This repository has been archived by the owner on Aug 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathsolnsets.xml
628 lines (532 loc) · 32.1 KB
/
solnsets.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
<?xml version="1.0" encoding="UTF-8"?>
<!--********************************************************************
Copyright 2017 Georgia Institute of Technology
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation. A copy of
the license is included in gfdl.xml.
*********************************************************************-->
<section xml:id="solution-sets">
<title>Solution Sets</title>
<objectives>
<ol>
<li>Understand the relationship between the solution set of <m>Ax=0</m> and the solution set of <m>Ax=b</m>.</li>
<li>Understand the difference between the solution set and the column span.</li>
<li><em>Recipes:</em> parametric vector form, write the solution set of a homogeneous system as a span.</li>
<li><em>Pictures:</em> solution set of a homogeneous system, solution set of an inhomogeneous system, the relationship between the two.</li>
<li><em>Vocabulary words:</em> <term>homogeneous</term>/<term>inhomogeneous</term>, <term>trivial solution</term>.</li>
</ol>
</objectives>
<introduction>
<p>In this section we will study the geometry of the solution set of any matrix equation <m>Ax=b</m>.</p>
</introduction>
<subsection xml:id="solnsets-homog">
<title>Homogeneous Systems</title>
<p>The equation <m>Ax=b</m> is easier to solve when <m>b=0</m>, so we start with this case.</p>
<definition>
<idx><h>System of linear equations</h><h>homogeneous</h></idx>
<idx><h>System of linear equations</h><h>inhomogeneous</h></idx>
<idx><h>Homogeneous</h><see>System of linear equations</see></idx>
<idx><h>Inhomogeneous</h><see>System of linear equations</see></idx>
<statement>
<p>A system of linear equations of the form <m>Ax=0</m> is called <term>homogeneous</term>.</p>
<p>A system of linear equations of the form <m>Ax=b</m> for <m>b\neq 0</m> is called <term>inhomogeneous</term>.</p>
</statement>
</definition>
<p>A homogeneous system is just a system of linear equations where all constants on the right side of the equals sign are zero.</p>
<bluebox>
<idx><h>System of linear equations</h><h>trivial solution</h></idx>
<idx><h>System of linear equations</h><h>nontrivial solution</h></idx>
<idx><h>System of linear equations</h><h>homogeneous</h><h>trivial solution</h></idx>
<idx><h>Trivial solution</h><see>System of linear equations</see></idx>
<idx><h>Nontrivial solution</h><see>System of linear equations</see></idx>
<p>A homogeneous system always has the solution <m>x=0</m>. This is called the <term>trivial solution</term>. Any nonzero solution is called <term>nontrivial</term>.</p>
</bluebox>
<observation xml:id="solnsets-nontrivial">
<idx><h>System of linear equations</h><h>nontrivial solution</h><h>and free variables</h></idx>
<p>The equation <m>Ax=0</m> has a nontrivial solution <m>\iff</m> there is a free variable <m>\iff</m> <m>A</m> has a column without a <xref ref="defn-pivot-pos" text="title">pivot position</xref>.</p>
</observation>
<example xml:id="solnsets-eg-no-nontrivial">
<title>No nontrivial solutions</title>
<statement>
<p>What is the solution set of <m>Ax=0</m>, where
<me>A = \mat{1 3 4; 2 -1 2; 1 0 1}?</me></p>
</statement>
<solution>
<p>We form an augmented matrix and row reduce:
<me>\amat{1 3 4 0; 2 -1 2 0; 1 0 1 0}
\quad\xrightarrow{\text{RREF}}\quad
\amat{1 0 0 0; 0 1 0 0; 0 0 1 0}.
</me>
The only solution is the trivial solution <m>x=0</m>.
</p>
</solution>
</example>
<observation xml:id="solnsets-no-augment">
<p>When we row reduce the augmented matrix for a homogeneous system of linear equations, the last column will be zero throughout the row reduction process. We saw this in the last <xref ref="solnsets-eg-no-nontrivial"/>:
<me>\amat{1 3 4 0; 2 -1 2 0; 1 0 1 0}</me>
So it is not really necessary to write augmented matrices when solving homogeneous systems.</p>
</observation>
<p>
When the homogeneous equation <m>Ax=0</m> does have nontrivial solutions, it turns out that the solution set can be conveniently expressed as a span.
