.add_scalar('GlobalTrain/proto_align_loss', proto_align_loss.item(), global_step=step)
writer.add_scalar('GlobalTrain/fuse_cross_loss', fuse_cross_loss.item(), global_step=step)
writer.add_scalar('GlobalTrain/fuse_dice_loss', fuse_dice_loss.item(), global_step=step)
writer.add_scalar('GlobalTrain/sep_cross_loss', sep_cross_loss.item(), global_step=step)
writer.add_scalar('GlobalTrain/sep_dice_loss', sep_dice_loss.item(), global_step=step)
writer.add_scalar('GlobalTrain/prm_cross_loss', prm_cross_loss.item(), global_step=step)
writer.add_scalar('GlobalTrain/prm_dice_loss', prm_dice_loss.item(), global_step=step)
if args.verbose and (iter%10==0):
msg = 'Epoch {}/{}, Iter {}/{}, Loss {:.4f}, '.format((epoch+1), args.local_ep, (iter), len(dataloader), loss.item())
msg += 'fusecross:{:.4f}, fusedice:{:.4f}, '.format(fuse_cross_loss.item(), fuse_dice_loss.item())
msg += 'sepcross:{:.4f}, sepdice:{:.4f}, '.format(sep_cross_loss.item(), sep_dice_loss.item())
msg += 'prmcross:{:.4f}, prmdice:{:.4f}'.format(prm_cross_loss.item(), prm_dice_loss.item())
# msg += 'ProtoAlignLoss:{:.4f}'.format(proto_align_loss.item())
logging.info(msg)
msg = 'server global training total time: {:.4f} hours'.format((time.time() - start)/3600)
logging.info(msg)
return model.state_dict(), glb_Fs, glb_Pnames
def uploadLCweightsandGLBupdate(masks, server_model, local_weights, train_loader, protos, round):
lc1_mask, lc2_mask, lc3_mask, lc4_mask = masks[0], masks[1], masks[2], masks[3]
modals_E = []
for i in range(len(lc1_mask)): # 针对每一个模态的特异编码器
c_E = avg_EW(local_weights[0][i], local_weights[1][i], local_weights[2][i], local_weights[3][i],
lc1_mask[i], lc2_mask[i], lc3_mask[i], lc4_mask[i])
modals_E.append(c_E)
server_model.c1_encoder.load_state_dict(modals_E[0])
server_model.c2_encoder.load_state_dict(modals_E[1])
server_model.c3_encoder.load_state_dict(modals_E[2])
server_model.c4_encoder.load_state_dict(modals_E[3])
logging.info('-'*20+'the Global Server has received client weights'+'-'*20)
### global training
glb_w, glb_protos, glb_Pnames = global_training(args, args.device, glb_trainloader, server_model, None, round)
return glb_w, glb_protos, glb_Pnames
def downloadGLBweights(glb_w, model_clients):
c1_w = {k.replace('c1_encoder.',''): v.cpu() for k,v in glb_w.items() if 'c1_encoder' in k}
c2_w = {k.replace('c2_encoder.',''): v.cpu() for k,v in glb_w.items() if 'c2_encoder' in k}
c3_w = {k.replace('c3_encoder.',''): v.cpu() for k,v in glb_w.items() if 'c3_encoder' in k}
c4_w = {k.replace('c4_encoder.',''): v.cpu() for k,v in glb_w.items() if 'c4_encoder' in k}
for i in range(len(model_clients)):
model_clients[i].c1_encoder.load_state_dict(c1_w) # flair模态
model_clients[i].c2_encoder.load_state_dict(c2_w) # t1ce模态
model_clients[i].c3_encoder.load_state_dict(c3_w) # t1模态
model_clients[i].c4_encoder.load_state_dict(c4_w) # t2模态
logging.info('-'*20+' the Global Server send the glb_Weights to clients ' + '-'*20)
if __name__ == '__main__':
args = args_parser()
args.train_transforms = 'Compose([RandCrop3D((80,80,80)), RandomRotion(10), RandomIntensityChange((0.1,0.1)), RandomFlip(0), NumpyType((np.float32, np.int64)),])'
args.test_transforms = 'Compose([NumpyType((np.float32, np.int64)),])'
timestamp = datetime.now().strftime("%m%d%H%M")
args.save_path = args.save_root + '/' + str(args.version)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
args.modelfile_path = os.path.join(args.save_path, 'model_files')
if not os.path.exists(args.modelfile_path):
os.makedirs(args.modelfile_path)
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s',
filename=args.save_path + '/fl_log.txt')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter('%(asctime)s %(message)s'))
logging.getLogger('').addHandler(console)
