-
Notifications
You must be signed in to change notification settings - Fork 15
/
models.py
1073 lines (951 loc) · 45.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
https://github.com/ProteinDesignLab/protpardelle
License: MIT
Author: Alex Chu & Jinho Kim
Top-level model definitions.
Typically these are initialized with config rather than arguments.
"""
import argparse
from functools import partial
import os
from typing import Callable, List, Optional
from einops import rearrange, repeat
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchtyping import TensorType
from core import protein_mpnn
from core import residue_constants
from core import utils
import diffusion
import evaluation
import modules
class MiniMPNN(nn.Module):
"""Wrapper for ProteinMPNN network to predict sequence from structure."""
def __init__(self, config: argparse.Namespace):
super().__init__()
self.config = config
self.model_config = cfg = config.model.mpnn_model
self.n_tokens = config.data.n_aatype_tokens
self.seq_emb_dim = cfg.n_channel
time_cond_dim = cfg.n_channel * cfg.noise_cond_mult
self.noise_block = modules.NoiseConditioningBlock(cfg.n_channel, time_cond_dim)
self.token_embedding = nn.Linear(self.n_tokens, self.seq_emb_dim)
self.mpnn_net = modules.NoiseConditionalProteinMPNN(
n_channel=cfg.n_channel,
n_layers=cfg.n_layers,
n_neighbors=cfg.n_neighbors,
time_cond_dim=time_cond_dim,
vocab_size=config.data.n_aatype_tokens,
input_S_is_embeddings=True,
)
self.proj_out = nn.Linear(cfg.n_channel, self.n_tokens)
def forward(
self,
denoised_coords: TensorType["b n a x", float],
coords_noise_level: TensorType["b", float],
seq_mask: TensorType["b n", float],
residue_index: TensorType["b n", int],
seq_self_cond: Optional[TensorType["b n t", float]] = None, # logprobs
return_embeddings: bool = False,
):
coords_noise_level_scaled = 0.25 * torch.log(coords_noise_level)
noise_cond = self.noise_block(coords_noise_level_scaled)
b, n, _, _ = denoised_coords.shape
if seq_self_cond is None or not self.model_config.use_self_conditioning:
seq_emb_in = torch.zeros(b, n, self.seq_emb_dim).to(denoised_coords)
else:
seq_emb_in = self.token_embedding(seq_self_cond.exp())
node_embs, encoder_embs = self.mpnn_net(
denoised_coords, seq_emb_in, seq_mask, residue_index, noise_cond
)
logits = self.proj_out(node_embs)
pred_logprobs = F.log_softmax(logits, -1)
if return_embeddings:
return pred_logprobs, node_embs, encoder_embs
return pred_logprobs
class CoordinateDenoiser(nn.Module):
"""Wrapper for U-ViT module to denoise structure coordinates."""
def __init__(self, config: argparse.Namespace):
super().__init__()
self.config = config
# Configuration
self.sigma_data = config.data.sigma_data
m_cfg = config.model.struct_model
nc = m_cfg.n_channel
bb_atoms = ["N", "CA", "C", "O"]
n_atoms = config.model.struct_model.n_atoms
self.use_conv = len(m_cfg.uvit.n_filt_per_layer) > 0
if self.use_conv and n_atoms == 37:
n_atoms += 1 # make it an even number
self.n_atoms = n_atoms
self.bb_idxs = [residue_constants.atom_order[a] for a in bb_atoms]
n_xyz = 9 if config.model.crop_conditional else 6
nc_in = n_xyz * n_atoms # xyz + selfcond xyz + maybe cropcond xyz
# Neural networks
n_noise_channel = nc * m_cfg.noise_cond_mult
self.net = modules.TimeCondUViT(
seq_len=config.data.fixed_size,
patch_size=m_cfg.uvit.patch_size,
dim=nc,
depth=m_cfg.uvit.n_layers,
n_filt_per_layer=m_cfg.uvit.n_filt_per_layer,
heads=m_cfg.uvit.n_heads,
dim_head=m_cfg.uvit.dim_head,
conv_skip_connection=m_cfg.uvit.conv_skip_connection,
n_atoms=n_atoms,
channels_per_atom=n_xyz,
time_cond_dim=n_noise_channel,
position_embedding_type=m_cfg.uvit.position_embedding_type,
)
self.noise_block = modules.NoiseConditioningBlock(nc, n_noise_channel)
