-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathtest_models.py
158 lines (131 loc) · 7.44 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import torch
import argparse
import imageio
import cv2
import numpy as np
from matplotlib import pyplot as plt
from utils_flow.pixel_wise_mapping import remap_using_flow_fields
from model_selection import select_model
from utils_flow.util_optical_flow import flow_to_image
from utils_flow.visualization_utils import overlay_semantic_mask
from validation.test_parser import define_model_parser
def pad_to_same_shape(im1, im2):
# pad to same shape both images with zero
if im1.shape[0] <= im2.shape[0]:
pad_y_1 = im2.shape[0] - im1.shape[0]
pad_y_2 = 0
else:
pad_y_1 = 0
pad_y_2 = im1.shape[0] - im2.shape[0]
if im1.shape[1] <= im2.shape[1]:
pad_x_1 = im2.shape[1] - im1.shape[1]
pad_x_2 = 0
else:
pad_x_1 = 0
pad_x_2 = im1.shape[1] - im2.shape[1]
im1 = cv2.copyMakeBorder(im1, 0, pad_y_1, 0, pad_x_1, cv2.BORDER_CONSTANT)
im2 = cv2.copyMakeBorder(im2, 0, pad_y_2, 0, pad_x_2, cv2.BORDER_CONSTANT)
return im1, im2
# Argument parsing
def boolean_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
def test_model_on_image_pair(args, query_image, reference_image):
with torch.no_grad():
network, estimate_uncertainty = select_model(
args.model, args.pre_trained_model, args, args.optim_iter, local_optim_iter,
path_to_pre_trained_models=args.path_to_pre_trained_models)
# save original ref image shape
ref_image_shape = reference_image.shape[:2]
# pad both images to the same size, to be processed by network
query_image_, reference_image_ = pad_to_same_shape(query_image, reference_image)
# convert numpy to torch tensor and put it in right format
query_image_ = torch.from_numpy(query_image_).permute(2, 0, 1).unsqueeze(0)
reference_image_ = torch.from_numpy(reference_image_).permute(2, 0, 1).unsqueeze(0)
# ATTENTION, here source and target images are Torch tensors of size 1x3xHxW, without further pre-processing
# specific pre-processing (/255 and rescaling) are done within the function.
# pass both images to the network, it will pre-process the images and ouput the estimated flow
# in dimension 1x2xHxW
if estimate_uncertainty:
if args.flipping_condition:
raise NotImplementedError('No flipping condition with PDC-Net for now')
estimated_flow, uncertainty_components = network.estimate_flow_and_confidence_map(query_image_,
reference_image_,
mode='channel_first')
confidence_map = uncertainty_components['p_r'].squeeze().detach().cpu().numpy()
confidence_map = confidence_map[:ref_image_shape[0], :ref_image_shape[1]]
else:
if args.flipping_condition and 'GLUNet' in args.model:
estimated_flow = network.estimate_flow_with_flipping_condition(query_image_, reference_image_,
mode='channel_first')
else:
estimated_flow = network.estimate_flow(query_image_, reference_image_, mode='channel_first')
estimated_flow_numpy = estimated_flow.squeeze().permute(1, 2, 0).cpu().numpy()
estimated_flow_numpy = estimated_flow_numpy[:ref_image_shape[0], :ref_image_shape[1]]
# removes the padding
warped_query_image = remap_using_flow_fields(query_image, estimated_flow_numpy[:, :, 0],
estimated_flow_numpy[:, :, 1]).astype(np.uint8)
# save images
if args.save_ind_images:
imageio.imwrite(os.path.join(args.save_dir, 'query.png'), query_image)
imageio.imwrite(os.path.join(args.save_dir, 'reference.png'), reference_image)
imageio.imwrite(os.path.join(args.save_dir, 'warped_query_{}_{}.png'.format(args.model, args.pre_trained_model)),
warped_query_image)
if estimate_uncertainty:
color = [255, 102, 51]
fig, axis = plt.subplots(1, 5, figsize=(30, 30))
confident_mask = (confidence_map > 0.50).astype(np.uint8)
confident_warped = overlay_semantic_mask(warped_query_image, ann=255 - confident_mask*255, color=color)
axis[2].imshow(confident_warped)
axis[2].set_title('Confident warped query image according to \n estimated flow by {}_{}'
.format(args.model, args.pre_trained_model))
axis[4].imshow(confidence_map, vmin=0.0, vmax=1.0)
axis[4].set_title('Confident regions')
else:
fig, axis = plt.subplots(1, 4, figsize=(30, 30))
axis[2].imshow(warped_query_image)
axis[2].set_title(
'Warped query image according to estimated flow by {}_{}'.format(args.model, args.pre_trained_model))
axis[0].imshow(query_image)
axis[0].set_title('Query image')
axis[1].imshow(reference_image)
axis[1].set_title('Reference image')
axis[3].imshow(flow_to_image(estimated_flow_numpy))
axis[3].set_title('Estimated flow {}_{}'.format(args.model, args.pre_trained_model))
fig.savefig(
os.path.join(args.save_dir, 'Warped_query_image_{}_{}.png'.format(args.model, args.pre_trained_model)),
bbox_inches='tight')
plt.close(fig)
print('Saved image!')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Test models on a pair of images')
define_model_parser(parser) # model parameters
parser.add_argument('--pre_trained_model', type=str, help='Name of the pre-trained-model', required=True)
parser.add_argument('--path_query_image', type=str,
help='Path to the source image.', required=True)
parser.add_argument('--path_reference_image', type=str,
help='Path to the target image.', required=True)
parser.add_argument('--save_dir', type=str, required=True,
help='Directory where to save output figure.')
parser.add_argument('--save_ind_images', dest='save_ind_images', default=False, type=boolean_string,
help='Save individual images? ')
args = parser.parse_args()
torch.cuda.empty_cache()
torch.set_grad_enabled(False) # make sure to not compute gradients for computational performance
torch.backends.cudnn.enabled = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # either gpu or cpu
local_optim_iter = args.optim_iter if not args.local_optim_iter else int(args.local_optim_iter)
if not os.path.exists(args.path_query_image):
raise ValueError('The path to the source image you provide does not exist ! ')
if not os.path.exists(args.path_reference_image):
raise ValueError('The path to the target image you provide does not exist ! ')
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
try:
query_image = cv2.imread(args.path_query_image, 1)[:, :, ::- 1]
reference_image = cv2.imread(args.path_reference_image, 1)[:, :, ::- 1]
except:
raise ValueError('It seems that the path for the images you provided does not work ! ')
test_model_on_image_pair(args, query_image, reference_image)