writer = SummaryWriter(os.path.join(args.save_path, 'TBlog'))
##### modality missing mask
# masks = [[True, True, True, False], [True, False, True, True], [True, True, False, True], [False, True, True, True]]
# masks = [[True, True, False,False], [False, False, True, True], [True, False, True, False], [False, True, False, True]]
masks = [[True, False, False,False], [False, True, False, False], [False, False, True, False], [False, False, False, True]]
masks_torch = torch.from_numpy(np.array(masks))
# mask_name = ['flairt1cet1', 'flairt1t2', 'flairt1cet2', 't1cet1t2']
# mask_name = ['flairt1ce', 't1t2', 'flairt1', 't1cet2']
mask_name = ['flair', 't1ce', 't1', 't2']
logging.info(masks_torch.int())
########## setting seed for deterministic
if args.deterministic:
# cudnn.enabled = False
# cudnn.benchmark = False
# cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
########## setting device and gpus
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
args.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
args.local_devices = []
for i in range(args.client_num):
args.local_devices.append(torch.device('cuda:{}'.format(i+1)))
########## setting global and local model
server_model = model.E4D4Model(num_cls=args.num_class, is_lc=False)
client_model = model.E4D4Model(num_cls=args.num_class, is_lc=True)
lr_schedule = LR_Scheduler(args.lr, args.c_rounds)
########## FL setting ##########
# define dataset, model, optimizer for each clients
dataloader_clients, validloader_clients, testloader_clients = [], [], []
model_clients = []
optimizer_clients = []
client_counts, client_weights = [], [] ### FedAvg Setting
modal_list = ['flair', 't1ce', 't1', 't2']
logging.info(str(args))
for client_idx in range(args.client_num):
chose_modal = 'all'
lc_train_file = args.train_file[client_idx+1]
data_set = Brats_train(transforms=args.train_transforms, root=args.datapath,
modal=chose_modal, num_cls=args.num_class, train_file=lc_train_file)
data_loader = DataLoader(dataset=data_set, batch_size=args.batch_size,
pin_memory=True, shuffle=True, worker_init_fn=init_fn)
valid_set = Brats_test(transforms=args.test_transforms, root=args.datapath,
modal=chose_modal, test_file=args.valid_file)
valid_loader = DataLoader(dataset=valid_set, batch_size=1, shuffle=False, num_workers=0, pin_memory=True)
test_set = Brats_test(transforms=args.test_transforms, root=args.datapath,
modal=chose_modal, test_file=args.test_file)
test_loader = DataLoader(dataset=test_set, batch_size=1, shuffle=False, num_workers=0, pin_memory=True)
dataloader_clients.append(data_loader)
validloader_clients.append(valid_loader)
testloader_clients.append(test_loader)
logging.info('Client-{} : Brats dataset with modal {}'.format(client_idx+1, mask_name[client_idx]))
logging.info('the length of Brats dataset is {} : {} : {}'.format(len(data_set), len(valid_set), len(test_set)))
device = args.local_devices[client_idx]
net = copy.deepcopy(client_model) # .to(device) # .to(args.device)
model_clients.append(net)
best_dices = [0.0, 0.0, 0.0, 0.0]
best_dice = 0.0
if args.resume != 0:
ckpt = torch.load(args.modelfile_path + '/last.pth')
server_model.load_state_dict(ckpt["server"])
model_clients[0].load_state_dict(ckpt["c1"])
model_clients[1].load_state_dict(ckpt["c2"])
model_clients[2].load_state_dict(ckpt["c3"])
model_clients[3].load_state_dict(ckpt["c4"])
args.start_round = ckpt['round']
cls_glb_clusDict = ckpt['cls_glb_clusDict']
global_Fs = ckpt['global_Fs'] # 'x1': [], 'x2':[], 'x3':[], 'x4':[]
best_dice = ckpt['best_dice']
best_dices = ckpt['best_dices']
print("load best result: {}, {}, {}, {}.".format(best_dice, best_dices[0], best_dices[1], best_dices[2]))