def forward(
self,
noisy_coords: TensorType["b n a x", float],
noise_level: TensorType["b", float],
seq_mask: TensorType["b n", float],
residue_index: Optional[TensorType["b n", int]] = None,
struct_self_cond: Optional[TensorType["b n a x", float]] = None,
struct_crop_cond: Optional[TensorType["b n a x", float]] = None,
):
# Prep inputs and time conditioning
actual_var_data = self.sigma_data**2
var_noisy_coords = noise_level**2 + actual_var_data
emb = noisy_coords / utils.expand(var_noisy_coords.sqrt(), noisy_coords)
struct_noise_scaled = 0.25 * torch.log(noise_level)
noise_cond = self.noise_block(struct_noise_scaled)
# Prepare self- and crop-conditioning and concatenate along channels
if struct_self_cond is None:
struct_self_cond = torch.zeros_like(noisy_coords)
if self.config.model.crop_conditional:
if struct_crop_cond is None:
struct_crop_cond = torch.zeros_like(noisy_coords)
else:
struct_crop_cond = struct_crop_cond / self.sigma_data
emb = torch.cat([emb, struct_self_cond, struct_crop_cond], -1)
else:
emb = torch.cat([emb, struct_self_cond], -1)
# Run neural network
emb = self.net(emb, noise_cond, seq_mask=seq_mask, residue_index=residue_index)
# Preconditioning from Karras et al.
out_scale = noise_level * actual_var_data**0.5 / torch.sqrt(var_noisy_coords)
skip_scale = actual_var_data / var_noisy_coords
emb = emb * utils.expand(out_scale, emb)
skip_info = noisy_coords * utils.expand(skip_scale, noisy_coords)
denoised_coords_x0 = emb + skip_info
# Don't use atom mask; denoise all atoms
denoised_coords_x0 *= utils.expand(seq_mask, denoised_coords_x0)
return denoised_coords_x0
class Protpardelle(nn.Module):
"""All-atom protein diffusion-based generative model.
This class wraps a structure denoising network and a sequence prediction network
to do structure/sequence co-design (for all-atom generation), or backbone generation.
It can be trained for one of four main tasks. To produce the all-atom (co-design)
Protpardelle model, we will typically pretrain an 'allatom' model, then use this
to train a 'seqdes' model. A 'seqdes' model can be trained with either a backbone
or allatom denoiser. The two can be combined to yield all-atom (co-design) Protpardelle
without further training.
'backbone': train only a backbone coords denoiser.
'seqdes': train only a mini-MPNN, using a pretrained coords denoiser.
'allatom': train only an allatom coords denoiser (cannot do all-atom generation
by itself).
'codesign': train both an allatom denoiser and mini-MPNN at once.
"""
def __init__(self, config: argparse.Namespace, device: str = "cpu"):
super().__init__()
self.config = config
self.device = device
self.task = config.model.task
self.n_tokens = config.data.n_aatype_tokens
self.use_mpnn_model = self.task in ["seqdes", "codesign"]
# Modules
self.all_modules = {}
self.bb_idxs = [0, 1, 2, 4]
self.n_atoms = 37
self.struct_model = CoordinateDenoiser(config)
self.all_modules["struct_model"] = self.struct_model
self.bb_idxs = self.struct_model.bb_idxs
self.n_atoms = self.struct_model.n_atoms
if self.use_mpnn_model:
self.mpnn_model = MiniMPNN(config)
self.all_modules["mpnn_model"] = self.mpnn_model
# Load any pretrained modules
for module_name in self.config.model.pretrained_modules:
self.load_pretrained_module(module_name)
# Diffusion-related
self.sigma_data = self.struct_model.sigma_data
self.training_noise_schedule = partial(
diffusion.noise_schedule,
sigma_data=self.sigma_data,
**vars(config.diffusion.training),
)
self.sampling_noise_schedule_default = self.make_sampling_noise_schedule()
def load_pretrained_module(self, module_name: str, ckpt_path: Optional[str] = None):
"""Load pretrained weights for a given module name."""
