-
Notifications
You must be signed in to change notification settings - Fork 258
/
Copy pathcyspka.py
785 lines (724 loc) · 38.9 KB
/
cyspka.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
from __future__ import print_function
from pymol import cmd
import os
import sys
import math
from time import localtime, strftime
# Thx for inspiration from Simple scriptin PymMOl http://www.pymolwiki.org/index.php/Simple_Scripting
# Made by Ma.Sc student. Troels Linnet, 2011-08. troels.linnet@bbz.uni-leipzig.de
# Based solely on the work by:
# Maik H. Jacob, Dan Amir, Vladimir Ratner, Eugene Gussakowsky, and Elisha Haas
# Predicting Reactivities of Protein Surface Cysteines as Part of a Strategy for Selective Multiple Labeling. (Biochemistry 2005, 44, 13664-13672)
# Example of pymol script: Directory "predict_reactivity" has script file cyspka.py and cysteine residue pdb file: cys.pdb
# import cyspka
# fetch 4AKE, async=0
# create 4AKE-A, /4AKE//A and not resn HOH
# delete 4AKE
# hide everything
# show cartoon, 4AKE-A
# cyspka 4AKE-A, A, 18
def cyspka(molecule, chain, residue, SeeProgress='yes', pH=7.2, MoveSGatom='no', SGatom=str((0, 0, 0))):
# If SeeProgress='yes', computation time will take 10-20% extra, but nice to follow.
cmd.refresh()
RotationRange = 360
RotationDegree = 1
# For error checking, the energies can be printed out
printMC = 'no'
printSC = 'no'
# Parameters
DieElecSpheDist = 7.0
DieElecWaterDist = 1.4
DieElecWater = 78.5
DieElecCore = 4.0
BornPenaltyB = 1.0
AvogadroR = 8.31446216
Temp = 298
DeltapKMCSC = 0
pK1 = 9.25
pK2 = 8.0
NotPopuDist = 2.4
PopEnergyPenalty = 10000000
# Side chain discrete charges
DieElecSC = 40.0
SCchargeASP = -1
SCchargeGLU = -1
SCchargeOXT = -1
SCchargeARG = +1
SCchargeHIS = +1
SCchargeLYS = +1
SCchargeMET1 = +1
# Main chain partial charges
NrMainchainNeighBours = 5
DieElecMC = 22.0
MCchargeC = +0.55
MCchargeO = -0.55
MCchargeN = -0.35
MCchargeH = +0.35
MCchargeProCA = +0.1
MCchargeProCD = +0.1
MCchargeProN = -0.2
# Loading an Cys residue, give it a logic name, and aligning it. The oxygen atom can not be aligned in many cases, and are skipped.
# We use only this molecule, to find the initial position of the SG atom, and to rotate the SG atom around the CA-CB bond. The molecule atom positions are not used for electric potential calculatons.
Cysmolecule = str(molecule) + str(residue) + "Cys"
cmd.fragment("cys")
cmd.set_name('cys', Cysmolecule)
# We use pair_fir, since align and super gets unstable with so few atoms
pairfitCys(Cysmolecule, molecule, chain, residue)
# Give nice representations quickly
cmd.show("sticks", Cysmolecule)
cmd.select(str(molecule) + str(residue) + "Res", "/" + molecule + "//" + chain + "/" + residue)
print("/" + molecule + "//" + chain + "/" + residue)
cmd.show("sticks", str(molecule) + str(residue) + "Res")
cmd.disable(str(molecule) + str(residue) + "Res")
# Find out what is the residuename we are investigating for
Respdbstr = cmd.get_pdbstr(str(molecule) + str(residue) + "Res")
Ressplit = Respdbstr.split()
residueName = Ressplit[3]
print("")
print("# Hello, PyMOLers. It should take around 1 minute per residue.")
print("# molecule: %s , chain: %s, residue: %s %s, pH: %s " % (molecule, chain, residueName, residue, pH))
# Determine the range of neighbour residues possible.
Maxresidues = cmd.count_atoms("/" + molecule + "//" + chain + " and name CA")
for i in range(NrMainchainNeighBours + 1):
if int(residue) - i >= 1:
Minresidue = int(residue) - i
else:
break
for i in range(NrMainchainNeighBours + 1):
if int(residue) + i <= Maxresidues:
Maxresidue = int(residue) + i
else:
break
# Get the position and the vector for the CA->CB bond.
dihedN = "/" + Cysmolecule + "//" + "/" + "/N"
dihedCA = "/" + Cysmolecule + "//" + "/" + "/CA"
dihedCB = "/" + Cysmolecule + "//" + "/" + "/CB"
dihedSG = "/" + Cysmolecule + "//" + "/" + "/SG"
dihedralPosCA = cmd.get_atom_coords(dihedCA)
dihedralPosSG = cmd.get_atom_coords(dihedSG)
dihedralVector = AtomVector(dihedCA, dihedCB)
# To compare with article, we can move the SGatom to a starting position. The rotation is still determined around the CA-CB bond.
if MoveSGatom == 'yes':
SGatom = [float(SGatom[1:-1].split(",")[0]), float(SGatom[1:-1].split(",")[1]), float(SGatom[1:-1].split(",")[2])]
Translate = [(SGatom[0] - dihedralPosSG[0]), (SGatom[1] - dihedralPosSG[1]), (SGatom[2] - dihedralPosSG[2])]
cmd.translate(Translate, dihedSG, state=0, camera=0)
dihedralPosSG = cmd.get_atom_coords(dihedSG)
# Create a pymol molecule, that in the end will hold and show all SG atoms. Gives the representation of the rotameric states.
SGName = str(molecule) + str(residue) + "SG"
cmd.create(SGName, "None")
# Create a pymol molecule, that in the end will hold and show all Amide protons. Gives a nice representation, and easy to delete.