</p>
<specialcase hide-type="true">
<title>Parametric Vector Form (homogeneous case)</title>
<idx><h>Parametric vector form</h><h>of a homogeneous equation</h></idx>
<p>
Consider the following matrix in reduced row echelon form:
<me>A = \mat{1 0 -8 -7; 0 1 4 3; 0 0 0 0}.</me>
The matrix equation <m>Ax=0</m> corresponds to the system of equations
<me>
\syseq{x_1 \+ \. - 8x_3 - 7x_4 = 0;
\. \+ x_2 + 4x_3 + 3x_4 = 0\rlap.}
</me>
We can write the parametric form as follows:
<me>\syseq{
x_1 = 8x_3 + 7x_4;
x_2 = -4x_3 - 3x_4;
x_3 = x_3;
x_4 = \. \+ x_4\rlap.}
</me>
We wrote the redundant equations <m>x_3=x_3</m> and <m>x_4=x_4</m> in order to turn the above system into a <em>vector equation</em>:
<me>x = \vec{x_1 x_2 x_3 x_4} = x_3\vec{8 -4 1 0} + x_4\vec{7 -3 0 1}.</me>
This vector equation is called the <term>parametric vector form</term> of the solution set.
Since <m>x_3</m> and <m>x_4</m> are allowed to be anything, this says that the solution set is the set of all linear combinations of <m>\vec{8 -4 1 0}</m> and <m>\vec{7 -3 0 1}</m>. In other words, the solution set is
<me>\Span\left\{\vec{8 -4 1 0},\;\vec{7 -3 0 1}\right\}.</me>
</p>
</specialcase>
<p>Here is the general procedure.</p>
<bluebox>
<title>Recipe: Parametric vector form (homogeneous case)</title>
<idx><h>Parametric vector form</h><h>of a homogeneous equation</h></idx>
<idx><h>System of linear equations</h><h>parametric vector form of</h><see>Parametric vector form</see></idx>
<p>Let <m>A</m> be an <m>m\times n</m> matrix. Suppose that the free variables in the homogeneous equation <m>Ax=0</m> are, for example, <m>x_3</m>, <m>x_6</m>, and <m>x_8</m>.
<ol>
<li>Find the reduced row echelon form of <m>A</m>.</li>
<li>Write the parametric form of the solution set, including the redundant equations <m>x_3=x_3</m>, <m>x_6=x_6</m>, <m>x_8=x_8</m>. Put equations for all of the <m>x_i</m> in order.</li>
<li>Make a single vector equation from these equations by making the coefficients of <m>x_3,x_6,</m> and <m>x_8</m> into vectors <m>v_3,v_6,</m> and <m>v_8</m>, respectively.</li>
</ol>
The solutions to <m>Ax=0</m> will then be expressed in the form
<me> x = x_3v_3 + x_6v_6 + x_8v_8</me>
for some vectors <m>v_3,v_6,v_8</m> in <m>\R^n</m>, and any scalars <m>x_3,x_6,x_8</m>. This is called the <term>parametric vector form</term> of the solution.
</p>
<p>In this case, the solution set can be written as
<m>\Span\{v_3,\,v_6,\,v_8\}.</m>
</p>
</bluebox>
<p>
We emphasize the following fact in particular.
</p>
<bluebox xml:id="solnsets-are-spans">
<idx><h>Solution set</h><h>of a homogeneous system is a span</h></idx>
<p>
The set of solutions to a homogeneous equation <m>Ax=0</m> is a span.
</p>
</bluebox>
<example xml:id="solnsets-eg-line">
<title>The solution set is a line</title>
<statement>
<p>Compute the parametric vector form of the solution set of <m>Ax=0</m>, where
<me>A = \mat{1 -3; 2 -6}.</me>
</p>
</statement>
<solution>
<p>We row reduce (without augmenting, as suggested in the above <xref ref="solnsets-no-augment"/>):
<me>\mat{1 -3; 2 -6} \quad\xrightarrow{\text{RREF}}\quad
\mat{1 -3; 0 0}.
</me>
This corresponds to the single equation <m>x_1 - 3x_2=0</m>. We write the parametric form including the redundant equation <m>x_2=x_2</m>:
<me>\syseq{x_1 = 3x_2; x_2 = x_2\rlap.}</me>
We turn these into a single vector equation:
<me>x = \vec{x_1 x_2} = x_2\vec{3 1}.</me>
This is the parametric vector form of the solution set.
