-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
trainer.py
1258 lines (992 loc) · 52.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Trainer to automate the training."""
import logging
import warnings
from datetime import timedelta
from itertools import count
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Union
import torch
from torch.utils.data import DataLoader
from pytorch_lightning.accelerators import Accelerator
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.core.datamodule import LightningDataModule
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.core.memory import ModelSummary
from pytorch_lightning.core.step_result import Result
from pytorch_lightning.loggers import LightningLoggerBase
from pytorch_lightning.plugins import Plugin
from pytorch_lightning.plugins.environments import ClusterEnvironment
from pytorch_lightning.profiler import BaseProfiler
from pytorch_lightning.trainer.callback_hook import TrainerCallbackHookMixin
from pytorch_lightning.trainer.configuration_validator import ConfigValidator
from pytorch_lightning.trainer.connectors.accelerator_connector import AcceleratorConnector
from pytorch_lightning.trainer.connectors.callback_connector import CallbackConnector
from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector
from pytorch_lightning.trainer.connectors.data_connector import DataConnector
from pytorch_lightning.trainer.connectors.debugging_connector import DebuggingConnector
from pytorch_lightning.trainer.connectors.env_vars_connector import _defaults_from_env_vars
from pytorch_lightning.trainer.connectors.logger_connector import LoggerConnector
from pytorch_lightning.trainer.connectors.model_connector import ModelConnector
from pytorch_lightning.trainer.connectors.optimizer_connector import OptimizerConnector
from pytorch_lightning.trainer.connectors.profiler_connector import ProfilerConnector
from pytorch_lightning.trainer.connectors.slurm_connector import SLURMConnector
from pytorch_lightning.trainer.connectors.training_trick_connector import TrainingTricksConnector
from pytorch_lightning.trainer.data_loading import TrainerDataLoadingMixin
from pytorch_lightning.trainer.deprecated_api import DeprecatedTrainerAttributes
from pytorch_lightning.trainer.evaluation_loop import EvaluationLoop
from pytorch_lightning.trainer.logging import TrainerLoggingMixin
from pytorch_lightning.trainer.model_hooks import TrainerModelHooksMixin
from pytorch_lightning.trainer.optimizers import TrainerOptimizersMixin
from pytorch_lightning.trainer.predict_loop import PredictLoop
from pytorch_lightning.trainer.properties import TrainerProperties
from pytorch_lightning.trainer.states import TrainerFn, TrainerState, TrainerStatus
from pytorch_lightning.trainer.training_loop import TrainLoop
from pytorch_lightning.trainer.training_tricks import TrainerTrainingTricksMixin
from pytorch_lightning.tuner.lr_finder import _LRFinder
from pytorch_lightning.tuner.tuning import Tuner
from pytorch_lightning.utilities import DeviceType, parsing, rank_zero_warn
from pytorch_lightning.utilities.debugging import InternalDebugger
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.memory import recursive_detach
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.seed import reset_seed
from pytorch_lightning.utilities.types import _EVALUATE_OUTPUT, _PREDICT_OUTPUT
log = logging.getLogger(__name__)
# warnings to ignore in trainer
warnings.filterwarnings(
'ignore', message='torch.distributed.reduce_op is deprecated, '
'please use torch.distributed.ReduceOp instead'
)
class Trainer(
TrainerProperties,
TrainerCallbackHookMixin,
TrainerModelHooksMixin,
TrainerOptimizersMixin,
TrainerLoggingMixin,
TrainerTrainingTricksMixin,
TrainerDataLoadingMixin,
DeprecatedTrainerAttributes,
):
@_defaults_from_env_vars
def __init__(
self,
logger: Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool] = True,
checkpoint_callback: bool = True,
callbacks: Optional[Union[List[Callback], Callback]] = None,