AmideName = str(molecule) + str(residue) + "NH"
cmd.create(AmideName, "None")
# Check if there are any nearby SG atoms, which could make a SG-SG dimer formation. The
breakDimer = "no"
breakDimer = CheckDimer(dihedSG, molecule, chain, residue)
# Create a list for appending the calculated energies.
ListofEnergies = []
ListofRotamerDiscarded = []
# print "Angle before rotation", cmd.get_dihedral(dihedN,dihedCA,dihedCB,dihedSG)
# Enter into the loop of rotameric states
for i in range(int(math.floor(RotationRange / RotationDegree))):
Angle = i * RotationDegree
# Create pymol molecule/SG atom for which we will calculate for.
SGNameAngle = str(residue) + "SG" + str(Angle)
cmd.create(SGNameAngle, dihedSG)
# Calculate new coordinates for rotation around CA->CB bond. Then translate the created SG atom.
SGNewPos = fRotateAroundLine(dihedralPosSG, dihedralPosCA, dihedralVector, Angle)
Translate = [(SGNewPos[0] - dihedralPosSG[0]), (SGNewPos[1] - dihedralPosSG[1]), (SGNewPos[2] - dihedralPosSG[2])]
cmd.translate(Translate, SGNameAngle, state=0, camera=0)
# If one wants to "see it happen" while its making the states. But it will take extra computation time.
if SeeProgress == 'yes':
cmd.refresh()
# Calculate number of neighbours within 2.4 Angstrom. Amide hydrogens are not considered, and are actually not build yet.
nameselect = "(((/" + molecule + "//" + chain + " and not /" + molecule + "//" + chain + "/" + residue + ") or /" + molecule + "//" + chain + "/" + residue + "/N+CA+C+O) within " + str(NotPopuDist) + " of /" + SGNameAngle + "//" + "/" + "/SG) and not resn HOH"
# print nameselect
cmd.select("NotPop", nameselect)
NotPopNr = cmd.count_atoms("NotPop")
# print Angle, NotPopNr, cmd.get_dihedral(dihedN,dihedCA,dihedCB,SGNameAngle)
# If no neighbours, then proceed calculating
if NotPopNr == 0:
SumAllWMC = 0.0
# Now calculate the electric potential due to the side chains.
SumWSC = fSumWSC(molecule, SGNameAngle, chain, residue, DieElecSC, SCchargeASP, SCchargeGLU, SCchargeOXT, SCchargeARG, SCchargeHIS, SCchargeLYS, SCchargeMET1, printSC)
# Now we calculate for the flanking 5 peptide groups on each side of the Cysteine CA atom.
# For the first residue, only calculate for the tailing C,O atom in the peptide bond. No test for Proline.
SumWMCFirst = fSumWMCFirst(molecule, SGNameAngle, chain, residue, Minresidue, DieElecMC, MCchargeC, MCchargeO, printMC)
# For the residue itself, we dont test for PRO, since it should be a Cysteine.
SumWMCresidue = fSumWMCresidue(molecule, SGNameAngle, chain, residue, int(residue), DieElecMC, MCchargeC, MCchargeO, MCchargeN, MCchargeH, AmideName, printMC)
# For the last residue, we test for Proline. We only calculate for the N,H atom, or if Proline, N,CA and CD atom.
SumWMCLast = fSumWMCLast(molecule, SGNameAngle, chain, residue, Maxresidue, DieElecMC, MCchargeN, MCchargeH, MCchargeProCA, MCchargeProCD, MCchargeProN, AmideName, printMC)
# Then loop over rest of the residues in the chain.
for j in (list(range(Minresidue + 1, int(residue))) + list(range(int(residue) + 1, Maxresidue))):
MCNeighbour = j
# print "Looking at neighbour", j
SumWMC = fSumWMC(molecule, SGNameAngle, chain, residue, MCNeighbour, DieElecMC, MCchargeC, MCchargeO, MCchargeN, MCchargeH, MCchargeProCA, MCchargeProCD, MCchargeProN, AmideName, printMC)
SumAllWMC = SumAllWMC + SumWMC
# print "Rotation: %s Neighbour: %s " % (Angle, j)
# Since the SG atom is negative, we multiply with -1.
SumMCSC = -1 * (SumWSC + SumWMCFirst + SumWMCresidue + SumWMCLast + SumAllWMC)
# Makes the neighbour count. Everything in 'molecule" within 7 ang of aligned SG atom. Not counting 'residue'. Adding 5 for 'residue' N,CA,C,O,CB
ListNeighbourCount = fNeighbourCount(molecule, SGNameAngle, chain, residue, DieElecSpheDist)
# Calculate the weighted electric potential and alter the b factor for coloring. Then add the rotated SG into bucket of SG atoms.
SG_MCSC_Weight = fBoltzSingleState(SumMCSC, AvogadroR, Temp) * SumMCSC
cmd.alter(SGNameAngle, 'b="%s"' % SG_MCSC_Weight)
cmd.alter(SGNameAngle, 'name="S%s"' % Angle)
cmd.create(SGName, SGName + " + " + SGNameAngle)
# Then save the calculated values
ListofEnergies.append([Angle, SumMCSC, ListNeighbourCount, NotPopNr, SG_MCSC_Weight, cmd.get_atom_coords(SGNameAngle)])
cmd.delete(SGNameAngle)
else:
SumMCSCPenalty = PopEnergyPenalty
ListNeighbourCount = fNeighbourCount(molecule, SGNameAngle, chain, residue, DieElecSpheDist)
ListofRotamerDiscarded.append([Angle, SumMCSCPenalty, ListNeighbourCount, NotPopNr, 0, cmd.get_atom_coords(SGNameAngle)])
cmd.delete(SGNameAngle)
# Now show all the SG atoms as the available rotameric states.
cmd.show("nb_spheres", SGName)
cmd.delete("NotPop")
cmd.spectrum("b", selection=SGName)
AvailRotStates = len(ListofEnergies)