Since <m>x_2</m> is allowed to be anything, this says that the solution set is the set of all scalar multiples of <m>{3\choose 1}</m>, otherwise known as
<me>\Span\left\{\vec{3 1}\right\}.</me>
We know how to draw the picture of a span of a vector: it is a line. Therefore, this is a picture of the the solution set:
<latex-code>
<![CDATA[
\begin{tikzpicture}
\path[clip] (-6,-2) rectangle (6,2);
\draw[grid lines] (-6,-2) grid (6,2);
\draw[thick] (-6,0) -- (6,0);
\draw[thick] (0,-2) -- (0,2);
\draw[seq4] (-6,-2) -- node[pos=.4, above left=1pt, whitebg, thin border]
{$Ax=0$} (6,2);
\draw[vector, seq-green] (0,0) -- (3,1);
\end{tikzpicture}
]]>
</latex-code>
</p>
<figure>
<caption>Interactive picture of the solution set of <m>Ax=0</m>. If you drag <m>x</m> along the line spanned by <m>{3\choose 1}</m>, the product <m>Ax</m> is always equal to zero. This is what it means for <m>\Span\{{3\choose 1}\}</m> to be the solution set of <m>Ax=0</m>.</caption>
<mathbox source="demos/Axequalsb.html?lock=true&x=3,1&mat=1,-3:2,-6&range2=5&closed=true" height="600px"/>
</figure>
</solution>
</example>
<p>Since there were <em>two</em> variables in the above <xref ref="solnsets-eg-line"/>, the solution set is a subset of <m>\R^2</m>. Since <em>one</em> of the variables was free, the solution set is a <em>line</em>:
<latex-code>
<![CDATA[
\begin{tikzpicture}
\path[clip] (-6,-2) rectangle (6,2);
\draw[grid lines] (-6,-2) grid (6,2);
\draw[thick] (-6,0) -- (6,0);
\draw[thick] (0,-2) -- (0,2);
\draw[seq4] (-6,-2) -- node[pos=.4, above left=1pt, whitebg, thin border]
{$Ax=0$} (6,2);
\draw[vector, seq-green] (0,0) -- (3,1);
\end{tikzpicture}
]]>
</latex-code>
</p>
<bluebox>
<idx><h>System of linear equations</h><h>nontrivial solution</h><h>finding</h></idx>
<p>In order to actually <em>find</em> a nontrivial solution to <m>Ax=0</m> in the above <xref ref="solnsets-eg-line"/>, it suffices to substitute any nonzero value for the free variable <m>x_2</m>. For instance, taking <m>x_2=1</m> gives the nontrivial solution <m>x = 1\cdot{3\choose 1} = {3\choose 1}.</m> Compare to this <xref ref="finding-actual-soln"/>.</p>
</bluebox>
<example xml:id="solnsets-eg-plane">
<title>The solution set is a plane</title>
<statement>
<p>Compute the parametric vector form of the solution set of <m>Ax=0</m>, where
<me>A = \mat{1 -1 2; -2 2 -4}.</me>
</p>
</statement>
<solution>
<p>We row reduce (without augmenting, as suggested in the above <xref ref="solnsets-no-augment"/>):
<me>\mat{1 -1 2; -2 2 -4} \quad\xrightarrow{\text{RREF}}\quad
\mat{1 -1 2; 0 0 0}.
</me>
This corresponds to the single equation <m>x_1 - x_2 + 2x_3 = 0</m>. We write the parametric form including the redundant equations <m>x_2=x_2</m> and <m>x_3=x_3</m>:
<me>\syseq{x_1 = x_2 - 2x_3; x_2 = x_2; x_3 = \. \+ x_3\rlap.}</me>
We turn these into a single vector equation:
<me>x = \vec{x_1 x_2 x_3} = x_2\vec{1 1 0} + x_3\vec{-2 0 1}.</me>
This is the parametric vector form of the solution set.