default_root_dir: Optional[str] = None,
gradient_clip_val: float = 0.0,
gradient_clip_algorithm: str = 'norm',
process_position: int = 0,
num_nodes: int = 1,
num_processes: int = 1,
gpus: Optional[Union[List[int], str, int]] = None,
auto_select_gpus: bool = False,
tpu_cores: Optional[Union[List[int], str, int]] = None,
log_gpu_memory: Optional[str] = None,
progress_bar_refresh_rate: Optional[int] = None,
overfit_batches: Union[int, float] = 0.0,
track_grad_norm: Union[int, float, str] = -1,
check_val_every_n_epoch: int = 1,
fast_dev_run: Union[int, bool] = False,
accumulate_grad_batches: Union[int, Dict[int, int], List[list]] = 1,
max_epochs: Optional[int] = None,
min_epochs: Optional[int] = None,
max_steps: Optional[int] = None,
min_steps: Optional[int] = None,
max_time: Optional[Union[str, timedelta, Dict[str, int]]] = None,
limit_train_batches: Union[int, float] = 1.0,
limit_val_batches: Union[int, float] = 1.0,
limit_test_batches: Union[int, float] = 1.0,
limit_predict_batches: Union[int, float] = 1.0,
val_check_interval: Union[int, float] = 1.0,
flush_logs_every_n_steps: int = 100,
log_every_n_steps: int = 50,
accelerator: Optional[Union[str, Accelerator]] = None,
sync_batchnorm: bool = False,
precision: int = 32,
weights_summary: Optional[str] = 'top',
weights_save_path: Optional[str] = None,
num_sanity_val_steps: int = 2,
truncated_bptt_steps: Optional[int] = None,
resume_from_checkpoint: Optional[Union[Path, str]] = None,
profiler: Optional[Union[BaseProfiler, str]] = None,
benchmark: bool = False,
deterministic: bool = False,
reload_dataloaders_every_epoch: bool = False,
auto_lr_find: Union[bool, str] = False,
replace_sampler_ddp: bool = True,
terminate_on_nan: bool = False,
auto_scale_batch_size: Union[str, bool] = False,
prepare_data_per_node: bool = True,
plugins: Optional[Union[List[Union[Plugin, ClusterEnvironment, str]], Plugin, ClusterEnvironment, str]] = None,
amp_backend: str = 'native',
amp_level: str = 'O2',
distributed_backend: Optional[str] = None,
move_metrics_to_cpu: bool = False,
multiple_trainloader_mode: str = 'max_size_cycle',
stochastic_weight_avg: bool = False
):
r"""
Customize every aspect of training via flags
Args:
accelerator: Previously known as distributed_backend (dp, ddp, ddp2, etc...).
Can also take in an accelerator object for custom hardware.
accumulate_grad_batches: Accumulates grads every k batches or as set up in the dict.
amp_backend: The mixed precision backend to use ("native" or "apex")
amp_level: The optimization level to use (O1, O2, etc...).
auto_lr_find: If set to True, will make trainer.tune() run a learning rate finder,
trying to optimize initial learning for faster convergence. trainer.tune() method will
set the suggested learning rate in self.lr or self.learning_rate in the LightningModule.
To use a different key set a string instead of True with the key name.
auto_scale_batch_size: If set to True, will `initially` run a batch size
finder trying to find the largest batch size that fits into memory.
The result will be stored in self.batch_size in the LightningModule.
Additionally, can be set to either `power` that estimates the batch size through
a power search or `binsearch` that estimates the batch size through a binary search.
auto_select_gpus: If enabled and `gpus` is an integer, pick available
gpus automatically. This is especially useful when
GPUs are configured to be in "exclusive mode", such
that only one process at a time can access them.
benchmark: If true enables cudnn.benchmark.
callbacks: Add a callback or list of callbacks.
checkpoint_callback: If ``True``, enable checkpointing.
It will configure a default ModelCheckpoint callback if there is no user-defined ModelCheckpoint in
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.callbacks`.
check_val_every_n_epoch: Check val every n train epochs.
default_root_dir: Default path for logs and weights when no logger/ckpt_callback passed.
Default: ``os.getcwd()``.
