This repository has been archived by the owner on Aug 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathspans.xml
414 lines (334 loc) · 18.2 KB
/
spans.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
<?xml version="1.0" encoding="UTF-8"?>
<!--********************************************************************
Copyright 2017 Georgia Institute of Technology
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation. A copy of
the license is included in gfdl.xml.
*********************************************************************-->
<section xml:id="spans">
<title>Vector Equations and Spans</title>
<objectives>
<ol>
<li>Understand the equivalence between a system of linear equations and a vector equation.</li>
<li>Learn the definition of <m>\Span\{x_1,x_2,\ldots,x_k\}</m>, and how to draw pictures of spans.</li>
<li><em>Recipe:</em> solve a vector equation using augmented matrices / decide if a vector is in a span.</li>
<li><em>Pictures:</em> an inconsistent system of equations, a consistent system of equations, spans in <m>\R^2</m> and <m>\R^3</m>.</li>
<li><em>Vocabulary word:</em> <term>vector equation</term>.</li>
<li><em>Essential vocabulary word:</em> <term>span</term>.</li>
</ol>
</objectives>
<subsection>
<title>Vector Equations</title>
<p>
<idx><h>Vector equation</h><h>equivalence with system of equations</h></idx>
An equation involving vectors with <m>n</m> coordinates is the same as <m>n</m> equations involving only numbers. For example, the equation
<me>x\vec{1 2 6} + y \vec{-1 -2 -1} = \vec{8 16 3}</me>
simplifies to
<me>\vec{ x 2x 6x} + \vec{-y -2y -y} = \vec{8 16 3}
\sptxt{or}
\spalignsysdelims()\syseq{ x - y; 2x - 2y; 6x - y} = \vec{8 16 3}.
</me>
For two vectors to be equal, all of their coordinates must be equal, so this is just the system of linear equations
<me>\spalignsysdelims\{.\syseq{x - y = 8; 2x - 2y = 16; 6x - y = 3\rlap.}</me>
</p>
<definition>
<idx><h>Vector equation</h><h>definition of</h></idx>
<statement>
<p>A <term>vector equation</term> is an equation involving a linear combination of vectors with possibly unknown coefficients.</p>
</statement>
</definition>
<bluebox>
<p>Asking whether or not a vector equation has a solution is the same as asking if a given vector is a linear combination of some other given vectors.
</p>
</bluebox>
<p>For example the vector equation above is asking if the vector <m>(8,16,3)</m> is a linear combination of the vectors <m>(1,2,6)</m> and <m>(-1,2,-1)</m>.</p>
<p>The thing we really care about is solving systems of linear equations, not solving vector equations. The whole point of vector equations is that they give us a different, and more geometric, way of viewing systems of linear equations.</p>
<note hide-type="true">
<title>A Picture of a Consistent System</title>
<idx><h>Vector equation</h><h>consistent</h><see>System of linear equations, consistent</see></idx>
<idx><h>Vector equation</h><h>inconsistent</h><see>System of linear equations, inconsistent</see></idx>
<idx><h>System of linear equations</h><h>consistent</h><h>picture of</h></idx>
<p>Below we will show that the above system of equations is consistent. Equivalently, this means that the above vector equation has a solution. In other words, there is a linear combination of <m>(1,2,6)</m> and <m>(-1,2,-1)</m> that equals <m>(8,16,3)</m>. We can visualize the last statement geometrically. Therefore, the following <xref ref="vectors-figure-consistent"/> gives a <em>picture of a consistent system of equations</em>. Compare with <xref ref="vectors-fig-inconsistent"/> below, which shows a picture of an inconsistent system.
</p>
</note>
<figure xml:id="vectors-figure-consistent">
<caption>A picture of the above vector equation. Try to solve the equation geometrically by moving the sliders.</caption>
<mathbox source="demos/spans.html?v1=1,2,6&v2=-1,-2,-1&target=8,16,3&range=20&camera=3,.5,1.5" height="500px"/>
</figure>
<p>In order to actually solve the vector equation
<me>x\textcolor{seq-red}{\vec{1 2 6}}
+ y \textcolor{seq-green}{\vec{-1 -2 -1}}
= \textcolor{seq-blue}{\vec{8 16 3}},</me>
one has to solve the system of linear equations
<me>\spalignsysdelims\{.\syseq{x - y = 8; 2x - 2y = 16; 6x - y = 3\rlap.}</me>
This means forming the augmented matrix
<me>\def\r{\color{seq-red}}\def\g{\color{seq-green}}\def\b{\color{seq-blue}}
\amat{\r1 \g-1 \b8; \r2 \g-2 \b16; \r6 \g-1 \b3}</me>
and row reducing. Note that <em>the columns of the augmented matrix are the vectors from the original vector equation</em>, so it is not actually necessary to write the system of equations: one can go directly from the vector equation to the augmented matrix by <q>smooshing the vectors together</q>. In the following <xref ref="vectors-example-consistent"/> we carry out the row reduction and find the solution.