Since <m>x_2</m> and <m>x_3</m> are allowed to be anything, this says that the solution set is the set of all linear combinations of <m>\vec{1 1 0}</m> and <m>\vec{-2 0 1}</m>. In other words, the solution set is
<me>\Span\left\{\vec{1 1 0},\;\vec{-2 0 1}\right\}.</me>
We know how to draw the span of two noncollinear vectors in <m>\R^3</m>: it is a plane. Therefore, this is a picture of the solution set:
<latex-code>
<![CDATA[
\begin{tikzpicture}[myxyz]
\path[clip, resetxy] (-6,-4) rectangle (6,4);
\def\v{(1, 1, 0)}
\def\w{(-2, 0, 1)}
\node[coordinate] (X) at \v {};
\node[coordinate] (Y) at \w {};
\draw (0,0,-3) -- (0,0,0);
\begin{scope}[x=(X), y=(Y), transformxy]
\path[clip] (-5, 0) -- (-5, -5) -- (5, -5) -- (5, 0) -- cycle;
\fill[seq4!30, nearly opaque] (-3,-2) rectangle (3,2);
\draw[step=1cm, seq4, very thin] (-3,-2) grid (3,2);
\end{scope}
\begin{scope}[transformxy]
\fill[white, nearly opaque] (-3, -3) rectangle (3, 3);
\draw[grid lines] (-3, -3) grid (3, 3);
\draw[->] (-3,0) -- (3,0);
\draw[->] (0,-3) -- (0,3);
\end{scope}
\begin{scope}[x=(X), y=(Y), transformxy]
\path[clip] (-5, 0) -- (-5, 5) -- (5, 5) -- (5, 0) -- cycle;
\fill[seq4!30, nearly opaque] (-3,-2) rectangle (3,2);
\draw[step=1cm, seq4, very thin] (-3,-2) grid (3,2);
\end{scope}
\draw[->] (0,0,0) -- (0,0,3);
\draw[vector, seq1] (0,0,0) -- \v;
\draw[vector, seq2] (0,0,0) -- \w;
\draw[thin, densely dotted] \w -- \projxy\w;
\node[seq4, anchor=south east] at (-3,-2.5,.5) {$Ax=0$};
\point at (0,0,0);
\end{tikzpicture}
]]>
</latex-code></p>
<figure>
<caption>Interactive picture of the solution set of <m>Ax=0</m>. If you drag <m>x</m> along the violet plane, the product <m>Ax</m> is always equal to zero. This is what it means for the plane to be the solution set of <m>Ax=0</m>.</caption>
<mathbox source="demos/Axequalsb.html?lock=true&closed=true&x=0,0,0" height="600px"/>
</figure>
</solution>
</example>
<p>Since there were <em>three</em> variables in the above <xref ref="solnsets-eg-plane"/>, the solution set is a subset of <m>\R^3</m>. Since <em>two</em> of the variables were free, the solution set is a <em>plane</em>.</p>
<p>
There is a natural question to ask here: is it possible to write the solution to a homogeneous matrix equation using fewer vectors than the one given in the above recipe? We will see in <xref ref="param-vect-form-lin-ind"/> that the answer is <em>no</em>: the vectors from the recipe are always linearly independent, which means that there is no way to write the solution with fewer vectors.
</p>
<p>
Another natural question is: are the solution sets for inhomogeneuous equations also spans? As we will see shortly, they are never spans, but they are closely related to spans.
</p>
<p>
There is a natural relationship between the number of free variables and the <q>size</q> of the solution set, as follows.
</p>
<bluebox xml:id="soln-sets-dim-hom"><title>Dimension of the solution set</title>
<idx><h>Line</h><h>dimension-1 solution set</h></idx>
<idx><h>Plane</h><h>dimension-2 solution set</h></idx>
<idx><h>Space</h><h>dimension-3 solution set</h></idx>
<idx><h>Dimension</h><h>of a solution set</h></idx>
<p>The above examples show us the following pattern: when there is one free variable in a consistent matrix equation, the solution set is a line, and when there are two free variables, the solution set is a plane, etc. The number of free variables is called the <em>dimension</em> of the solution set.
</p>
</bluebox>
<p>We will develop a rigorous definition of dimension in <xref ref="dimension"/>, but for now the dimension will simply mean the number of free variables. Compare with this <xref ref="pivot-cols-dim"/>.</p>
<p>Intuitively, the dimension of a solution set is the number of parameters you need to describe a point in the solution set. For a line only one parameter is needed, and for a plane two parameters are needed. This is similar to how the location of a building on Peachtree Street<mdash/>which is like a line<mdash/>is determined by one number and how a street corner in Manhattan<mdash/>which is like a plane<mdash/>is specified by two numbers.</p>
</subsection>
<subsection>
<title>Inhomogeneous Systems</title>
<p>
Recall that a matrix equation <m>Ax=b</m> is called <term>inhomogeneous</term> when <m>b\neq0</m>.
</p>
<example xml:id="solnsets-eg-line2">
<title>The solution set is a line</title>
<statement>
<p>What is the solution set of <m>Ax=b</m>, where
<me>A = \mat{1 -3; 2 -6} \sptxt{and} b = \vec{-3 -6}?</me>
(Compare to this <xref ref="solnsets-eg-line"/>, where we solved the corresponding homogeneous equation.)
</p>
</statement>
<solution>
<p>We row reduce the associated augmented matrix:
<me>\amat{1 -3 -3; 2 -6 -6} \quad\xrightarrow{\text{RREF}}\quad
\amat{1 -3 -3; 0 0 0}.