Can be remote file paths such as `s3://mybucket/path` or 'hdfs://path/'
deterministic: If true enables cudnn.deterministic.
distributed_backend: deprecated. Please use 'accelerator'
fast_dev_run: runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es)
of train, val and test to find any bugs (ie: a sort of unit test).
flush_logs_every_n_steps: How often to flush logs to disk (defaults to every 100 steps).
gpus: number of gpus to train on (int) or which GPUs to train on (list or str) applied per node
gradient_clip_val: 0 means don't clip.
gradient_clip_algorithm: 'value' means clip_by_value, 'norm' means clip_by_norm. Default: 'norm'
limit_train_batches: How much of training dataset to check (float = fraction, int = num_batches)
limit_val_batches: How much of validation dataset to check (float = fraction, int = num_batches)
limit_test_batches: How much of test dataset to check (float = fraction, int = num_batches)
limit_predict_batches: How much of prediction dataset to check (float = fraction, int = num_batches)
logger: Logger (or iterable collection of loggers) for experiment tracking. A ``True`` value uses
the default ``TensorBoardLogger``. ``False`` will disable logging.
log_gpu_memory: None, 'min_max', 'all'. Might slow performance
log_every_n_steps: How often to log within steps (defaults to every 50 steps).
prepare_data_per_node: If True, each LOCAL_RANK=0 will call prepare data.
Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data
process_position: orders the progress bar when running multiple models on same machine.
progress_bar_refresh_rate: How often to refresh progress bar (in steps). Value ``0`` disables progress bar.
Ignored when a custom progress bar is passed to :paramref:`~Trainer.callbacks`. Default: None, means
a suitable value will be chosen based on the environment (terminal, Google COLAB, etc.).
profiler: To profile individual steps during training and assist in identifying bottlenecks.
overfit_batches: Overfit a fraction of training data (float) or a set number of batches (int).
plugins: Plugins allow modification of core behavior like ddp and amp, and enable custom lightning plugins.
precision: Double precision (64), full precision (32) or half precision (16). Can be used on CPU, GPU or
TPUs.
max_epochs: Stop training once this number of epochs is reached. Disabled by default (None).
If both max_epochs and max_steps are not specified, defaults to ``max_epochs`` = 1000.
min_epochs: Force training for at least these many epochs. Disabled by default (None).
If both min_epochs and min_steps are not specified, defaults to ``min_epochs`` = 1.
max_steps: Stop training after this number of steps. Disabled by default (None).
min_steps: Force training for at least these number of steps. Disabled by default (None).
max_time: Stop training after this amount of time has passed. Disabled by default (None).
The time duration can be specified in the format DD:HH:MM:SS (days, hours, minutes seconds), as a
:class:`datetime.timedelta`, or a dictionary with keys that will be passed to
:class:`datetime.timedelta`.
num_nodes: number of GPU nodes for distributed training.
num_processes: number of processes for distributed training with distributed_backend="ddp_cpu"
num_sanity_val_steps: Sanity check runs n validation batches before starting the training routine.
Set it to `-1` to run all batches in all validation dataloaders.
reload_dataloaders_every_epoch: Set to True to reload dataloaders every epoch.
replace_sampler_ddp: Explicitly enables or disables sampler replacement. If not specified this
will toggled automatically when DDP is used. By default it will add ``shuffle=True`` for
train sampler and ``shuffle=False`` for val/test sampler. If you want to customize it,
you can set ``replace_sampler_ddp=False`` and add your own distributed sampler.
resume_from_checkpoint: Path/URL of the checkpoint from which training is resumed. If there is
no checkpoint file at the path, start from scratch. If resuming from mid-epoch checkpoint,
training will start from the beginning of the next epoch.
sync_batchnorm: Synchronize batch norm layers between process groups/whole world.
terminate_on_nan: If set to True, will terminate training (by raising a `ValueError`) at the
end of each training batch, if any of the parameters or the loss are NaN or +/-inf.
tpu_cores: How many TPU cores to train on (1 or 8) / Single TPU to train on [1]
track_grad_norm: -1 no tracking. Otherwise tracks that p-norm. May be set to 'inf' infinity-norm.
truncated_bptt_steps: Deprecated in v1.3 to be removed in 1.5.
Please use :paramref:`~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps` instead.
val_check_interval: How often to check the validation set. Use float to check within a training epoch,
use int to check every n steps (batches).
weights_summary: Prints a summary of the weights when training begins.
weights_save_path: Where to save weights if specified. Will override default_root_dir
for checkpoints only. Use this if for whatever reason you need the checkpoints
stored in a different place than the logs written in `default_root_dir`.
Can be remote file paths such as `s3://mybucket/path` or 'hdfs://path/'
Defaults to `default_root_dir`.
move_metrics_to_cpu: Whether to force internal logged metrics to be moved to cpu.
This can save some gpu memory, but can make training slower. Use with attention.
multiple_trainloader_mode: How to loop over the datasets when there are multiple train loaders.