# print "Available Rotational States: ", AvailRotStates
# Do the calculations according to eq 5.
# Find the partition function
BoltzPartition = 0.0
for i in range(len(ListofEnergies)):
Boltz = fBoltzSingleState(ListofEnergies[i][1], AvogadroR, Temp)
BoltzPartition = BoltzPartition + Boltz
# Find the summed function
BoltzSumNi = 0.0
for i in range(len(ListofEnergies)):
BoltzNi = fBoltzSingleState(ListofEnergies[i][1], AvogadroR, Temp) * ListofEnergies[i][1]
BoltzSumNi = BoltzSumNi + BoltzNi
# Check if there was any possible rotamers
nostates = "no"
if len(ListofEnergies) == 0:
print("####################################################")
print("########### WARNING: No states available ###########")
print("########### Did you mutate a Glycine? ###########")
print("####################################################")
BoltzSumNi = 0
BoltzPartition = 0
BoltzMCSC = 0
DeltapKMCSC = 99
NeighbourCount = 0
nostates = "yes"
else:
# Final calculation
BoltzMCSC = (BoltzSumNi) / (BoltzPartition)
DeltapKMCSC = fDeltapK(BoltzMCSC, AvogadroR, Temp)
# Find average number of neighbours
NCSum = 0.0
NCWeightedSum = 0.0
for i in range(len(ListofEnergies)):
NCi = ListofEnergies[i][2]
NCSum = NCSum + NCi
NCWeightedi = fBoltzSingleState(ListofEnergies[i][1], AvogadroR, Temp) * ListofEnergies[i][2] / BoltzPartition
NCWeightedSum = NCWeightedSum + NCWeightedi
# print "Weighted neighbour", int(round(NCWeightedSum))
#NeighbourCount = int(round(NCSum/len(ListofEnergies)))
NeighbourCount = round(NCWeightedSum, 1)
# If we found dimers
if breakDimer == "yes":
print("####################################################")
print("########### WARNING: Dimer formation? ###########")
print("####################################################")
BoltzSumNi = 0
BoltzPartition = 0
BoltzMCSC = 0
DeltapKMCSC = 99
NeighbourCount = 0
# Calculate the BornPenalty based on the neighbour count. It's a wrapper script for equation 13, 12, 11.
EnergyBornPenalty = fEnergyBornPenalty(DieElecSpheDist, DieElecWaterDist, NeighbourCount, DieElecWater, DieElecCore, BornPenaltyB)
DeltapKB = fDeltapK(EnergyBornPenalty, AvogadroR, Temp)
# Do the calculations according to eq 3 and 9.
pKm1 = fpKm1(DeltapKMCSC, pK1)
pKm2 = fpKm2(DeltapKMCSC, DeltapKB, pK2)
FracCysm1 = fFracCys(pKm1, pH)
FracCysm2 = fFracCys(pKm2, pH)
# Lets make a result file, and write out the angle, the SumMCSC, and the number of neighbours for this state.
Currentdir = os.getcwd()
Newdir = os.path.join(os.getcwd(), "Results")
if not os.path.exists(Newdir):
os.makedirs(Newdir)
filename = os.path.join(".", "Results", "Result_" + molecule + "_" + chain + "_" + residue + ".txt")
filenamelog = os.path.join(".", "Results", "Result_log.log")
logfile = open(filenamelog, "a")
outfile = open(filename, "w")
timeforlog = strftime("%Y %b %d %a %H:%M:%S", localtime())
logfile.write("# " + timeforlog + "\n")
logfile.write("# molecule: %s , chain: %s, residue: %s %s, pH: %s " % (molecule, chain, residueName, residue, pH) + "\n")
logfile.write("# BoltzSumNi: BoltzPartition: BoltzMCSC" + "\n")
logfile.write(("# %.4f %.4f %.4f" + '\n') % (BoltzSumNi, BoltzPartition, BoltzMCSC))
logfile.write("# Res NC States pKmcsc pK1 pKB pK2 pKm1 pKm2 f(C-)m1 f(C-)m2" + "\n")
logfile.write(("; %s %s %s %s %.4f %s %.4f %s %.4f %.4f %.6f %.6f" + '\n') % (residueName, residue, NeighbourCount, AvailRotStates, DeltapKMCSC, pK1, DeltapKB, pK2, pKm1, pKm2, FracCysm1, FracCysm2))
if nostates == "yes":
logfile.write("##### ERROR; No states available ###" + "\n")
if breakDimer == "yes":
logfile.write("##### ERROR; Dimer formation ###" + "\n")
logfile.write('\n')
outfile.write("# molecule: %s , chain: %s, residue: %s %s, pH: %s " % (molecule, chain, residueName, residue, pH) + "\n")
outfile.write("# BoltzSumNi: BoltzPartition: BoltzMCSC" + "\n")
outfile.write(("# %.4f %.4f %.4f" + '\n') % (BoltzSumNi, BoltzPartition, BoltzMCSC))
outfile.write("# Res NC States pKmcsc pK1 pKB pK2 pKm1 pKm2 f(C-)m1 f(C-)m2" + "\n")
outfile.write(("; %s %s %s %s %.4f %s %.4f %s %.4f %.4f %.6f %.6f" + '\n') % (residueName, residue, NeighbourCount, AvailRotStates, DeltapKMCSC, pK1, DeltapKB, pK2, pKm1, pKm2, FracCysm1, FracCysm2))
if nostates == "yes":
outfile.write("##### ERROR; No states available ###" + "\n")
if breakDimer == "yes":
outfile.write("##### ERROR; Dimer formation ###" + "\n")
outfile.write('\n')
outfile.write("#Ang SumMCSC NC rNC MCSC_Weight SG[X,Y,Z]" + "\n")
for i in range(len(ListofEnergies)):
outfile.write("%4.1d %10.3f %2.1d %1.1d %10.3f [%8.3f, %8.3f, %8.3f]" % (ListofEnergies[i][0], ListofEnergies[i][1], ListofEnergies[i][2], ListofEnergies[i][3], ListofEnergies[i][4], ListofEnergies[i][5][0], ListofEnergies[i][5][1], ListofEnergies[i][5][2]) + '\n')
for i in range(len(ListofRotamerDiscarded)):
outfile.write("%4.1d %10.3f %2.1d %1.1d %10.3f [%8.3f, %8.3f, %8.3f]" % (ListofRotamerDiscarded[i][0], ListofRotamerDiscarded[i][1], ListofRotamerDiscarded[i][2], ListofRotamerDiscarded[i][3], ListofRotamerDiscarded[i][4], ListofRotamerDiscarded[i][5][0], ListofRotamerDiscarded[i][5][1], ListofRotamerDiscarded[i][5][2]) + '\n')
outfile.close()