</me>
This corresponds to the single equation <m>x_1 - 3x_2 = -3</m>. We can write the parametric form as follows:
<me>\syseq{x_1 = 3x_2 - 3; x_2 = x_2 + 0\rlap.}</me>
We turn the above system into a <em>vector equation</em>:
<me>x = \vec{x_1 x_2} = x_2\vec{3 1} + \vec{-3 0}.</me>
This vector equation is called the <term>parametric vector form</term> of the solution set.
We write the solution set as
<me>\Span\left\{\vec{3 1}\right\} + \vec{-3 0}.</me>
Here is a picture of the the solution set:
<latex-code>
<![CDATA[
\begin{tikzpicture}[thin border nodes]
\draw[grid lines] (-6,-2) grid (6,3);
\path[clip] (-6,-2) rectangle (6,3);
\draw (-6,0) -- (6,0);
\draw (0,-2) -- (0,3);
\draw[seq2] (-6,-2) -- node[pos=.6,below right=1pt,whitebg] {$Ax=0$} (6,2);
\draw[seq4] (-6,-1) -- node[pos=.7,above left=1pt,whitebg] {$Ax=b$} (6,3);
\point (a) at (-3,0);
\draw[vector, seq1] (a) -- (0,1);
\draw[->, vector, seq3] (0,0) -- node[pos=.3,above] {$p$} (a);
\point at (0,0);
\end{tikzpicture}
]]>
</latex-code></p>
<figure>
<caption>Interactive picture of the solution set of <m>Ax=b</m>. If you drag <m>x</m> along the violet line, the product <m>Ax</m> is always equal to <m>b</m>. This is what it means for the line to be the solution set of <m>Ax=b</m>.</caption>
<mathbox source="demos/Axequalsb.html?x=-3,0&mat=1,-3:2,-6&lock=true&closed=true" height="600px"/>
</figure>
</solution>
</example>
<p>In the above <xref ref="solnsets-eg-line2"/>, the solution set was all vectors of the form
<me>x = \vec{x_1 x_2} = x_2\vec{3 1} + \vec{-3 0}</me>
where <m>x_2</m> is any scalar. The vector <m>p = {-3\choose 0}</m> is also a solution of <m>Ax=b</m>: take <m>x_2=0</m>. We call <m>p</m> a <term>particular solution</term>.
</p>
<p>In the solution set, <m>x_2</m> is allowed to be anything, and so the solution set is obtained as follows: we take all scalar multiples of <m>{3\choose 1}</m> and then add the particular solution <m>p = {-3\choose 0}</m> to each of these scalar multiples. Geometrically, this is accomplished by first drawing the span of <m>{3\choose 1}</m>, which is a line through the origin (and, not coincidentally, the solution to <m>Ax=0</m>), and we <em>translate</em>, or push, this line along <m>p = {-3\choose 0}</m>. The translated line contains <m>p</m> and is parallel to <m>\Span\{{3\choose 1}\}</m>: it is a <em>translate of a line</em>.
<latex-code>
<![CDATA[
\begin{tikzpicture}[thin border nodes]
\draw[grid lines] (-6,-2) grid (6,3);
\path[clip] (-6,-2) rectangle (6,3);
\draw (-6,0) -- (6,0);
\draw (0,-2) -- (0,3);
\draw[seq2] (-6,-2) -- node[pos=.6,below right=1pt,whitebg] {$Ax=0$} (6,2);
\draw[seq4] (-6,-1) -- node[pos=.7,above left=1pt,whitebg] {$Ax=b$} (6,3);
\point (a) at (-3,0);
\draw[vector, seq1] (a) -- (0,1);
\draw[->, vector, seq3] (0,0) -- node[pos=.3,above] {$p$} (a);
\point at (0,0);
\end{tikzpicture}
]]>
</latex-code>
</p>
<example xml:id="solnsets-eg-plane2">
<title>The solution set is a plane</title>
<statement>
<p>What is the solution set of <m>Ax=b</m>, where
<me>A = \mat{1 -1 2; -2 2 -4} \sptxt{and} b = \vec{1 -2}?</me>
(Compare this <xref ref="solnsets-eg-plane"/>.)
</p>
</statement>
<solution>
<p>We row reduce the associated augmented matrix:
<me>\amat{1 -1 2 1; -2 2 -4 -2} \quad\xrightarrow{\text{RREF}}\quad
\mat{1 -1 2 1; 0 0 0 0}.