In 'max_size_cycle' mode, the trainer ends one epoch when the largest dataset is traversed,
and smaller datasets reload when running out of their data. In 'min_size' mode, all the datasets
reload when reaching the minimum length of datasets.
stochastic_weight_avg: Whether to use `Stochastic Weight Averaging (SWA)
<https://pytorch.org/blog/pytorch-1.6-now-includes-stochastic-weight-averaging/>_`
"""
super().__init__()
Trainer._log_api_event("init")
self.state = TrainerState()
distributed_backend = distributed_backend or accelerator
# init connectors
self.dev_debugger = InternalDebugger(self)
self.config_validator = ConfigValidator(self)
self.data_connector = DataConnector(self, multiple_trainloader_mode)
self.optimizer_connector = OptimizerConnector(self)
self.accelerator_connector = AcceleratorConnector(
num_processes, tpu_cores, distributed_backend, auto_select_gpus, gpus, num_nodes, sync_batchnorm, benchmark,
replace_sampler_ddp, deterministic, precision, amp_backend, amp_level, plugins
)
self.logger_connector = LoggerConnector(self, log_gpu_memory)
self.model_connector = ModelConnector(self)
self.callback_connector = CallbackConnector(self)
self.debugging_connector = DebuggingConnector(self)
self.training_tricks_connector = TrainingTricksConnector(self)
self.profile_connector = ProfilerConnector(self)
self.checkpoint_connector = CheckpointConnector(self)
self.slurm_connector = SLURMConnector(self)
self.tuner = Tuner(self)
self.train_loop = TrainLoop(self, max_epochs, min_epochs, max_steps, min_steps, num_sanity_val_steps)
self.evaluation_loop = EvaluationLoop(self)
self.predict_loop = PredictLoop(self)
# training state
if weights_summary is not None and weights_summary not in ModelSummary.MODES:
raise MisconfigurationException(
f"`weights_summary` can be None, {', '.join(ModelSummary.MODES)}, but got {weights_summary}"
)
self.weights_summary = weights_summary
self.shown_warnings = set()
# init callbacks
# Declare attributes to be set in callback_connector on_trainer_init
self.callback_connector.on_trainer_init(
callbacks,
checkpoint_callback,
progress_bar_refresh_rate,
process_position,
default_root_dir,
weights_save_path,
resume_from_checkpoint,
stochastic_weight_avg,
max_time,
)
# hook
self.on_init_start()
# init optimizer + lr scheduler related flags
self.optimizer_connector.on_trainer_init()
# init data flags
self.data_connector.on_trainer_init(
check_val_every_n_epoch, reload_dataloaders_every_epoch, prepare_data_per_node
)
# init training tricks
self.training_tricks_connector.on_trainer_init(
gradient_clip_val,
gradient_clip_algorithm,
track_grad_norm,
accumulate_grad_batches,
truncated_bptt_steps,
terminate_on_nan,
)
self.evaluation_loop.on_trainer_init()
self.predict_loop.on_trainer_init()
# configure tuner
self.tuner.on_trainer_init(auto_lr_find, auto_scale_batch_size)
# configure profiler
self.profile_connector.on_trainer_init(profiler)
# init logger flags
self.logger_connector.on_trainer_init(
logger,
flush_logs_every_n_steps,
log_every_n_steps,
move_metrics_to_cpu,
)
# init debugging flags
self.debugging_connector.on_init_start(
limit_train_batches,
limit_val_batches,
limit_test_batches,
limit_predict_batches,
val_check_interval,
overfit_batches,
fast_dev_run,
)
# Callback system
self.on_init_end()
def fit(
self,
model: LightningModule,
train_dataloader: Any = None,
val_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None,
datamodule: Optional[LightningDataModule] = None,
) -> None:
r"""
Runs the full optimization routine.
Args:
model: Model to fit.
train_dataloader: Either a single PyTorch DataLoader or a collection of these
(list, dict, nested lists and dicts). In the case of multiple dataloaders, please
see this :ref:`page <multiple-training-dataloaders>`
val_dataloaders: Either a single Pytorch Dataloader or a list of them, specifying validation samples.
If the model has a predefined val_dataloaders method this will be skipped
datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`.