assert module_name in ["struct_model", "mpnn_model"], module_name
# Load pretrained checkpoint
if ckpt_path is None:
ckpt_path = getattr(self.config.model, f"{module_name}_checkpoint")
ckpt_path = os.path.join(self.config.train.home_dir, ckpt_path)
ckpt_dict = torch.load(ckpt_path, map_location=self.device)
model_state_dict = ckpt_dict["model_state_dict"]
# Get only submodule state_dict
submodule_state_dict = {
sk[len(module_name) + 1 :]: sv
for sk, sv in model_state_dict.items()
if sk.startswith(module_name)
}
# Load into module
module = dict(self.named_modules())[module_name]
module.load_state_dict(submodule_state_dict)
# Freeze unneeded modules
if module_name == "struct_model":
self.struct_model = module
if self.task == "seqdes":
for p in module.parameters():
p.requires_grad = False
if module_name == "mpnn_model":
self.mpnn_model = module
if self.task not in ["codesign", "seqdes"]:
for p in module.parameters():
p.requires_grad = False
return module
def load_minimpnn(self, mpnn_ckpt_path: Optional[str] = None):
"""Convert an allatom model to a codesign model."""
if mpnn_ckpt_path is None:
mpnn_ckpt_path = "checkpoints/minimpnn_state_dict.pth"
self.mpnn_model = MiniMPNN(self.config).to(self.device)
self.load_pretrained_module("mpnn_model", ckpt_path=mpnn_ckpt_path)
self.use_mpnn_model = True
return
def remove_minimpnn(self):
"""Revert a codesign model to an allatom model to a codesign model."""
self.use_mpnn_model = False
self.mpnn_model = None
self.all_modules["mpnn_model"] = None
def make_sampling_noise_schedule(self, **noise_kwargs):
"""Make the default sampling noise schedule function."""
noise_schedule_kwargs = vars(self.config.diffusion.sampling)
if len(noise_kwargs) > 0:
noise_schedule_kwargs.update(noise_kwargs)
return partial(diffusion.noise_schedule, **noise_schedule_kwargs)
def forward(
self,
*,
noisy_coords: TensorType["b n a x", float],
noise_level: TensorType["b", float],
seq_mask: TensorType["b n", float],
residue_index: TensorType["b n", int],
struct_self_cond: Optional[TensorType["b n a x", float]] = None,
struct_crop_cond: Optional[TensorType["b n a x", float]] = None,
seq_self_cond: Optional[TensorType["b n t", float]] = None, # logprobs
run_struct_model: bool = True,
run_mpnn_model: bool = True,
use_mpnn_model: bool = False,
):
"""Main forward function for denoising/co-design.
Arguments:
noisy_coords: noisy array of xyz coordinates.
noise_level: std of noise for each example in the batch.
seq_mask: mask indicating which indexes contain data.
residue_index: residue ordering. This is used by proteinMPNN, but currently
only used by the diffusion model when the 'absolute_residx' or
'relative' position_embedding_type is specified.
struct_self_cond: denoised coordinates from the previous step, scaled
down by sigma data.
struct_crop_cond: unnoised coordinates. unscaled (scaled down by sigma
data inside the denoiser)
seq_self_cond: mpnn-predicted sequence logprobs from the previous step.
run_struct_model: flag to optionally not run structure denoiser.
run_mpnn_model: flag to optionally not run mini-mpnn.
"""
# Coordinate denoiser
denoised_x0 = noisy_coords
if run_struct_model:
denoised_x0 = self.struct_model(
noisy_coords,
noise_level,
seq_mask,
residue_index=residue_index,
struct_self_cond=struct_self_cond,
struct_crop_cond=struct_crop_cond,
)
# Mini-MPNN
aatype_logprobs = None
if self.use_mpnn_model and run_mpnn_model:
aatype_logprobs = self.mpnn_model(
denoised_x0.detach(),
noise_level,
seq_mask,
residue_index,
seq_self_cond=seq_self_cond,
return_embeddings=False,
)
aatype_logprobs = aatype_logprobs * seq_mask[..., None]
# Process outputs
if aatype_logprobs is None:
aatype_logprobs = repeat(seq_mask, "b n -> b n t", t=self.n_tokens)
aatype_logprobs = torch.ones_like(aatype_logprobs)
aatype_logprobs = F.log_softmax(aatype_logprobs, -1)
struct_self_cond_out = denoised_x0.detach() / self.sigma_data
seq_self_cond_out = aatype_logprobs.detach()
return denoised_x0, aatype_logprobs, struct_self_cond_out, seq_self_cond_out
def make_seq_mask_for_sampling(
self,
prot_lens: Optional[TensorType["b", int]] = None,
n_samples: int = 1,
min_len: int = 50,
max_len: Optional[int] = None,
):
"""Makes a sequence mask of varying protein lengths (only input required
to begin sampling).