</me>
This corresponds to the single equation <m>x_1 - x_2 + 2x_3 = 1</m>. We can write the parametric form as follows:
<me>\syseq{x_1 = x_2 - 2x_3 + 1; x_2 = x_2 \+ \. + 0; x_3 = \. \+ x_3 + 0\rlap.}</me>
We turn the above system into a <em>vector equation</em>:
<me>x = \vec{x_1 x_2 x_3} = x_2\vec{1 1 0} + x_3\vec{-2 0 1} + \vec{1 0 0}.</me>
This vector equation is called the <term>parametric vector form</term> of the solution set.
Since <m>x_2</m> and <m>x_3</m> are allowed to be anything, this says that the solution set is the set of all linear combinations of <m>\vec{1 1 1}</m> and <m>\vec{-2 0 1}</m>, <em>translated</em> by the vector <m>p = \vec{1 0 0}</m>. This is a plane which contains <m>p</m> and is parallel to <m>\Span\left\{\vec{1 1 1},\;\vec{-2 0 1}\right\}</m>: it is a <em>translate of a plane</em>. We write the solution set as
<me>\Span\left\{\vec{1 1 1},\;\vec{-2 0 1}\right\} + \vec{1 0 0}.</me>
Here is a picture of the solution set:
<latex-code>
<![CDATA[
\begin{tikzpicture}[myxyz]
\path[clip, resetxy] (-6,-4) rectangle (6,4);
\def\v{(1, 1, 0)}
\def\w{(-2, 0, 1)}
\def\pp{(1, 0, 0)}
\node[coordinate] (X) at \v {};
\node[coordinate] (Y) at \w {};
\node[coordinate] (P) at \pp {};
\begin{scope}[x=(X), y=(Y), , xshift=-.8cm, yshift=-.5cm, transformxy]
\path[clip] (-5, 0) -- (-5, -5) -- (5, -5) -- (5, 0) -- cycle;
\fill[seq4!30, nearly opaque] (-3,-2) rectangle (3,2);
\draw[step=1cm, seq4, very thin] (-3,-2) grid (3,2);
\end{scope}
\draw (0,0,-3) -- (0,0,0);
\begin{scope}[transformxy]
\fill[white, nearly opaque] (-2, -3) rectangle (4, 3);
\draw[grid lines] (-2, -3) grid (4, 3);
\draw[->] (-2,0) -- (4,0);
\draw[->] (0,-3) -- (0,3);
\end{scope}
\draw[->] (0,0,0) -- (0,0,3);
\begin{scope}[x=(X), y=(Y), xshift=-.8cm, yshift=-.5cm, transformxy]
\path[clip] (-5, 0) -- (-5, 5) -- (5, 5) -- (5, 0) -- cycle;
\fill[seq4!30, nearly opaque] (-3,-2) rectangle (3,2);
\draw[step=1cm, seq4, very thin] (-3,-2) grid (3,2);
\end{scope}
\draw[vector, seq1] \pp -- ($(X) + (P)$);
\draw[vector, seq2] \pp -- ($(Y) + (P)$);
\draw[thin, densely dotted] ($(Y) + (P)$) -- (-1, 0, 0);
\draw[vector, seq3, opacity=.5] (0,0,0) -- node[below right, thin border] {$p$} \pp;
\node[seq4, anchor=south east] at (-2,-2.5,.5) {$Ax=b$};
\point at \pp;
\point at (0,0,0);
\end{tikzpicture}
]]>
</latex-code></p>
<figure>
<caption>Interactive picture of the solution set of <m>Ax=b</m>. If you drag <m>x</m> along the violet plane, the product <m>Ax</m> is always equal to <m>b</m>. This is what it means for the plane to be the solution set of <m>Ax=b</m>.</caption>
<mathbox source="demos/Axequalsb.html?lock=true&closed=true&range1=3&x=1,0,0" height="600px"/>
</figure>
</solution>
</example>
<p>In the above <xref ref="solnsets-eg-plane2"/>, the solution set was all vectors of the form
<me>x = \vec{x_1 x_2 x_3} = x_2\vec{1 1 0} + x_3\vec{-2 0 1} + \vec{1 0 0}.</me>
where <m>x_2</m> and <m>x_3</m> are any scalars. In this case, a particular solution is <m>p = \vec{1 0 0}</m>.
</p>
<p>In the previous <xref ref="solnsets-eg-plane2"/> and the <xref ref="solnsets-eg-line2"/> before it, the parametric vector form of the solution set of <m>Ax=b</m> was exactly the same as the parametric vector form of the solution set of <m>Ax=0</m> (from this <xref ref="solnsets-eg-plane"/> and this <xref ref="solnsets-eg-line"/>, respectively), plus a particular solution.