"""
Trainer._log_api_event("fit")
self.state.fn = TrainerFn.FITTING
self.state.status = TrainerStatus.RUNNING
self.training = True
# if a datamodule comes in as the second arg, then fix it for the user
if isinstance(train_dataloader, LightningDataModule):
datamodule = train_dataloader
train_dataloader = None
# If you supply a datamodule you can't supply train_dataloader or val_dataloaders
if (train_dataloader is not None or val_dataloaders is not None) and datamodule is not None:
raise MisconfigurationException(
'You cannot pass `train_dataloader` or `val_dataloaders` to `trainer.fit(datamodule=...)`'
)
# links data to the trainer
self.data_connector.attach_data(
model, train_dataloader=train_dataloader, val_dataloaders=val_dataloaders, datamodule=datamodule
)
self._run(model)
assert self.state.stopped
self.training = False
def validate(
self,
model: Optional[LightningModule] = None,
val_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None,
ckpt_path: Optional[str] = 'best',
verbose: bool = True,
datamodule: Optional[LightningDataModule] = None,
) -> _EVALUATE_OUTPUT:
r"""
Perform one evaluation epoch over the validation set.
Args:
model: The model to validate.
val_dataloaders: Either a single PyTorch DataLoader or a list of them,
specifying validation samples.
ckpt_path: Either ``best`` or path to the checkpoint you wish to validate.
If ``None``, use the current weights of the model.
When the model is given as argument, this parameter will not apply.
verbose: If True, prints the validation results.
datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`.
Returns:
The dictionary with final validation results returned by validation_epoch_end.
If validation_epoch_end is not defined, the output is a list of the dictionaries
returned by validation_step.
"""
# --------------------
# SETUP HOOK
# --------------------
Trainer._log_api_event("validate")
self.verbose_evaluate = verbose
self.state.fn = TrainerFn.VALIDATING
self.state.status = TrainerStatus.RUNNING
self.validating = True
# If you supply a datamodule you can't supply val_dataloaders
if val_dataloaders is not None and datamodule:
raise MisconfigurationException(
'You cannot pass both `trainer.validate(val_dataloaders=..., datamodule=...)`'
)
model_provided = model is not None
model = model or self.lightning_module
if model is None:
raise MisconfigurationException(
"`model` must be provided to `trainer.validate()` when it hasn't been passed in a previous run"
)
# links data to the trainer
self.data_connector.attach_data(model, val_dataloaders=val_dataloaders, datamodule=datamodule)
if not model_provided:
self.validated_ckpt_path = self.__load_ckpt_weights(ckpt_path)
# run validate
results = self._run(model)
assert self.state.stopped
self.validating = False
return results
def test(
self,
model: Optional[LightningModule] = None,
test_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None,
ckpt_path: Optional[str] = 'best',
verbose: bool = True,
datamodule: Optional[LightningDataModule] = None,
) -> _EVALUATE_OUTPUT:
r"""
Perform one evaluation epoch over the test set. It's separated from
fit to make sure you never run on your test set until you want to.
Args:
model: The model to test.
test_dataloaders: Either a single PyTorch DataLoader or a list of them,
specifying test samples.
ckpt_path: Either ``best`` or path to the checkpoint you wish to test.
If ``None``, use the current weights of the model.
When the model is given as argument, this parameter will not apply.
verbose: If True, prints the test results.
datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`.
Returns:
Returns a list of dictionaries, one for each test dataloader containing their respective metrics.
"""
# --------------------
# SETUP HOOK
# --------------------
Trainer._log_api_event("test")
self.verbose_evaluate = verbose
self.state.fn = TrainerFn.TESTING
self.state.status = TrainerStatus.RUNNING
self.testing = True
# If you supply a datamodule you can't supply test_dataloaders
if test_dataloaders is not None and datamodule:
raise MisconfigurationException('You cannot pass both `trainer.test(test_dataloaders=..., datamodule=...)`')
model_provided = model is not None
model = model or self.lightning_module
if model is None:
raise MisconfigurationException(
"`model` must be provided to `trainer.test()` when it hasn't been passed in a previous run"
)
# links data to the trainer
self.data_connector.attach_data(model, test_dataloaders=test_dataloaders, datamodule=datamodule)
if not model_provided:
self.tested_ckpt_path = self.__load_ckpt_weights(ckpt_path)
# run test
results = self._run(model)
assert self.state.stopped
self.testing = False
return results
def predict(
self,
model: Optional[LightningModule] = None,
dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None,
datamodule: Optional[LightningDataModule] = None,
return_predictions: Optional[bool] = None,
ckpt_path: Optional[str] = 'best',
) -> Optional[_PREDICT_OUTPUT]:
r"""
Separates from fit to make sure you never run on your predictions set until you want to.
