diff --git a/RELEASES.md b/RELEASES.md index c06721f7c..76385d6b0 100644 --- a/RELEASES.md +++ b/RELEASES.md @@ -4,14 +4,13 @@ #### New features -- Added Generalized Wasserstein Barycenter solver + example (PR #372) +- Added Generalized Wasserstein Barycenter solver + example (PR #372), fixed graphical details on the example (PR #376) #### Closed issues - Fixed an issue where we could not ask TorchBackend to place a random tensor on GPU (Issue #371, PR #373) - ## 0.8.2 This releases introduces several new notable features. The less important diff --git a/examples/barycenters/plot_generalized_free_support_barycenter.py b/examples/barycenters/plot_generalized_free_support_barycenter.py index 9af1953fd..e685ec711 100644 --- a/examples/barycenters/plot_generalized_free_support_barycenter.py +++ b/examples/barycenters/plot_generalized_free_support_barycenter.py @@ -33,8 +33,8 @@ # Input measures sub_sample_factor = 8 I1 = pl.imread('../../data/redcross.png').astype(np.float64)[::sub_sample_factor, ::sub_sample_factor, 2] -I2 = pl.imread('../../data/tooth.png').astype(np.float64)[::sub_sample_factor, ::sub_sample_factor, 2] -I3 = pl.imread('../../data/heart.png').astype(np.float64)[::sub_sample_factor, ::sub_sample_factor, 2] +I2 = pl.imread('../../data/tooth.png').astype(np.float64)[::-sub_sample_factor, ::sub_sample_factor, 2] +I3 = pl.imread('../../data/heart.png').astype(np.float64)[::-sub_sample_factor, ::sub_sample_factor, 2] sz = I1.shape[0] UU, VV = np.meshgrid(np.arange(sz), np.arange(sz)) @@ -145,8 +145,11 @@ def _init(): def _update_plot(i): - ax.view_init(elev=i, azim=4 * i) + if i < 45: + ax.view_init(elev=0, azim=4 * i) + else: + ax.view_init(elev=i - 45, azim=4 * i) return fig, -ani = animation.FuncAnimation(fig, _update_plot, init_func=_init, frames=90, interval=50, blit=True, repeat_delay=2000) +ani = animation.FuncAnimation(fig, _update_plot, init_func=_init, frames=136, interval=50, blit=True, repeat_delay=2000) diff --git a/test/test_partial.py b/test/test_partial.py index e07377b60..33fc259ae 100755 --- a/test/test_partial.py +++ b/test/test_partial.py @@ -137,7 +137,7 @@ def test_partial_wasserstein(): def test_partial_gromov_wasserstein(): - np.random.seed(42) + rng = np.random.RandomState(seed=42) n_samples = 20 # nb samples n_noise = 10 # nb of samples (noise) @@ -150,11 +150,11 @@ def test_partial_gromov_wasserstein(): mu_t = np.array([0, 0, 0]) cov_t = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) - xs = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s) - xs = np.concatenate((xs, ((np.random.rand(n_noise, 2) + 1) * 4)), axis=0) + xs = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s, rng) + xs = np.concatenate((xs, ((rng.rand(n_noise, 2) + 1) * 4)), axis=0) P = sp.linalg.sqrtm(cov_t) - xt = np.random.randn(n_samples, 3).dot(P) + mu_t - xt = np.concatenate((xt, ((np.random.rand(n_noise, 3) + 1) * 10)), axis=0) + xt = rng.randn(n_samples, 3).dot(P) + mu_t + xt = np.concatenate((xt, ((rng.rand(n_noise, 3) + 1) * 10)), axis=0) xt2 = xs[::-1].copy() C1 = ot.dist(xs, xs)