"""
if max_len is None:
max_len = self.config.data.fixed_size
if prot_lens is None:
possible_lens = np.arange(min_len, max_len)
prot_lens = torch.Tensor(np.random.choice(possible_lens, n_samples))
else:
n_samples = len(prot_lens)
max_len = max(prot_lens)
mask = repeat(torch.arange(max_len), "n -> b n", b=n_samples)
mask = (mask < prot_lens[:, None]).float().to(self.device)
return mask
def sample(
self,
*,
seq_mask: TensorType["b n", float] = None,
n_samples: int = 1,
min_len: int = 50,
max_len: int = 512,
residue_index: TensorType["b n", int] = None,
gt_coords: TensorType["b n a x", float] = None,
gt_coords_traj: List[TensorType["b n a x", float]] = None,
gt_cond_atom_mask: TensorType["b n a", float] = None,
gt_aatype: TensorType["b n", int] = None,
gt_cond_seq_mask: TensorType["b n", float] = None,
n_steps: int = 200,
step_scale: float = 1.2,
s_churn: float = 50.0,
noise_scale: float = 1.0,
s_t_min: float = 0.01,
s_t_max: float = 50.0,
s_min: float = 0.001,
s_max: float = 80,
rho: int = 7,
noise_schedule: Optional[Callable] = None,
use_superposition: bool = True,
apply_cond_proportion: float = 1.0,
stage2_sampling: bool = False,
motif_scaffolding: bool = False,
use_replacement: bool = False,
use_reconstruction_guidance: bool = False,
use_classifier_free_guidance: bool = False, # defaults to replacement guidance if these are all false
guidance_scale: float = 1.0,
anneal_guidance_scale: bool = False,
temperature: float = 1.0,
top_p: float = 1.0,
disallow_aas: List[int] = [4, 20], # cys, unk
sidechain_mode: bool = False,
skip_mpnn_proportion: float = 0.7,
anneal_seq_resampling_rate: Optional[str] = None, # linear, cosine
use_fullmpnn: bool = False,
use_fullmpnn_for_final: bool = True,
num_seqs: int = 1,
mpnn_batch_size: int = 1,
tqdm_pbar: Optional[Callable] = None,
return_last: bool = True,
return_aux: bool = False,
):
"""Sampling function for backbone or all-atom diffusion. All arguments are optional.
Arguments:
seq_mask: mask defining the number and lengths of proteins to be sampled.
n_samples: number of samples to draw (if seq_mask not provided).
min_len: minimum length of proteins to be sampled (if seq_mask not provided).
max_len: maximum length of proteins to be sampled (if seq_mask not provided).
residue_index: residue index of proteins to be sampled.
gt_coords: conditioning information for coords.
gt_coords_traj: conditioning information for coords specified for each timestep
(if gt_coords is not provided).
gt_cond_atom_mask: mask identifying atoms to apply gt_coords.
gt_aatype: conditioning information for sequence.
gt_cond_seq_mask: sequence positions to apply gt_aatype.
# Arguments for the basic diffusion sampling. (https://github.com/NVlabs/edm)
n_steps: number of denoising steps (ODE discretizations).
step_scale: scale to apply to the score.
s_churn: gamma = s_churn / n_steps describes the additional noise to add
relatively at each denoising step. Use 0.0 for deterministic sampling or
0.2 * n_steps as a rough default for stochastic sampling.
noise_scale: scale to apply to gamma.
s_t_min: don't apply s_churn below this noise level.
s_t_max: don't apply s_churn above this noise level.
s_min: minimum noise level for sampling.
s_max: maximum noise level for sampling.
rho: parameter for the size of ode discretization step along the noise level, high rho focuses on the lower noise levels and low rho focuses on the higher noise levels.
noise_schedule: specify the noise level timesteps for sampling.
# Arguments for superposition scheme
use_superposition: whether to use superposition for all-atom sampling.
stage2_sampling: whether to use stage 2 sampling. Default is true for all-atom sampling.