</p>
<example xml:id="vectors-example-consistent">
<statement>
<p>Is <m>\vec{ 8 16 3}</m> a linear combination of <m>\vec{1 2 6}</m> and <m>\vec{-1 -2 -1}</m>?
</p>
</statement>
<solution>
<p>As discussed above, this question boils down to a row reduction:
<me>\amat{1 -1 8; 2 -2 16; 6 -1 3}
\quad\xrightarrow{\text{RREF}}\quad
\amat{1 0 -1; 0 1 -9; 0 0 0}.
</me>
From this we see that the equation is consistent, and the solution is <m>x=-1</m> and <m>y=-9</m>. We conclude that <m>\vec{ 8 16 3}</m> is indeed a linear combination of <m>\vec{1 2 6}</m> and <m>\vec{-1 -2 -1}</m>, with coefficients <m>-1</m> and <m>-9</m>:
<me>-\vec{1 2 6} -9\vec{-1 -2 -1} = \vec{8 16 3}.
</me>
</p>
</solution>
</example>
<bluebox>
<title>Recipe: Solving a vector equation</title>
<idx><h>Vector equation</h><h>solving</h></idx>
<p>In general, the vector equation
<me>x_1v_1 + x_2v_2 + \cdots + x_kv_k = b</me>
where <m>v_1,v_2,\ldots,v_k,\,b</m> are vectors in <m>\R^n</m> and <m>x_1,x_2,\ldots,x_k</m> are unknown scalars, has the same solution set as the linear system with augmented matrix
<me>\amat[c]{| | ,{} , | |; v_1 v_2 \cdots, v_k b; | | ,{} , | |}</me>
whose columns are the <m>v_i</m><rsq/>s and the <m>b</m><rsq/>s.
</p>
</bluebox>
<p>Now we have <em>three</em> equivalent ways of thinking about a linear system:
<ol>
<li>As a system of equations:
<me>\syseq{2x_1 + 3x_2 - 2x_3 = 7; x_1 - x_2 - 3x_3 = 5}
</me>
</li>
<li>As an augmented matrix:
<me>\amat{2 3 -2 7; 1 -1 -3 5}</me>
</li>
<li>As a vector equation (<m>x_1v_1 + x_2v_2 + \cdots + x_nv_n = b</m>):
<me>x_1\vec{2 1} + x_2\vec{3 -1} + x_3\vec{-2 -3} = \vec{7 5}</me>
</li>
</ol>
The third is geometric in nature: it lends itself to drawing pictures.
</p>
</subsection>
<subsection>
<title>Spans</title>
<p>It will be important to know what are <em>all</em> linear combinations of a set of vectors <m>v_1,v_2,\ldots,v_k</m> in <m>\R^n</m>. In other words, we would like to understand the set of all vectors <m>b</m> in <m>\R^n</m> such that the vector equation (in the unknowns <m>x_1,x_2,\ldots,x_k</m>)
<me>x_1v_1 + x_2v_2 + \cdots + x_kv_k = b</me>
has a solution (i.e. is consistent).
</p>
<essential xml:id="vectors-defn-span">
<idx><h>Span</h><h>definition of</h></idx>
<statement>
<p>Let <m>v_1,v_2,\ldots,v_k</m> be vectors in <m>\R^n</m>. The <term>span</term> of <m>v_1,v_2,\ldots,v_k</m> is the collection of all linear combinations of <m>v_1,v_2,\ldots,v_k</m>, and is denoted <m>\Span\{v_1,v_2,\ldots,v_k\}</m>. In symbols:
<notation><usage>\Span\{v_1,v_2,\ldots,v_k\}</usage><description>Span of vectors</description></notation>
<me>\Span\{v_1,v_2,\ldots,v_k\} =
\bigl\{x_1v_1 + x_2v_2 + \cdots + x_kv_k \mid x_1,x_2,\ldots,x_k \text{ in }\R\bigr\}</me>
We also say that <m>\Span\{v_1,v_2,\ldots,v_k\}</m> is the subset <term>spanned by</term> or <term>generated by</term> the vectors <m>v_1,v_2,\ldots,v_k</m>.