# Now, we are done. Just print out. The ; is for a grep command to select these lines in the output.
print("# residue: %s %s. Average NeighbourCount NC= %s " % (residueName, residue, NeighbourCount))
print("# From residue %s to residue %s" % (Minresidue, Maxresidue))
print("# BoltzSumNi: BoltzPartition: BoltzMCSC")
print("# %.4f %.4f %.4f" % (BoltzSumNi, BoltzPartition, BoltzMCSC))
print("# Result written in file: %s" % (filename))
print("# Res NC States pKmcsc pK1 pKB pK2 pKm1 pKm2 f(C-)m1 f(C-)m2")
print("; %s %s %s %s %.4f %s %.4f %s %.4f %.4f %.6f %.6f" % (residueName, residue, NeighbourCount, AvailRotStates, DeltapKMCSC, pK1, DeltapKB, pK2, pKm1, pKm2, FracCysm1, FracCysm2))
if nostates == "yes":
print("##### ERROR; No states available ###")
if breakDimer == "yes":
print("##### ERROR; Dimer formation ###")
cmd.extend("cyspka", cyspka)
def loopcyspka(molecule, chain, residue, SeeProgress='no', pH=7.2, MoveSGatom='no', SGatom=str((0, 0, 0))):
residue = residue.split('.')
residueList = []
for i in residue:
if '-' in i:
tmp = i.split('-')
residueList.extend(list(range(int(tmp[0]), int(tmp[-1]) + 1)))
if '-' not in i:
residueList.append(int(i))
print("Looping over residues")
print(residueList)
for i in residueList:
cyspka(molecule, chain, str(i), SeeProgress, pH, MoveSGatom, SGatom)
cmd.extend("loopcyspka", loopcyspka)
def fNeighbourCount(molecule, Cysmolecule, chain, residue, DieElecSpheDist):
nameselect = "(((/" + molecule + "//" + chain + " and not /" + molecule + "//" + chain + "/" + residue + ") or /" + molecule + "//" + chain + "/" + residue + "/N+CA+C+O) within " + str(DieElecSpheDist) + " of /" + Cysmolecule + "//" + "/" + "/SG) and not resn HOH"
# print nameselect
cmd.select(residue + "NC", nameselect)
# Adding 1 for CB
Neighbours = cmd.count_atoms(residue + "NC") + 1
cmd.delete(residue + "NC")
return Neighbours
def fNeighbourWater(DieElecSpheDist, DieElecWaterDist, NeighbourCount):
Waters = 0.74 * math.pow(DieElecSpheDist, 3) / math.pow(DieElecWaterDist, 3) - NeighbourCount
return Waters
def fDieElecEF(NeighbourWater, DieElecWater, NeighbourCount, DieElecCore):
DieElecEF = (NeighbourWater * DieElecWater + NeighbourCount * DieElecCore) / (NeighbourWater + NeighbourCount)
return DieElecEF
def fBornPenalty(BornPenaltyB, DieElecEF, DieElecWater):
BornPenalty = (1.39 * math.pow(10, 6)) / (2 * BornPenaltyB) * (1.0 / DieElecEF - 1.0 / DieElecWater)
return BornPenalty
def fEnergyBornPenalty(DieElecSpheDist, DieElecWaterDist, NeighbourCount, DieElecWater, DieElecCore, BornPenaltyB):
NeighbourWater = fNeighbourWater(DieElecSpheDist, DieElecWaterDist, NeighbourCount)
DieElecEF = fDieElecEF(NeighbourWater, DieElecWater, NeighbourCount, DieElecCore)
BornPenalty = fBornPenalty(BornPenaltyB, DieElecEF, DieElecWater)
return BornPenalty
def fDeltapK(Energy, AvogadroR, Temp):
DeltapK = -1 * math.log10(math.exp(-Energy / (AvogadroR * Temp)))
return DeltapK
def fRotateAroundLine(OriPoint, ThroughLinePoint, LineVector, AngleDeg):
# See http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/. Section 6.1
AngleRad = math.radians(AngleDeg)
x = OriPoint[0]
y = OriPoint[1]
z = OriPoint[2]
a = ThroughLinePoint[0]
b = ThroughLinePoint[1]
c = ThroughLinePoint[2]
u = LineVector[0]
v = LineVector[1]
w = LineVector[2]
L = math.pow(u, 2) + math.pow(v, 2) + math.pow(w, 2)
xPos = ((a * (math.pow(v, 2) + math.pow(w, 2)) - u * (b * v + c * w - u * x - v * y - w * z)) * (1 - math.cos(AngleRad)) + L * x * math.cos(AngleRad) + math.sqrt(L) * (-c * v + b * w - w * y + v * z) * math.sin(AngleRad)) / L
yPos = ((b * (math.pow(u, 2) + math.pow(w, 2)) - v * (a * u + c * w - u * x - v * y - w * z)) * (1 - math.cos(AngleRad)) + L * y * math.cos(AngleRad) + math.sqrt(L) * (c * u - a * w + w * x - u * z) * math.sin(AngleRad)) / L
zPos = ((c * (math.pow(u, 2) + math.pow(v, 2)) - w * (a * u + b * v - u * x - v * y - w * z)) * (1 - math.cos(AngleRad)) + L * z * math.cos(AngleRad) + math.sqrt(L) * (-b * u + a * v - v * x + u * y) * math.sin(AngleRad)) / L
NewPos = [xPos, yPos, zPos]
return NewPos
def fWSC(charge, DieElecSC, DistR):
# print charge, DistR
WSC = 1.39 * math.pow(10, 6) * charge / (DieElecSC * DistR)