# Arguments for the conditional sampling
motif_scaffolding: whether to do motif-scaffolding.
use_replacement: whether to use replacement guidance.
use_reconstruction_guidance: whether to use reconstruction guidance on the conditioning.
use_classifier_free_guidance: whether to use classifier-free guidance on the conditioning.
guidance_scale: weight for reconstruction/classifier-free guidance.
apply_cond_proportion: the proportion of timesteps to apply the conditioning.
e.g. if 0.5, then the first 50% of steps use conditioning, and the last 50%
are unconditional.
anneal_guidance_scale: whether to anneal the guidance scale. But deprecated for now.
# Argument for the sequence sampling in all-atom sampling
temperature: scale to apply to aatype logits.
top_p: don't tokens which fall outside this proportion of the total probability.
disallow_aas: don't sample these token indices.
sidechain_mode: whether to do all-atom sampling (False for backbone-only).
skip_mpnn_proportion: proportion of timesteps from the start to skip running
mini-MPNN.
anneal_seq_resampling_rate: whether and how to decay the probability of
running mini-MPNN. None, 'linear', or 'cosine'
use_fullmpnn: use "full" ProteinMPNN at each step.
use_fullmpnn_for_final: use "full" ProteinMPNN at the final step.
num_seqs: number of sequences to sample at the last step, using ProteinMPNN.
mpnn_batch_size: batch size for ProteinMPNN.
# Auxilliary arguments
tqdm_pbar: progress bar in interactive contexts.
return_last: return only the sampled structure and sequence.
return_aux: return a dict of everything associated with the sampling run.
"""
def get_denoiser(forward_fn, seq_mask, residue_index):
def x0_from_xt(
xt,
sigma,
x_self_cond,
s_self_cond,
crop_cond_coords,
run_mpnn,
use_mpnn,
): #! added use_mpnn
x0, s_logprobs, x_self_cond, s_self_cond = forward_fn(
noisy_coords=xt,
noise_level=sigma,
seq_mask=seq_mask,
residue_index=residue_index,
struct_self_cond=x_self_cond,
struct_crop_cond=crop_cond_coords,
seq_self_cond=s_self_cond,
run_mpnn_model=run_mpnn,
use_mpnn_model=use_mpnn,
)
return x0, s_logprobs, x_self_cond, s_self_cond
return x0_from_xt
def ode_step(
sigma_in,
sigma_next,
xt_in,
x0_pred,
guidance_in=None,
return_addl=False,
sidechain_mode=False,
gamma=0.0,
):
if sidechain_mode == False:
pass
elif sidechain_mode == True:
if gamma > 0:
t_hat = sigma_in + gamma * sigma_in
sigma_delta = torch.sqrt(t_hat**2 - sigma_in**2)
noisier_x = xt_in + utils.expand(
sigma_delta, xt_in
) * noise_scale * torch.randn_like(xt_in).to(xt_in)
xt_in = noisier_x * utils.expand(seq_mask, noisier_x)
sigma_in = t_hat
mask = (sigma_in > 0).float()
score = (xt_in - x0_pred) / utils.expand(sigma_in.clamp(min=1e-6), xt_in)
score = score * utils.expand(mask, score)
if use_reconstruction_guidance and guidance_in is not None:
guidance, guidance_mask, t = guidance_in
guidance = guidance * guidance_mask[..., None]
guidance_std = guidance[guidance_mask.bool()].var().sqrt()
score_std = score[guidance_mask.bool()].var().sqrt()
if anneal_guidance_scale:
recon_weight = guidance_scale * torch.tanh(
10 * torch.Tensor((1 - t,))
).to(score)
else:
recon_weight = guidance_scale
mask_ = torch.ones_like(score) * mask[..., None]
# normalizing score and guidance
score_norm = (score.pow(2) * mask_).sum((-1, -2, -3)) / mask_.sum(
(-1, -2, -3)
).clamp(min=1)
guidance_norm = (guidance.pow(2) * mask_).sum((-1, -2, -3)) / mask_.sum(
(-1, -2, -3)
).clamp(min=1)
guidance = guidance * utils.expand(
score_norm.sqrt() / guidance_norm.sqrt(), guidance