</p>
</statement>
</essential>
<p>The above <xref ref="vectors-defn-span"/> is the first of several <em>essential definitions</em> that we will see in this textbook. They are essential in that they form the essence of the subject of linear algebra: learning linear algebra means (in part) learning these definitions. All of the definitions are important, but it is essential that you learn and understand the definitions marked as such.
</p>
<note hide-type="true" xml:id="set-builder-notation">
<title>Set Builder Notation</title>
<idx><h>Set builder notation</h></idx>
<idx><h>Subset</h><h>set builder notation</h></idx>
<p>The notation
<notation><usage>\{x\mid\text{condition}\}</usage><description>Set builder notation</description></notation>
<me>\bigl\{x_1v_1 + x_2v_2 + \cdots + x_kv_k \mid x_1,x_2,\ldots,x_k \text{ in }\R\bigr\}</me>
reads as: <q>the set of all things of the form <m>x_1v_1 + x_2v_2 + \cdots + x_kv_k</m> such that <m>x_1,x_2,\ldots,x_k</m> are in <m>\R</m>.</q> The vertical line is <q>such that</q>; everything to the left of it is <q>the set of all things of this form</q>, and everything to the right is the condition that those things must satisfy to be in the set. Specifying a set in this way is called <term>set builder notation</term>.
</p>
<p>All mathematical notation is only shorthand: any sequence of symbols must translate into a usual sentence.</p>
</note>
<note hide-type="true">
<title>Three characterizations of consistency</title>
<idx><h>System of linear equations</h><h>consistent</h><h>span criterion</h></idx>
<p>Now we have three equivalent ways of making the same statement:
<ol>
<li>A vector <m>b</m> is in the span of <m>v_1,v_2,\ldots,v_k</m>.</li>
<li>The vector equation
<me>x_1v_1 + x_2v_2 + \cdots + x_kv_k = b</me>
has a solution.
</li>
<li>The linear system with augmented matrix
<me>\amat[c]{| | ,{} , | |; v_1 v_2 \cdots, v_k b; | | ,{} , | |}</me>
is consistent.
</li>
</ol>
</p>
</note>
<p><term>Equivalent</term> means that, for any given list of vectors <m>v_1,v_2,\ldots,v_k,\,b</m>, either all three statements are true, or all three statements are false.</p>
<figure xml:id="vectors-fig-inconsistent">
<caption>This is a picture of an <em>inconsistent</em> linear system: the vector <m>w</m> on the right-hand side of the equation <m>x_1v_1 + x_2v_2 = w</m> is not in the span of <m>v_1,v_2</m>. Convince yourself of this by trying to solve the equation
<m>x_1v_1 + x_2v_2 = w</m>
by moving the sliders, and by row reduction. Compare this <xref ref="vectors-figure-consistent"/>.</caption>
<idx><h>System of linear equations</h><h>inconsistent</h><h>picture of</h></idx>
<mathbox source="demos/spans.html?v1=1,2,6&v2=-1,-2,-1&target=2,-2,0&range=8&camera=3,.5,1.5" height="500px"/>
</figure>
<paragraphs>
<title>Pictures of Spans</title>
<idx><h>Span</h><h>pictures of</h></idx>
<p>Drawing a picture of <m>\Span\{v_1,v_2,\ldots,v_k\}</m> is the same as drawing a picture of all linear combinations of <m>v_1,v_2,\ldots,v_k</m>.</p>
<figure>
<caption>Pictures of spans in <m>\R^2</m>.</caption>
<image>
<latex-image-code>
<![CDATA[