return WSC
def fSumWSC(molecule, SGNameAngle, chain, residue, DieElecSC, SCchargeASP, SCchargeGLU, SCchargeOXT, SCchargeARG, SCchargeHIS, SCchargeLYS, SCchargeMET1, printSC):
SumWSC = 0.0
SGnameselect = "/" + SGNameAngle + "//" + "/" + "/SG"
# Sidechain ASP
nameselect = "/" + molecule + " and resn ASP and name CG and not resi " + residue
cmd.select("SC", nameselect)
SClist = cmd.identify("SC")
for i in range(len(SClist)):
ResDist = cmd.dist(residue + 'distASP', SGnameselect, molecule + " and id " + str(SClist[i]))
WSC = fWSC(SCchargeASP, DieElecSC, ResDist)
SumWSC = SumWSC + WSC
if printSC == 'yes':
print("SC ASP ", str(SClist[i]), " ", SCchargeASP, " ", DieElecSC, " ", ResDist, " ", WSC)
cmd.delete(residue + 'distASP')
# Sidechain GLU
nameselect = "/" + molecule + " and resn GLU and name CD and not resi " + residue
cmd.select("SC", nameselect)
SClist = cmd.identify("SC")
for i in range(len(SClist)):
ResDist = cmd.dist(residue + 'distGLU', SGnameselect, molecule + " and id " + str(SClist[i]))
WSC = fWSC(SCchargeGLU, DieElecSC, ResDist)
SumWSC = SumWSC + WSC
if printSC == 'yes':
print("SC GLU ", str(SClist[i]), " ", SCchargeGLU, " ", DieElecSC, " ", ResDist, " ", WSC)
cmd.delete(residue + 'distGLU')
# print "GLU", cmd.count_atoms("SC"), SumWSC
# Sidechain OXT
nameselect = "/" + molecule + " and byres name OXT and not resi " + residue
cmd.select("SC", nameselect)
cmd.select("SC", "SC and name C")
SClist = cmd.identify("SC")
for i in range(len(SClist)):
ResDist = cmd.dist(residue + 'distOXT', SGnameselect, molecule + " and id " + str(SClist[i]))
WSC = fWSC(SCchargeOXT, DieElecSC, ResDist)
SumWSC = SumWSC + WSC
if printSC == 'yes':
print("SC OXT ", str(SClist[i]), " ", SCchargeOXT, " ", DieElecSC, " ", ResDist, " ", WSC)
cmd.delete(residue + 'distOXT')
# print "OXT", cmd.count_atoms("SC"), SumWSC
# Sidechain ARG
nameselect = "/" + molecule + " and resn ARG and name CZ and not resi " + residue
cmd.select("SC", nameselect)
SClist = cmd.identify("SC")
for i in range(len(SClist)):
ResDist = cmd.dist(residue + 'distARG', SGnameselect, molecule + " and id " + str(SClist[i]))
WSC = fWSC(SCchargeARG, DieElecSC, ResDist)
SumWSC = SumWSC + WSC
if printSC == 'yes':
print("SC ARG ", str(SClist[i]), " ", SCchargeARG, " ", DieElecSC, " ", ResDist, " ", WSC)
cmd.delete(residue + 'distARG')
# print "ARG", cmd.count_atoms("SC"), SumWSC
# Sidechain HIS
nameselect = "/" + molecule + " and resn HIS and name CD2 and not resi " + residue
cmd.select("SC", nameselect)
SClist = cmd.identify("SC")
for i in range(len(SClist)):
ResDist = cmd.dist(residue + 'distHIS', SGnameselect, molecule + " and id " + str(SClist[i]))
WSC = fWSC(SCchargeHIS, DieElecSC, ResDist)
SumWSC = SumWSC + WSC
if printSC == 'yes':
print("SC HIS ", str(SClist[i]), " ", SCchargeHIS, " ", DieElecSC, " ", ResDist, " ", WSC)
cmd.delete(residue + 'distHIS')
# print "HIS", cmd.count_atoms("SC"), SumWSC
# Sidechain LYS
nameselect = "/" + molecule + " and resn LYS and name NZ and not resi " + residue
cmd.select("SC", nameselect)
SClist = cmd.identify("SC")
for i in range(len(SClist)):
ResDist = cmd.dist(residue + 'distLYS', SGnameselect, molecule + " and id " + str(SClist[i]))
WSC = fWSC(SCchargeLYS, DieElecSC, ResDist)
SumWSC = SumWSC + WSC
if printSC == 'yes':
print("SC LYS ", str(SClist[i]), " ", SCchargeLYS, " ", DieElecSC, " ", ResDist, " ", WSC)
cmd.delete(residue + 'distLYS')
# print "LYS", cmd.count_atoms("SC"), SumWSC
# Sidechain MET1
nameselect = "/" + molecule + " and resn MET and res 1 and not resi " + residue
cmd.select("SC", nameselect)
cmd.select("SC", "SC and name N")
SClist = cmd.identify("SC")
for i in range(len(SClist)):
ResDist = cmd.dist(residue + 'distMET1', SGnameselect, molecule + " and id " + str(SClist[i]))
WSC = fWSC(SCchargeMET1, DieElecSC, ResDist)
SumWSC = SumWSC + WSC
if printSC == 'yes':
print("SC MET1 ", str(SClist[i]), " ", SCchargeMET1, " ", DieElecSC, " ", ResDist, " ", WSC)
cmd.delete(residue + 'distMET1')
# print "MET1", cmd.count_atoms("SC"), SumWSC
cmd.delete("SC")
return SumWSC
def fWMC(charge, DieElecMC, DistR):
WMC = 1.39 * math.pow(10, 6) * charge / (DieElecMC * DistR)
return WMC