This will call the model forward function to compute predictions.
Args:
model: The model to predict with.
dataloaders: Either a single PyTorch DataLoader or a list of them, specifying inference samples.
datamodule: The datamodule with a predict_dataloader method that returns one or more dataloaders.
return_predictions: Whether to return predictions.
``True`` by default except when an accelerator that spawns processes is used (not supported).
ckpt_path: Either ``best`` or path to the checkpoint you wish to use to predict.
If ``None``, use the current weights of the model.
When the model is given as argument, this parameter will not apply.
Returns:
Returns a list of dictionaries, one for each provided dataloader containing their respective predictions.
"""
# --------------------
# SETUP HOOK
# --------------------
Trainer._log_api_event("predict")
self.state.fn = TrainerFn.PREDICTING
self.state.status = TrainerStatus.RUNNING
self.predicting = True
self.predict_loop.return_predictions = return_predictions
if dataloaders is not None and datamodule:
raise MisconfigurationException('You cannot pass both `trainer.predict(dataloaders=..., datamodule=...)`')
model_provided = model is not None
model = model or self.lightning_module
if model is None:
raise MisconfigurationException(
"`model` must be provided to `trainer.predict()` when it hasn't been passed in a previous run"
)
# links data to the trainer
self.data_connector.attach_data(model, predict_dataloaders=dataloaders, datamodule=datamodule)
if not model_provided:
self.predicted_ckpt_path = self.__load_ckpt_weights(ckpt_path)
results = self._run(model)
assert self.state.stopped
self.predicting = False
return results
def tune(
self,
model: LightningModule,
train_dataloader: Optional[DataLoader] = None,
val_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None,
datamodule: Optional[LightningDataModule] = None,
scale_batch_size_kwargs: Optional[Dict[str, Any]] = None,
lr_find_kwargs: Optional[Dict[str, Any]] = None,
) -> Dict[str, Optional[Union[int, _LRFinder]]]:
r"""
Runs routines to tune hyperparameters before training.
Args:
model: Model to tune.
train_dataloader: A Pytorch DataLoader with training samples. If the model has
a predefined train_dataloader method this will be skipped.
val_dataloaders: Either a single Pytorch Dataloader or a list of them, specifying validation samples.
If the model has a predefined val_dataloaders method this will be skipped
datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`.
scale_batch_size_kwargs: Arguments for :func:`~pytorch_lightning.tuner.batch_size_scaling.scale_batch_size`
lr_find_kwargs: Arguments for :func:`~pytorch_lightning.tuner.lr_finder.lr_find`
"""
Trainer._log_api_event("tune")
self.state.fn = TrainerFn.TUNING
self.state.status = TrainerStatus.RUNNING
self.tuning = True
# if a datamodule comes in as the second arg, then fix it for the user
if isinstance(train_dataloader, LightningDataModule):
datamodule = train_dataloader
train_dataloader = None
# If you supply a datamodule you can't supply train_dataloader or val_dataloaders
if (train_dataloader is not None or val_dataloaders is not None) and datamodule is not None:
raise MisconfigurationException(
'You cannot pass `train_dataloader` or `val_dataloaders` to `trainer.tune(datamodule=...)`'
)
# links data to the trainer
self.data_connector.attach_data(
model, train_dataloader=train_dataloader, val_dataloaders=val_dataloaders, datamodule=datamodule
)
result = self.tuner._tune(model, scale_batch_size_kwargs=scale_batch_size_kwargs, lr_find_kwargs=lr_find_kwargs)
assert self.state.stopped
self.tuning = False
return result
def _run(self, model: LightningModule) -> Optional[Union[_EVALUATE_OUTPUT, _PREDICT_OUTPUT]]:
# clean hparams
if hasattr(model, "hparams"):
parsing.clean_namespace(model.hparams)
self.config_validator.verify_loop_configurations(model)
# attach model log function to callback
self.callback_connector.attach_model_logging_functions(model)
# hook
self.data_connector.prepare_data(model)
self.callback_connector._attach_model_callbacks(model, self)
# ----------------------------
# SET UP TRAINING
# ----------------------------
self.call_hook("on_before_accelerator_backend_setup", model)
self.accelerator.connect(model)
self.accelerator.setup_environment()
self._call_setup_hook(model) # allow user to setup lightning_module in accelerator environment
self._call_configure_sharded_model(model) # allow user to setup in model sharded environment
self.accelerator.setup(self, model) # note: this sets up self.lightning_module