\begin{tikzpicture}[thin border nodes, scale=.9]
\begin{scope}
\draw[grid lines] (-3,-2) grid (4, 3);
\path[clip] (-3,-2) rectangle (4, 3);
\draw[thin, seq4] ($-2*(2,1)$) -- ($2*(2,1)$);
\node[seq4,whitebg] at (0,2) {$\Span\{v\}$};
\draw[vector, seq1] (0,0) to["$v$"] (2,1);
\point at (0,0);
\end{scope}
\begin{scope}[xshift=8cm]
\draw[grid lines] (-3,-2) grid (4, 3);
\fill[seq4!30, nearly transparent] (-3,-2) rectangle (4,3);
\node[seq4] at (.5,2.5) {$\Span\{v,w\}$};
\draw[vector, seq1] (0,-1) to["$v$"] (1,1);
\draw[vector, seq2] (0,-1) to["\strut$w$"'] (1,-1);
\point at (0,-1);
\end{scope}
\begin{scope}[xshift=4cm, yshift=-7cm]
\draw[grid lines] (-3,-3) grid (4, 4);
\path[clip] (-3,-3) rectangle (4, 4);
\node[seq4] at (.5,2.5) {$\Span\{v,w\}$};
\draw[thin, seq4] ($-2*(2,2)$) -- ($2*(2,2)$);
\draw[vector, seq1] (0,0) to["$v$"] (2,2);
\draw[vector, seq2] (0,0) to["$w$"' pos=.4] (-1,-1);
\point at (0,0);
\end{scope}
\end{tikzpicture}
]]>
</latex-image-code>
</image>
</figure>
<figure>
<caption>Pictures of spans in <m>\R^3</m>. The span of two noncollinear vectors is the plane containing the origin and the heads of the vectors. Note that three coplanar (but not collinear) vectors span a plane and not a 3-space, just as two collinear vectors span a line and not a plane.</caption>
<image>
<latex-image-code>
<![CDATA[
\begin{tikzpicture}[myxyz, thin border nodes, scale=.8]
\begin{scope}
\path[clip, resetxy] (-4,-3) rectangle (4,3);
\draw[seq4] ($-3*(-1,2,1)$) -- (0,0,0);
\begin{scope}[transformxy]
\fill[white, nearly opaque] (-2, -2) rectangle (3, 3);
\draw[grid lines] (-2, -2) grid (3, 3);
\end{scope}
\draw[seq4] (0,0,0) -- ($3*(-1,2,1)$);
\node[seq4] at (-1cm, 2cm) {$\Span\{v\}$};
\draw[vector, seq1] (0,0,0) to["$v$"] (-1,2,1);
\draw[thin, densely dotted] (-1,2,1) -- (-1,2,0);
\point at (0,0,0);
\end{scope}
\begin{scope}[xshift=9cm]
\path[clip, resetxy] (-4,-3) rectangle (4,3);
\def\v{(-1,2,1)}
\def\w{(1,2,.3)}
\node[coordinate] (X) at \v {};
\node[coordinate] (Y) at \w {};
\begin{scope}[x=(X), y=(Y), transformxy]
\path[clip] (-1.5, 5) -- (1.5, -5) -- (1.5, -7) -- (-1.5, -7) -- cycle;
\fill[seq4!30, nearly opaque] (-1.5,-1) rectangle (1.5,2);
\draw[step=.5cm, seq4, very thin] (-1.5,-1) grid (1.5,2);
\end{scope}
\begin{scope}[transformxy]
\fill[white, nearly opaque] (-2, -2) rectangle (3, 3);
\draw[grid lines] (-2, -2) grid (3, 3);
\end{scope}
\begin{scope}[x=(X), y=(Y), transformxy]
\path[clip] (-1.5, 5) -- (1.5, -5) -- (1.5, 7) -- (-1.5, 7) -- cycle;
\fill[seq4!30, nearly opaque] (-1.5,-1) rectangle (1.5,2);
\draw[step=.5cm, seq4, very thin] (-1.5,-1) grid (1.5,2);
\end{scope}
\node[seq4] at (-1cm, 2cm) {$\Span\{v,w\}$};
\draw[vector, seq1] (0,0,0) --
node [midway, above] {$v$} \v;
\draw[thin, densely dotted] \v -- \projxy\v;
\draw[vector, seq2] (0,0,0) --
node [midway, below] {\strut$w$} \w;
\draw[thin, densely dotted] \w -- \projxy\w;
\point at (0,0,0);
\end{scope}
\begin{scope}[yshift=-7cm]
\path[clip, resetxy] (-4,-3) rectangle (4,3);
\begin{scope}[transformxy]
\fill[white, nearly opaque] (-2, -2) rectangle (3, 3);
\draw[grid lines] (-2, -2) grid (3, 3);