def fSumWMCFirst(molecule, SGNameAngle, chain, residue, MCNeighbour, DieElecMC, MCchargeC, MCchargeO, printMC):
# print "First", MCNeighbour
SumWMCFirst = 0.0
SGnameselect = "/" + SGNameAngle + "//" + "/" + "/SG"
NBnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour)
cmd.select("MC", NBnameselect)
MCpdbstr = cmd.get_pdbstr("MC")
MCsplit = MCpdbstr.split()
residueName = MCsplit[3]
# print NBnameselect, residueName
# Mainchain C
Cnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/C"
ResDist = cmd.dist(residue + 'distFirstC', SGnameselect, Cnameselect)
WMC = fWMC(MCchargeC, DieElecMC, ResDist)
SumWMCFirst = SumWMCFirst + WMC
if printMC == 'yes':
print("MC C ", MCNeighbour, " ", MCchargeC, " ", DieElecMC, " ", ResDist, " ", WMC)
# Mainchain O
Onameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/O"
ResDist = cmd.dist(residue + 'distFirstO', SGnameselect, Onameselect)
WMC = fWMC(MCchargeO, DieElecMC, ResDist)
SumWMCFirst = SumWMCFirst + WMC
if printMC == 'yes':
print("MC O ", MCNeighbour, " ", MCchargeO, " ", DieElecMC, " ", ResDist, " ", WMC)
cmd.delete(residue + 'distFirstC')
cmd.delete(residue + 'distFirstO')
cmd.delete("MC")
return SumWMCFirst
def fSumWMCresidue(molecule, SGNameAngle, chain, residue, MCNeighbour, DieElecMC, MCchargeC, MCchargeO, MCchargeN, MCchargeH, AmideName, printMC):
# print "residue", MCNeighbour
SumWMCresidue = 0.0
SGnameselect = "/" + SGNameAngle + "//" + "/" + "/SG"
NBnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour)
cmd.select("MC", NBnameselect)
MCpdbstr = cmd.get_pdbstr("MC")
MCsplit = MCpdbstr.split()
residueName = MCsplit[3]
# print NBnameselect, residueName
AmideProt = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/H01"
Hnameselect = "/" + AmideName + "//" + chain + "/" + str(MCNeighbour) + "/H01"
if cmd.count_atoms(AmideProt) == 0 and cmd.count_atoms(Hnameselect) == 0:
HbuildSelect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/N"
cmd.h_add(HbuildSelect)
cmd.create(AmideName, AmideName + " + " + AmideProt)
cmd.remove(AmideProt)
# Mainchain AmideH
ResDist = cmd.dist(residue + 'distResH', SGnameselect, Hnameselect)
WMC = fWMC(MCchargeH, DieElecMC, ResDist)
SumWMCresidue = SumWMCresidue + WMC
if printMC == 'yes':
print("MC H ", MCNeighbour, " ", MCchargeH, " ", DieElecMC, " ", ResDist, " ", WMC)
# Mainchain C
Cnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/C"
ResDist = cmd.dist(residue + 'distResC', SGnameselect, Cnameselect)
WMC = fWMC(MCchargeC, DieElecMC, ResDist)
SumWMCresidue = SumWMCresidue + WMC
if printMC == 'yes':
print("MC C ", MCNeighbour, " ", MCchargeC, " ", DieElecMC, " ", ResDist, " ", WMC)
# Mainchain O
Onameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/O"
ResDist = cmd.dist(residue + 'distResO', SGnameselect, Onameselect)
WMC = fWMC(MCchargeO, DieElecMC, ResDist)
SumWMCresidue = SumWMCresidue + WMC
if printMC == 'yes':
print("MC O ", MCNeighbour, " ", MCchargeO, " ", DieElecMC, " ", ResDist, " ", WMC)
# Mainchain N
Nnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/N"
ResDist = cmd.dist(residue + 'distResN', SGnameselect, Nnameselect)
WMC = fWMC(MCchargeN, DieElecMC, ResDist)
SumWMCresidue = SumWMCresidue + WMC
if printMC == 'yes':
print("MC N ", MCNeighbour, " ", MCchargeN, " ", DieElecMC, " ", ResDist, " ", WMC)
cmd.delete(residue + 'distResH')
cmd.delete(residue + 'distResC')
cmd.delete(residue + 'distResO')
cmd.delete(residue + 'distResN')
cmd.show("nb_spheres", AmideName)
cmd.delete("MC")
return SumWMCresidue
def fSumWMCLast(molecule, SGNameAngle, chain, residue, MCNeighbour, DieElecMC, MCchargeN, MCchargeH, MCchargeProCA, MCchargeProCD, MCchargeProN, AmideName, printMC):
# print "Last", MCNeighbour
SumWMCLast = 0.0
SGnameselect = "/" + SGNameAngle + "//" + "/" + "/SG"
NBnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour)
cmd.select("MC", NBnameselect)
MCpdbstr = cmd.get_pdbstr("MC")
MCsplit = MCpdbstr.split()
residueName = MCsplit[3]
# print NBnameselect, residueName
if residueName == "PRO":
# Proline CA
CAnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/CA"
ResDist = cmd.dist(residue + 'distLastProCA', SGnameselect, CAnameselect)
WMC = fWMC(MCchargeProCA, DieElecMC, ResDist)