# ----------------------------
# INSPECT THE CORE LOOPS
# ----------------------------
f"""
Lightning internal flow looks like this:
{Trainer.fit} or {Trainer.test} or {Trainer.predict} ||
| ||
create accelerator ||
| ||
{self._dispatch} ||
| || LIGHTNING
{self.accelerator.start_training} ||
or {self.accelerator.start_evaluating} ||
or {self.accelerator.start_predicting} || FLOW
| ||
{self.run_stage} ||
| || DIRECTION
{self._run_train} ||
or {self._run_evaluation} ||
or {self._run_predict} ||
| ||
results \/
This is used to guide readers to the core loops: train, test, predict.
{self._run_predict} is the simplest to understand, use `Go to Definition` to read it :)
Search for `start_training` or `start_evaluating` or `start_predicting` in
`pytorch_lightning/plugins/training_type_plugin` to find accelerator dispatch functions.
""" # noqa: W605
# ----------------------------
# TRAIN
# ----------------------------
# hook
if self.state.fn == TrainerFn.FITTING:
self.call_hook("on_fit_start")
# plugin will setup fitting (e.g. ddp will launch child processes)
self._pre_dispatch()
# dispatch `start_training` or `start_evaluating` or `start_predicting`
self._dispatch()
# plugin will finalized fitting (e.g. ddp_spawn will load trained model)
self._post_dispatch()
# ----------------------------
# POST-Training CLEAN UP
# ----------------------------
# hook
if self.state.fn == TrainerFn.FITTING:
self.call_hook('on_fit_end')
# teardown
self._call_teardown_hook(model)
if self.state.status != TrainerStatus.INTERRUPTED:
self.state.status = TrainerStatus.FINISHED
self.state.stage = None
return self.accelerator.results
def _pre_dispatch(self):
self.accelerator.pre_dispatch(self)
# log hyper-parameters
if self.logger is not None:
# save exp to get started (this is where the first experiment logs are written)
self.logger.log_hyperparams(self.lightning_module.hparams_initial)
self.logger.log_graph(self.lightning_module)
self.logger.save()
def _post_dispatch(self):
self.accelerator.post_dispatch(self)
self.accelerator.teardown()
def _dispatch(self):
if self.evaluating:
self.accelerator.start_evaluating(self)
elif self.predicting:
self.accelerator.start_predicting(self)
else:
self.accelerator.start_training(self)
def run_stage(self):
self.accelerator.dispatch(self)
self.profile_connector.setup()
if self.evaluating:
return self._run_evaluate()
if self.predicting:
return self._run_predict()
return self._run_train()
def _pre_training_routine(self):
# wait for all to join if on distributed
self.accelerator.barrier("setup_training")
# register auto-resubmit when on SLURM
self.slurm_connector.register_slurm_signal_handlers()
# --------------------------
# Pre-train
# --------------------------
# on pretrain routine start
ref_model = self.lightning_module
self.on_pretrain_routine_start()
ref_model.on_pretrain_routine_start()
# print model summary
if self.is_global_zero and self.weights_summary is not None and not self.testing:
ref_model.summarize(mode=self.weights_summary)
# restore training and model before hpc is called
self.checkpoint_connector.restore_weights()
# on pretrain routine end
self.on_pretrain_routine_end()
ref_model.on_pretrain_routine_end()
def _run_train(self) -> None:
self._pre_training_routine()
if not self.is_global_zero and self.progress_bar_callback is not None:
self.progress_bar_callback.disable()
self._run_sanity_check(self.lightning_module)
self.checkpoint_connector.has_trained = False
# enable train mode
self.model.train()
torch.set_grad_enabled(True)
# reload data when needed
model = self.lightning_module
self.train_loop.reset_train_val_dataloaders(model)
# hook
self.train_loop.on_train_start()
try:
if self.train_loop.should_skip_training():
return
# run all epochs
epochs = range(self.current_epoch, self.max_epochs) if self.max_epochs else count(self.current_epoch)
for epoch in epochs:
# hook
self.train_loop.on_train_epoch_start(epoch)
with self.profiler.profile("run_training_epoch"):
# run train epoch
self.train_loop.run_training_epoch()
if self.max_steps and self.max_steps <= self.global_step:
self.train_loop.on_train_end()
return
# early stopping
met_min_epochs = (epoch >= self.min_epochs - 1) if self.min_epochs else True
met_min_steps = self.global_step >= self.min_steps if self.min_steps else True
if self.should_stop:
if met_min_epochs and met_min_steps:
self.train_loop.on_train_end()
return
else:
log.info(
'Trainer was signaled to stop but required minimum epochs'
f' ({self.min_epochs}) or minimum steps ({self.min_steps}) has'
' not been met. Training will continue...'