)
score = (score + guidance * recon_weight) / (1 + recon_weight)
if use_classifier_free_guidance and guidance_in is not None:
# guidance_in is the unconditional x0 (x0_pred is the conditional x0)
# guidance_scale = 1 + w from Ho paper
# ==0: use only unconditional score; <1: interpolate the scores;
# ==1: use only conditional score; >1: skew towards conditional score
uncond_x0, t = guidance_in
uncond_score = (xt_in - uncond_x0) / utils.expand(
sigma_in.clamp(min=1e-6), xt_in
)
uncond_score = uncond_score * utils.expand(mask, uncond_score)
if anneal_guidance_scale:
cfg_weight = guidance_scale * torch.tanh(
10 * torch.Tensor((t,))
).to(score)
else:
cfg_weight = guidance_scale
score = cfg_weight * score + (1 - cfg_weight) * uncond_score
step = score * step_scale * utils.expand(sigma_next - sigma_in, score)
new_xt = xt_in + step
if return_addl:
return new_xt, xt_in, score, sigma_in
return new_xt
def sample_aatype(logprobs):
# Top-p truncation
probs = F.softmax(logprobs.clone(), dim=-1)
sorted_prob, sorted_idxs = torch.sort(probs, descending=True)
cumsum_prob = torch.cumsum(sorted_prob, dim=-1)
sorted_indices_to_remove = cumsum_prob > top_p
sorted_indices_to_remove[..., 0] = 0
sorted_prob[sorted_indices_to_remove] = 0
orig_probs = torch.scatter(
torch.zeros_like(sorted_prob),
dim=-1,
index=sorted_idxs,
src=sorted_prob,
)
# Apply temperature and disallowed AAs and sample
assert temperature >= 0.0
scaled_logits = orig_probs.clamp(min=1e-9).log() / (temperature + 1e-4)
if disallow_aas:
unwanted_mask = torch.zeros(scaled_logits.shape[-1]).to(scaled_logits)
unwanted_mask[disallow_aas] = 1
scaled_logits -= unwanted_mask * 1e10
orig_probs = F.softmax(scaled_logits, dim=-1)
categorical = torch.distributions.Categorical(probs=orig_probs)
samp_aatype = categorical.sample()
return samp_aatype
def design_with_fullmpnn(
batched_coords,
seq_mask,
cond_aatype=None,
cond_seq_mask=None,
num_seqs=1,
mpnn_batch_size=1,
):
seq_lens = seq_mask.sum(-1).long()
if cond_aatype is not None and cond_seq_mask is not None:
input_aatype = cond_aatype
fixed_seqdes_lists = [
list(torch.arange(seq_mask.shape[-1])[cmask.cpu().bool()])
for cmask in cond_seq_mask
]
else:
input_aatype = [None] * seq_mask.shape[0]
fixed_seqdes_lists = [[]] * seq_mask.shape[0]
designed_seqs = [
evaluation.design_sequence(
c[: seq_lens[i]],
model=fullmpnn_model,
num_seqs=num_seqs,
mpnn_batch_size=mpnn_batch_size,
input_aatype=input_aatype[i],
fixed_positions_idxs=fixed_seqdes_lists[i],
)
for i, c in enumerate(batched_coords)
]
if num_seqs == 1:
designed_aatypes, _ = utils.batched_seq_to_aatype_and_mask(
designed_seqs, max_len=seq_mask.shape[-1], num_seqs=num_seqs
)
elif num_seqs > 1:
designed_aatypes = []
for i, c in enumerate(designed_seqs):
designed_aatype_i, _ = utils.batched_seq_to_aatype_and_mask(
c, max_len=seq_mask.shape[-1], num_seqs=num_seqs
)
designed_aatypes.append(designed_aatype_i)
designed_aatypes = torch.stack(
designed_aatypes
) # shape: (b, num_seqs, seq_len)
if cond_seq_mask is not None:
fixed_pos = cond_seq_mask.cpu().bool()
if num_seqs == 1:
assert torch.equal(
designed_aatypes[fixed_pos], cond_aatype.cpu()[fixed_pos]
), (designed_aatypes[0], cond_aatype[0], cond_seq_mask[0])
# Todo: Have to make assert statement for num_seqs > 1
return designed_aatypes
# Initialize masks/features
if seq_mask is None: # Sample random lengths
assert gt_aatype is None # Don't condition on aatype without seq_mask
seq_mask = self.make_seq_mask_for_sampling(
n_samples=n_samples,
min_len=min_len,
max_len=max_len,