# ##### resume
# cpl = torch.load("/disk3/qd/FedMEMA/results/fltrain_AvgE_1modal_clusPasData_05011532/model_files/sever_model_best.pth")
# server_model.load_state_dict(cpl['state_dict'])
# cpl1 = torch.load("/disk3/qd/FedMEMA/results/fltrain_AvgE_1modal_clusPasData_05011532/model_files/client-1_round_920_model_best.pth")
# # model_clients[0].load_state_dict(cpl1['state_dict'])
# cpl2 = torch.load("/disk3/qd/FedMEMA/results/fltrain_AvgE_1modal_clusPasData_05011532/model_files/client-2_round_940_model_best.pth")
# # model_clients[1].load_state_dict(cpl2['state_dict'])
# cpl3 = torch.load("/disk3/qd/FedMEMA/results/fltrain_AvgE_1modal_clusPasData_05011532/model_files/client-3_round_940_model_best.pth")
# # model_clients[2].load_state_dict(cpl3['state_dict'])
# cpl4 = torch.load("/disk3/qd/FedMEMA/results/fltrain_AvgE_1modal_clusPasData_05011532/model_files/client-4_round_900_model_best.pth")
# # model_clients[3].load_state_dict(cpl4['state_dict'])
# checkpoint = [cpl1['state_dict'], cpl2['state_dict'], cpl3['state_dict'], cpl4['state_dict']]
##### global dataset
glb_train_file = args.train_file['glb']
glb_dataset = GLB_Brats_train(transforms=args.train_transforms, root=args.datapath,
modal='all', num_cls=args.num_class, train_file=glb_train_file)
glb_trainloader = DataLoader(dataset=glb_dataset, batch_size=1, num_workers=8,
pin_memory=True, shuffle=True, worker_init_fn=init_fn)
glb_validset = Brats_test(transforms=args.test_transforms, root=args.datapath,
modal='all', test_file=args.valid_file)
glb_validloader = DataLoader(dataset=glb_validset, batch_size=1, shuffle=False, num_workers=0, pin_memory=True)
glb_testset = Brats_test(transforms=args.test_transforms, root=args.datapath,
modal='all', test_file=args.test_file)
glb_testloader = DataLoader(dataset=glb_testset, batch_size=1, shuffle=False, num_workers=0, pin_memory=True)
logging.info('Global : Brats dataset with all modal')
logging.info('the length of Brats dataset is {} : {} : {}'.format(len(glb_dataset), len(glb_validset), len(glb_testset)))
Xscale_list = ['x1', 'x2', 'x3', 'x4']
########## FL Training ##########
for round in tqdm(range(args.start_round, args.c_rounds+1)):
start = time.time()
if round==0:
##### global training
glb_w, glb_protos, glb_Pnames = global_training(args, args.device, glb_trainloader, server_model, None, round)
cls_glb_clusDict = {}
global_Fs = { }
for scale in Xscale_list:
clu_Fs, labels = cluster_Fs(glb_protos[scale], asCls=True) # [k, cls*C]
clu_Fs = np.stack(clu_Fs, axis=1)
clu_Fs = torch.from_numpy(clu_Fs)
global_Fs[scale] = clu_Fs
if scale=='x4':
for c in range(args.num_class):
glb_clusDict = getClusDict(glb_Pnames, labels[c])
cls_glb_clusDict[c] = glb_clusDict
else:
##### local training
local_weights, local_losses, local_protos = [], [], {}
logging.info(f'\n | Global Training Round : {round} |')
start = time.time()
result = []
torch.cuda.empty_cache()
ctx = torch.multiprocessing.get_context("spawn")
pool = ctx.Pool(args.client_num)
for client_i in range(4):
result.append(pool.apply_async(local_training, args=(args, args.local_devices[client_i], masks_torch[client_i], dataloader_clients[client_i], model_clients[client_i], client_i, global_Fs, round, )))
#dataloader_c = dataloader_clients[client_i]
#device = args.local_devices[client_i]
#model_c = model_clients[client_i]
# if round ==1:
# model_c.load_state_dict(checkpoint[client_i])
#mask = masks_torch[client_i]
#w, loss = local_training(args, device, mask, dataloader_c, model_c, client_i, global_Fs, round)
pool.close()
pool.join()
logging.info("client training: {}".format(time.time() - start))
for client_i, i in enumerate(result):
w, loss, m = i.get()
local_weights.append(copy.deepcopy(w))
local_losses.append(copy.deepcopy(loss['total']))
model_clients[client_i].load_state_dict(m.state_dict())
# local_protos[client_i] = agg_protos
writer.add_scalar('LocalTrain/total_Loss/client_' + str(client_i + 1), loss['total'], round)