\end{scope}
\draw[vector, seq1] (0,0,0) to["$v$"] (-1,2,1);
\draw[thin, densely dotted] (-1,2,1) -- (-1,2,0);
\draw[vector, seq2] (0,0,0) to["\strut$w$"'] (1,2,.3);
\draw[thin, densely dotted] (1,2,.3) -- (1,2,0);
\draw[vector, seq3] (0,0,0) to["$u$"] (.5,-.5,1);
\draw[thin, densely dotted] (.5,-.5,1) -- (.5,-.5,0);
\point at (0,0,0);
\fill[seq4!30, nearly transparent, resetxy] (-4,-3) rectangle (4,3);
\node[seq4] at (-1cm, 2cm) {$\Span\{u,v,w\}$};
\end{scope}
\begin{scope}[xshift=9cm, yshift=-7cm]
\path[clip, resetxy] (-4,-3) rectangle (4,3);
\def\v{(-1,2,1)}
\def\w{(1,2,.3)}
\def\u{(0,2,.65)}
\node[coordinate] (X) at \v {};
\node[coordinate] (Y) at \w {};
\begin{scope}[x=(X), y=(Y), transformxy]
\path[clip] (-1.5, 5) -- (1.5, -5) -- (1.5, -7) -- (-1.5, -7) -- cycle;
\fill[seq4!30, nearly opaque] (-1.5,-1) rectangle (1.5,2);
\draw[step=.5cm, seq4, very thin] (-1.5,-1) grid (1.5,2);
\end{scope}
\begin{scope}[transformxy]
\fill[white, nearly opaque] (-2, -2) rectangle (3, 3);
\draw[grid lines] (-2, -2) grid (3, 3);
\end{scope}
\begin{scope}[x=(X), y=(Y), transformxy]
\path[clip] (-1.5, 5) -- (1.5, -5) -- (1.5, 7) -- (-1.5, 7) -- cycle;
\fill[seq4!30, nearly opaque] (-1.5,-1) rectangle (1.5,2);
\draw[step=.5cm, seq4, very thin] (-1.5,-1) grid (1.5,2);
\end{scope}
\node[seq4] at (-1cm, 2cm) {$\Span\{u,v,w\}$};
\draw[vector, seq1] (0,0,0) --
node [midway, above] {$v$} \v;
\draw[thin, densely dotted] \v -- \projxy\v;
\draw[vector, seq2] (0,0,0) --
node [midway, below] {\strut$w$} \w;
\draw[thin, densely dotted] \w -- \projxy\w;
\draw[vector, seq3] (0,0,0) --
\u node [right] {$u$};
\draw[thin, densely dotted] \u -- \projxy\u;
\draw[thin, densely dotted] \v -- \w;
\point at (0,0,0);
\end{scope}
\end{tikzpicture}
]]>
</latex-image-code>
</image>
</figure>
<example hide-type="true">
<title>Interactive: Span of two vectors in <m>\R^2</m></title>
<figure>
<caption>Interactive picture of a span of two vectors in <m>\R^2</m>. Check <q>Show x.v + y.w</q> and move the sliders to see how every point in the violet region is in fact a linear combination of the two vectors.</caption>
<mathbox source="demos/spans.html?v1=1,2&v2=1,0&showPlane=true&range=5&labels=v,w" height="500px"/>
</figure>
</example>
<example hide-type="true">
<title>Interactive: Span of two vectors in <m>\R^3</m></title>
<figure>
<caption>Interactive picture of a span of two vectors in <m>\R^3</m>. Check <q>Show x.v + y.w</q> and move the sliders to see how every point in the violet region is in fact a linear combination of the two vectors.</caption>
<mathbox source="demos/spans.html?v1=3,2,4&v2=-4,2,1&labels=v,w" height="500px"/>
</figure>
</example>
<example hide-type="true">
<title>Interactive: Span of three vectors in <m>\R^3</m></title>
<figure>
<caption>Interactive picture of a span of three vectors in <m>\R^3</m>. Check <q>Show x.v + y.w + z.u</q> and move the sliders to see how every point in the violet region is in fact a linear combination of the three vectors.</caption>
<mathbox source="demos/spans.html?labels=v,w,u" height="500px"/>
</figure>
</example>
</paragraphs>
</subsection>
</section>