</p>
<bluebox xml:id="solnsets-translate-span" type-name="Key Observation">
<title>Key Observation</title>
<idx><h>Parametric vector form</h><h>particular solution</h></idx>
<idx><h>Particular solution</h><see>Parametric vector form</see></idx>
<idx><h>System of linear equations</h><h>particular solution of</h><see>Parametric vector form</see></idx>
<idx><h>Solution set</h><h>translate of a span</h></idx>
<p>
If <m>Ax=b</m> is consistent, the set of solutions to is obtained by taking one <term>particular solution</term> <m>p</m> of <m>Ax=b</m>, and adding all solutions of <m>Ax=0</m>.
</p>
<p>In particular, if <m>Ax=b</m> is consistent, the solution set is a <em>translate of a span</em>.</p>
</bluebox>
<p>
<idx><h>Parametric vector form</h><h>of an inhomogeneous equation</h></idx>
The <term>parametric vector form</term> of the solutions of <m>Ax=b</m> is just the parametric vector form of the solutions of <m>Ax=0</m>, plus a particular solution <m>p</m>.
</p>
<p>It is not hard to see why the <xref ref="solnsets-translate-span"/> is true. If <m>p</m> is a particular solution, then <m>Ap=b</m>, and if <m>x</m> is a solution to the homogeneous equation <m>Ax=0</m>, then
<me>A(x+p) = Ax + Ap = 0 + b = b,</me>
so <m>x+p</m> is another solution of <m>Ax=b</m>. On the other hand, if we start with any solution <m>x</m> to <m>Ax=b</m> then <m>x-p</m> is a solution to <m>Ax=0</m> since <me>A(x-p)=Ax-Ap=b-b=0</me>.
</p>
<remark>
<p>Row reducing to find the parametric vector form will give you one particular solution <m>p</m> of <m>Ax=b</m>. But the <xref ref="solnsets-translate-span"/> is true for any solution <m>p</m>. In other words, if we row reduce in a different way and find a different solution <m>p'</m> to <m>Ax=b</m> then the solutions to <m>Ax=b</m> can be obtained from the solutions to <m>Ax=0</m> by either adding <m>p</m> or by adding <m>p'</m>.</p>
</remark>
<example xml:id="solnsets-eg-point">
<title>The solution set is a point</title>
<statement>
<p>What is the solution set of <m>Ax=b</m>, where
<me>A = \mat{1 3 4; 2 -1 2; 1 0 1} \sptxt{and} b = \vec{0 1 0}?</me></p>
</statement>
<solution>
<p>We form an augmented matrix and row reduce:
<me>\amat{1 3 4 0; 2 -1 2 1; 1 0 1 0}
\quad\xrightarrow{\text{RREF}}\quad
\amat{1 0 0 -1; 0 1 0 -1; 0 0 1 1}.
</me>
The only solution is <m>p=\vec{-1 -1 1}</m>.
</p>
<p>According to the <xref ref="solnsets-translate-span"/>, this is supposed to be a translate of a span by <m>p</m>. Indeed, we saw in the first <xref ref="solnsets-eg-no-nontrivial"/> that the only solution of <m>Ax=0</m> is the trivial solution, i.e., that the solution set is the one-point set <m>\{0\}</m>. The solution set of the inhomogeneous equation <m>Ax=b</m> is
<me>\{0\} + \vec{-1 -1 1}.</me>
Note that <m>\{0\} = \Span\{0\}</m>, so the homogeneous solution set is a span.
<latex-code>
<![CDATA[
\begin{tikzpicture}[myxyz, x={(-.3cm,-.5cm)}, z={(0cm,1.3cm)}, thin border nodes]
\path[clip, resetxy] (-6,-4) rectangle (6,4);
\def\v{(-1, -1, 1)}
\begin{scope}[transformxy]
\fill[white, nearly opaque] (-3, -3) rectangle (3, 3);
\draw[grid lines] (-3, -3) grid (3, 3);
\draw[->] (-3,0) -- (3,0);
\draw[->] (0,-3) -- (0,3);
\end{scope}
\draw[vector, seq3] (0,0,0) -- \v;
\draw[thin, densely dotted] \v -- (-1, -1, 0);
\point[fill=seq-violet, "$Ax=b\,$" {above, seq-violet}] at \v;
\point[fill=seq-blue, "$Ax=0$" {below right, seq-blue}] at (0,0,0);
\end{tikzpicture}
]]>
</latex-code></p>
</solution>
</example>
<p>See the interactive figures in the next <xref ref="solnsets-ss-and-cs"/> for visualizations of the <xref ref="solnsets-translate-span"/>.</p>
<bluebox xml:id="soln-sets-dim-inhom"><title>Dimension of the solution set</title>
<idx><h>Line</h><h>dimension-1 solution set</h></idx>
<idx><h>Plane</h><h>dimension-2 solution set</h></idx>
<idx><h>Space</h><h>dimension-3 solution set</h></idx>
<idx><h>Dimension</h><h>of a solution set</h></idx>
<p>As in this <xref ref="soln-sets-dim-inhom"/>, when there is one free variable in a consistent matrix equation, the solution set is a line<mdash/>this line does not pass through the origin when the system is inhomogeneous<mdash/>when there are two free variables, the solution set is a plane (again not through the origin when the system is inhomogeneous), etc.