writer.add_scalar('LocalTrain/Loss_fuse/client_' + str(client_i + 1), loss['fuse'], round)
writer.add_scalar('LocalTrain/Loss_prm/client_' + str(client_i + 1), loss['prm'], round)
writer.add_scalar('LocalTrain/Loss_sep/client_' + str(client_i + 1), loss['sep'], round)
# global Aggre and Fusion
#print("ssssssssssssss", server_model.decoder_fuse.d3_c1.conv.weight[10,10,1,1])
glb_w, glb_protos, glb_Pnames = uploadLCweightsandGLBupdate(masks_torch, server_model, local_weights, glb_trainloader, None, round)
#print("sssssssssssssssss", server_model.decoder_fuse.d3_c1.conv.weight[10,10,1,1])
for scale in Xscale_list:
scale_protos = torch.stack(glb_protos[scale], dim=0) # (len, cls, C)
cls_protos = []
for c in range(args.num_class):
clu_Fs = EMA_cls_Fs(global_Fs[scale][:,c], scale_protos[:,c], glb_Pnames, cls_glb_clusDict[c], round)
cls_protos.append(clu_Fs)
cls_protos = np.stack(cls_protos, axis=1) # (k, cls, C)
global_Fs[scale] = (torch.from_numpy(cls_protos)).float()
##### Eval the model after aggregation and 10 round
if (round+1)%50 == 0:# and round>200:
logging.info('-'*20 + 'Test All the Models per 10 round'+ '-'*20)
with torch.no_grad():
# test clients
torch.cuda.empty_cache()
ctx = torch.multiprocessing.get_context("spawn")
pool = ctx.Pool(args.client_num)
results = []
for c in range(args.client_num):
results.append(pool.apply_async(local_test, (args, validloader_clients[c], model_clients[c], args.local_devices[c], 'BRATS2020', global_Fs, masks[c],)))
pool.close()
pool.join()
for c, result in enumerate(results):
dice_score = result.get()
c_model = model_clients[c]
avgdice_score = sum(dice_score)/len(dice_score)
logging.info('--- Eval at round_{}, Avg_Scores: {:.4f}, cls_Dice: {}'
.format((round), avgdice_score*100, dice_score))
writer.add_scalar('Eval_AvgDice/client_'+str(c+1), avgdice_score*100, round)
if best_dices[c] < avgdice_score:
best_dices[c] = avgdice_score
torch.save({
'round': round+1,
'dice': dice_score,
'state_dict': c_model.state_dict()
}, args.modelfile_path + '/client-%d_round_%d_model_best.pth'%(c+1, round))
# test server
logging.info('-'*15+' Test the Global Model '+'-'*15)
mask = [True, True, True, True]
glbdice = global_test(glb_validloader, server_model, args.device, 'BRATS2020', mask)
avg_glbdice = sum(glbdice)/len(glbdice)
logging.info('--- Eval at round_{}, Avg_Scores: {:.4f}, cls_Dice: {}'
.format((round), avg_glbdice*100, glbdice))
writer.add_scalar('Eval_AvgDice/server', avg_glbdice, round)
if best_dice < avg_glbdice:
best_dice = avg_glbdice
torch.save({
'round': round+1,
'dice': glbdice,
'state_dict': server_model.state_dict()
}, args.modelfile_path + '/sever_model_best.pth')
#for c in range(args.client_num):
# print("aaaaaaaaaaaaaa", model_clients[c].decoder_fuse.d3_c1.conv.weight[10,10,1,1])
downloadGLBweights(glb_w, model_clients)
logging.info('*'*10+'FL train a round total time: {:.4f} hours'.format((time.time() - start)/3600)+'*'*10)
#for c in range(args.client_num):
# print("bbbbbbbbbbbbbbb", model_clients[c].decoder_fuse.d3_c1.conv.weight[10,10,1,1])
if (round+1)%args.round_per_train == 0:
torch.save({
'round': round + 1,
'server': server_model.state_dict(),
'c1': model_clients[0].state_dict(),
'c2': model_clients[1].state_dict(),
'c3': model_clients[2].state_dict(),
'c4': model_clients[3].state_dict(),
'cls_glb_clusDict':cls_glb_clusDict,
'global_Fs':global_Fs,
'best_dice': best_dice,
'best_dices': best_dices
}, args.modelfile_path + '/last.pth')
exit(0)
import json
with open(args.save_path+"/glb_Pdict.json", 'w') as f1:
f1.write(json.dumps(cls_glb_clusDict, indent=4, ensure_ascii=False))
if round != 0:
for scale in Xscale_list:
Fs = global_Fs[scale].numpy()
np.save(args.save_path+'/glb_'+str(scale)+'.npy', Fs)
writer.close()