SumWMCLast = SumWMCLast + WMC
if printMC == 'yes':
print("MC ProCA ", MCNeighbour, " ", MCchargeProCA, " ", DieElecMC, " ", ResDist, " ", WMC)
# Proline CD
CDnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/CD"
ResDist = cmd.dist(residue + 'distLastProCD', SGnameselect, CDnameselect)
WMC = fWMC(MCchargeProCD, DieElecMC, ResDist)
SumWMCLast = SumWMCLast + WMC
if printMC == 'yes':
print("MC ProCD ", MCNeighbour, " ", MCchargeProCD, " ", DieElecMC, " ", ResDist, " ", WMC)
# Proline N
Nnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/N"
ResDist = cmd.dist(residue + 'distLastProN', SGnameselect, Nnameselect)
WMC = fWMC(MCchargeProN, DieElecMC, ResDist)
SumWMCLast = SumWMCLast + WMC
if printMC == 'yes':
print("MC ProN ", MCNeighbour, " ", MCchargeProN, " ", DieElecMC, " ", ResDist, " ", WMC)
else:
AmideProt = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/H01"
Hnameselect = "/" + AmideName + "//" + chain + "/" + str(MCNeighbour) + "/H01"
if cmd.count_atoms(AmideProt) == 0 and cmd.count_atoms(Hnameselect) == 0:
HbuildSelect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/N"
cmd.h_add(HbuildSelect)
cmd.create(AmideName, AmideName + " + " + AmideProt)
cmd.remove(AmideProt)
# Mainchain AmideH
ResDist = cmd.dist(residue + 'distLastH', SGnameselect, Hnameselect)
WMC = fWMC(MCchargeH, DieElecMC, ResDist)
SumWMCLast = SumWMCLast + WMC
if printMC == 'yes':
print("MC H ", MCNeighbour, " ", MCchargeH, " ", DieElecMC, " ", ResDist, " ", WMC)
# Mainchain N
Nnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/N"
ResDist = cmd.dist(residue + 'distLastN', SGnameselect, Nnameselect)
WMC = fWMC(MCchargeN, DieElecMC, ResDist)
SumWMCLast = SumWMCLast + WMC
if printMC == 'yes':
print("MC N ", MCNeighbour, " ", MCchargeN, " ", DieElecMC, " ", ResDist, " ", WMC)
cmd.delete(residue + 'distLastProCA')
cmd.delete(residue + 'distLastProCD')
cmd.delete(residue + 'distLastProN')
cmd.delete(residue + 'distLastH')
cmd.delete(residue + 'distLastN')
cmd.show("nb_spheres", AmideName)
cmd.delete("MC")
return SumWMCLast
def fSumWMC(molecule, SGNameAngle, chain, residue, MCNeighbour, DieElecMC, MCchargeC, MCchargeO, MCchargeN, MCchargeH, MCchargeProCA, MCchargeProCD, MCchargeProN, AmideName, printMC):
# print "chain", MCNeighbour
SumWMC = 0.0
SGnameselect = "/" + SGNameAngle + "//" + "/" + "/SG"
NBnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour)
cmd.select("MC", NBnameselect)
MCpdbstr = cmd.get_pdbstr("MC")
MCsplit = MCpdbstr.split()
residueName = MCsplit[3]
# print NBnameselect, residueName
if residueName == "PRO":
# Proline CA
CAnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/CA"
ResDist = cmd.dist(residue + 'distProCA', SGnameselect, CAnameselect)
WMC = fWMC(MCchargeProCA, DieElecMC, ResDist)
SumWMC = SumWMC + WMC
if printMC == 'yes':
print("MC ProCA ", MCNeighbour, " ", MCchargeProCA, " ", DieElecMC, " ", ResDist, " ", WMC)
# Proline CD
CDnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/CD"
ResDist = cmd.dist(residue + 'distProCD', SGnameselect, CDnameselect)
WMC = fWMC(MCchargeProCD, DieElecMC, ResDist)
SumWMC = SumWMC + WMC
if printMC == 'yes':
print("MC ProCD ", MCNeighbour, " ", MCchargeProCD, " ", DieElecMC, " ", ResDist, " ", WMC)
# Proline N
Nnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/N"
ResDist = cmd.dist(residue + 'distProN', SGnameselect, Nnameselect)
WMC = fWMC(MCchargeProN, DieElecMC, ResDist)
SumWMC = SumWMC + WMC
if printMC == 'yes':
print("MC ProN ", MCNeighbour, " ", MCchargeProN, " ", DieElecMC, " ", ResDist, " ", WMC)
# Proline C
Cnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/C"
ResDist = cmd.dist(residue + 'distProC', SGnameselect, Cnameselect)
WMC = fWMC(MCchargeC, DieElecMC, ResDist)
SumWMC = SumWMC + WMC
if printMC == 'yes':
print("MC ProC ", MCNeighbour, " ", MCchargeC, " ", DieElecMC, " ", ResDist, " ", WMC)
# Proline O
Onameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/O"
ResDist = cmd.dist(residue + 'distProO', SGnameselect, Onameselect)
WMC = fWMC(MCchargeO, DieElecMC, ResDist)
SumWMC = SumWMC + WMC
if printMC == 'yes':
print("MC ProO ", MCNeighbour, " ", MCchargeO, " ", DieElecMC, " ", ResDist, " ", WMC)