</p>
</bluebox>
<p>
Again compare with this <xref ref="pivot-cols-dim"/>.
</p>
</subsection>
<subsection xml:id="solnsets-ss-and-cs">
<title>Solution Sets and Column Spans</title>
<idx><h>Column space</h><h>versus the solution set</h></idx>
<idx><h>Solution set</h><h>versus the column space</h></idx>
<p>To every <m>m\times n</m> matrix <m>A</m>, we have now associated two completely different geometric objects, both described using spans.
<ul>
<li>
<p>The <term>solution set</term>: for fixed <m>b</m>, this is the set of all <m>x</m> such that <m>Ax=b</m>.
<ul>
<li>This is a span if <m>b=0</m>, and it is a translate of a span if <m>b\neq 0</m> (and <m>Ax=b</m> is consistent).</li>
<li>It is a subset of <m>\R^n</m>.</li>
<li>It is computed by solving a system of equations: usually by row reducing and finding the parametric vector form.</li>
</ul>
</p>
</li>
<li>
<p>
The <term>span of the columns of <m>A</m></term>: this is the set of all <m>b</m> such that <m>Ax=b</m> is consistent.
<ul>
<li>This is always a span.</li>
<li>It is a subset of <m>\R^m</m>.</li>
<li>It is not computed by solving a system of equations: row reduction plays no role.</li>
</ul>
</p>
</li>
</ul>
</p>
<bluebox><p>Do not confuse these two geometric constructions! In the first the question is which <m>x</m>’s work for a given <m>b</m> and in the second the question is which <m>b</m>’s work for some <m>x</m>.</p></bluebox>
<example hide-type="true">
<title>Interactive: Solution set and span of the columns (1)</title>
<figure>
<caption>Left: the solution set of <m>Ax=b</m> is in violet. Right: the span of the columns of <m>A</m> is in violet. As you move <m>x</m>, you change <m>b</m>, so the solution set changes<mdash/>but all solution sets are parallel planes. If you move <m>b</m> within the span of the columns, the solution set also changes, and the demo solves the equation to find a particular solution <m>x</m>. If you move <m>b</m> outside of the span of the columns, the system becomes inconsistent, and the solution set disappears.
</caption>
<mathbox source="demos/Axequalsb.html?mat=1,3:2,6&x=1,1" height="600px"/>
</figure>
</example>
<example hide-type="true">
<title>Interactive: Solution set and span of the columns (2)</title>
<figure>
<caption>Left: the solution set of <m>Ax=b</m> is in violet. Right: the span of the columns of <m>A</m> is in violet. As you move <m>x</m>, you change <m>b</m>, so the solution set changes<mdash/>but all solution sets are parallel planes. If you move <m>b</m> within the span of the columns, the solution set also changes, and the demo solves the equation to find a particular solution <m>x</m>. If you move <m>b</m> outside of the span of the columns, the system becomes inconsistent, and the solution set disappears.
</caption>
<mathbox source="demos/Axequalsb.html" height="600px"/>
</figure>
</example>
<example hide-type="true" xml:id="solnsets-line-plane">
<title>Interactive: Solution set and span of the columns (3)</title>
<figure>
<caption>Left: the solution set of <m>Ax=b</m> is in violet. Right: the span of the columns of <m>A</m> is in violet. As you move <m>x</m>, you change <m>b</m>, so the solution set changes<mdash/>but all solution sets are parallel planes. If you move <m>b</m> within the span of the columns, the solution set also changes, and the demo solves the equation to find a particular solution <m>x</m>. If you move <m>b</m> outside of the span of the columns, the system becomes inconsistent, and the solution set disappears.
</caption>
<mathbox source="demos/Axequalsb.html?mat=1,0,-1:0,1,1:1,1,0" height="600px"/>
</figure>
</example>
</subsection>
</section>