)
self.should_stop = False
# hook
self.train_loop.on_train_end()
except KeyboardInterrupt:
rank_zero_warn('Detected KeyboardInterrupt, attempting graceful shutdown...')
# user could press Ctrl+c many times... only shutdown once
if not self.interrupted:
self.state.status = TrainerStatus.INTERRUPTED
self.on_keyboard_interrupt()
# same treatment as below
self.accelerator.on_train_end()
self.state.stage = None
except BaseException:
self.state.status = TrainerStatus.INTERRUPTED
# give accelerators a chance to finish
self.accelerator.on_train_end()
# reset bookkeeping
self.state.stage = None
raise
def _run_evaluation(self, on_epoch: bool = False) -> _EVALUATE_OUTPUT:
if not (self.evaluating or self.sanity_checking):
rank_zero_warn(
f"`trainer._run_evaluation()` was called but the running stage is set to {self.state.stage}."
" This should not happen normally. Setting it to `RunningStage.VALIDATING`", RuntimeWarning
)
self.validating = True
# prepare dataloaders
dataloaders, max_batches = self.evaluation_loop.get_evaluation_dataloaders()
# check if we want to skip this evaluation
if self.evaluation_loop.should_skip_evaluation(max_batches):
return [], []
# enable eval mode + no grads
self.evaluation_loop.on_evaluation_model_eval()
# ref model
model = self.lightning_module
model.zero_grad()
torch.set_grad_enabled(False)
# hook
self.evaluation_loop.on_evaluation_start()
# set up the eval loop
self.evaluation_loop.setup(max_batches, dataloaders)
# hook
self.evaluation_loop.on_evaluation_epoch_start()
# run validation/testing
for dataloader_idx, dataloader in enumerate(dataloaders):
# bookkeeping
dl_outputs = []
dataloader = self.accelerator.process_dataloader(dataloader)
dl_max_batches = self.evaluation_loop.max_batches[dataloader_idx]
for batch_idx, batch in enumerate(dataloader):
if batch is None:
continue
# stop short when running on limited batches
if batch_idx >= dl_max_batches:
break
# hook
self.evaluation_loop.on_evaluation_batch_start(batch, batch_idx, dataloader_idx)
# lightning module methods
with self.profiler.profile("evaluation_step_and_end"):
output = self.evaluation_loop.evaluation_step(batch, batch_idx, dataloader_idx)
output = self.evaluation_loop.evaluation_step_end(output)
# hook + store predictions
self.evaluation_loop.on_evaluation_batch_end(output, batch, batch_idx, dataloader_idx)
# log batch metrics
self.logger_connector.log_evaluation_step_metrics()
# track epoch level outputs
dl_outputs = self._track_output_for_epoch_end(dl_outputs, output)
# store batch level output per dataloader
if self.evaluation_loop.should_track_batch_outputs_for_epoch_end:
self.evaluation_loop.outputs.append(dl_outputs)
outputs = self.evaluation_loop.outputs
# reset outputs
self.evaluation_loop.outputs = []
# with a single dataloader don't pass a 2D list
if len(outputs) > 0 and self.evaluation_loop.num_dataloaders == 1:
outputs = outputs[0]