else:
AmideProt = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/H01"
Hnameselect = "/" + AmideName + "//" + chain + "/" + str(MCNeighbour) + "/H01"
if cmd.count_atoms(AmideProt) == 0 and cmd.count_atoms(Hnameselect) == 0:
HbuildSelect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/N"
cmd.h_add(HbuildSelect)
cmd.create(AmideName, AmideName + " + " + AmideProt)
cmd.remove(AmideProt)
# Mainchain AmideH
ResDist = cmd.dist(residue + 'distH', SGnameselect, Hnameselect)
WMC = fWMC(MCchargeH, DieElecMC, ResDist)
SumWMC = SumWMC + WMC
if printMC == 'yes':
print("MC H ", MCNeighbour, " ", MCchargeH, " ", DieElecMC, " ", ResDist, " ", WMC)
# Mainchain C
Cnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/C"
ResDist = cmd.dist(residue + 'distC', SGnameselect, Cnameselect)
WMC = fWMC(MCchargeC, DieElecMC, ResDist)
SumWMC = SumWMC + WMC
if printMC == 'yes':
print("MC C ", MCNeighbour, " ", MCchargeC, " ", DieElecMC, " ", ResDist, " ", WMC)
# Mainchain O
Onameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/O"
ResDist = cmd.dist(residue + 'distO', SGnameselect, Onameselect)
WMC = fWMC(MCchargeO, DieElecMC, ResDist)
SumWMC = SumWMC + WMC
if printMC == 'yes':
print("MC O ", MCNeighbour, " ", MCchargeO, " ", DieElecMC, " ", ResDist, " ", WMC)
# Mainchain N
Nnameselect = "/" + molecule + "//" + chain + "/" + str(MCNeighbour) + "/N"
ResDist = cmd.dist(residue + 'distN', SGnameselect, Nnameselect)
WMC = fWMC(MCchargeN, DieElecMC, ResDist)
SumWMC = SumWMC + WMC
if printMC == 'yes':
print("MC N ", MCNeighbour, " ", MCchargeN, " ", DieElecMC, " ", ResDist, " ", WMC)
cmd.delete(residue + 'distProCA')
cmd.delete(residue + 'distProCD')
cmd.delete(residue + 'distProN')
cmd.delete(residue + 'distProC')
cmd.delete(residue + 'distProO')
cmd.delete(residue + 'distH')
cmd.delete(residue + 'distC')
cmd.delete(residue + 'distO')
cmd.delete(residue + 'distN')
cmd.show("nb_spheres", AmideName)
cmd.delete("MC")
return SumWMC
def fBoltzSingleState(SumMCSC, AvogadroR, Temp):
BoltzSingleState = math.exp(-SumMCSC / (AvogadroR * Temp))
return BoltzSingleState
def fpKm1(DeltapKMCSC, pK1):
pKm1 = DeltapKMCSC + pK1
return pKm1
def fpKm2(DeltapKMCSC, DeltapKB, pK2):
pKm2 = DeltapKMCSC + DeltapKB + pK2
return pKm2
def fFracCys(pKm, pH):
FracCys = 1.0 / (math.pow(10, (pKm - pH)) + 1)
return FracCys
def AtomVector(AtomStart, AtomEnd):
PosStart = cmd.get_atom_coords(AtomStart)
PosEnd = cmd.get_atom_coords(AtomEnd)
VectorDiff = [(PosEnd[0] - PosStart[0]), (PosEnd[1] - PosStart[1]), (PosEnd[2] - PosStart[2])]
return VectorDiff
def pairfitCys(Cysmolecule, molecule, chain, residue):
RN = "/" + Cysmolecule + "//" + "/" + "/N"
PN = "/" + molecule + "//" + chain + "/" + residue + "/N"
RCA = "/" + Cysmolecule + "//" + "/" + "/CA"
PCA = "/" + molecule + "//" + chain + "/" + residue + "/CA"
RC = "/" + Cysmolecule + "//" + "/" + "/C"
PC = "/" + molecule + "//" + chain + "/" + residue + "/C"
RCB = "/" + Cysmolecule + "//" + "/" + "/CB"
PCB = "/" + molecule + "//" + chain + "/" + residue + "/CB"
cmd.select("CBatom", PCB)
CBatomNr = cmd.count_atoms("CBatom")
# If PRO or GLY, then only fit N, CA, C atoms
if CBatomNr == 0:
cmd.pair_fit(RN, PN, RCA, PCA, RC, PC)
else:
# cmd.pair_fit(RN,PN,RCA,PCA,RC,PC,RCB,PCB)
cmd.pair_fit(RN, PN, RCA, PCA, RC, PC)
cmd.delete("CBatom")
def CheckDimer(dihedSG, molecule, chain, residue):
breakDimer = "no"
nameselect = "(/" + molecule + "//" + chain + " and name SG and not /" + molecule + "//" + chain + "/" + residue + ") within 5 of " + dihedSG
cmd.select(str(molecule) + str(residue) + "Dimer", nameselect)
DimerSG = cmd.count_atoms(str(molecule) + str(residue) + "Dimer")
if DimerSG > 0:
print("####################################################")
print("########### WARNING: SG in near detected ###########")
print("########### Is this a dimer? ###########")
print("####################################################")
cmd.select(str(molecule) + str(residue) + "Dimer", "byres " + str(molecule) + str(residue) + "Dimer")
cmd.show("sticks", str(molecule) + str(residue) + "Dimer")
breakDimer = "yes"
else:
cmd.delete(str(molecule) + str(residue) + "Dimer")
return breakDimer