)
if residue_index is None:
residue_index = torch.arange(seq_mask.shape[-1])
residue_index = repeat(residue_index, "n -> b n", b=seq_mask.shape[0])
residue_index = residue_index.to(seq_mask) * seq_mask
if use_fullmpnn or use_fullmpnn_for_final:
fullmpnn_model = protein_mpnn.get_mpnn_model(
path_to_model_weights=self.config.train.home_dir
+ "/ProteinMPNN/vanilla_model_weights",
device=self.device,
)
# Initialize noise schedule/parameters
to_batch_size = lambda x: x * torch.ones(seq_mask.shape[0]).to(self.device)
s_t_min = s_t_min * self.sigma_data
s_t_max = s_t_max * self.sigma_data
noise_schedule = partial(
diffusion.noise_schedule,
sigma_data=self.sigma_data,
s_min=s_min,
s_max=s_max,
rho=rho,
)
sigma = noise_schedule(1)
timesteps = torch.linspace(1, 0, n_steps + 1)
# Set up conditioning/guidance information
crop_cond_coords = None
if gt_coords is None:
coords_shape = seq_mask.shape + (self.n_atoms, 3)
xt = torch.randn(*coords_shape).to(self.device) * sigma
xt *= utils.expand(seq_mask, xt)
else:
assert gt_coords_traj is None
noise_levels = [to_batch_size(noise_schedule(t)) for t in timesteps]
# Assume gt_coords is pre-centered, but recenter it here to be safe.
if gt_cond_atom_mask is not None and motif_scaffolding:
if sidechain_mode == False:
bb_seq = (seq_mask * residue_constants.restype_order["G"]).long()
bb_atom_mask = utils.atom37_mask_from_aatype(bb_seq, seq_mask)
gt_cond_atom_mask *= bb_atom_mask
gt_coords *= gt_cond_atom_mask[..., None]
gt_coords = utils.center_coords_on_atom_mask(
gt_coords, gt_cond_atom_mask
)
crop_cond_coords = gt_coords * gt_cond_atom_mask[..., None]
elif sidechain_mode == True:
gt_coords = utils.center_coords_on_atom_mask(
gt_coords, gt_cond_atom_mask
)
crop_cond_coords = gt_coords * gt_cond_atom_mask[..., None]
gt_coords_traj = [
diffusion.noise_coords(gt_coords, nl) for nl in noise_levels
]
xt = gt_coords_traj[0]
fake_logits = repeat(seq_mask, "b n -> b n t", t=self.n_tokens)
s_hat = (sample_aatype(fake_logits) * seq_mask).long()
# Initialize superposition for all-atom sampling
if sidechain_mode:
b, n = seq_mask.shape[:2]
# Latest predicted x0 for sidechain superpositions
atom73_state_0 = torch.zeros(b, n, 73, 3).to(xt)
# Current state xt for sidechain superpositions (denoised to different levels)
atom73_state_t = torch.randn(b, n, 73, 3).to(xt) * sigma
# Noise level of xt
sigma73_last = torch.ones(b, n, 73).to(xt) * sigma
# Seqhat and mask used to choose sidechains for euler step (b, n)
s_hat = (seq_mask * 7).long()
mask37 = utils.atom37_mask_from_aatype(s_hat, seq_mask).bool()
mask73 = utils.atom73_mask_from_aatype(s_hat, seq_mask).bool()
begin_mpnn_step = int(n_steps * skip_mpnn_proportion)
# Convenience wrapper for denoiser network: predicts x0 from xt
d_theta = get_denoiser(self.forward, seq_mask, residue_index)
# Prepare to run sampling trajectory
sigma = to_batch_size(sigma)
x0 = None
x0_prev = None
x_self_cond = None
s_logprobs = None
s_self_cond = None
if tqdm_pbar is None:
tqdm_pbar = lambda x: x
torch.set_grad_enabled(False)
# *t_traj is the denoising trajectory; *0_traj is the evolution of predicted clean data
# s0 are aatype probs of shape (b n t); s_hat are discrete aatype of shape (b n)
xt_traj, x0_traj, st_traj, s0_traj = [], [], [], []
# Sampling trajectory
for i, t in tqdm_pbar(enumerate(iter(timesteps[1:]))):
# Set up noise levels
sigma_next = noise_schedule(t)
gamma = (
s_churn / n_steps
if (sigma_next >= s_t_min and sigma_next <= s_t_max)
else 0.0
)
sigma_next = to_batch_size(sigma_next)
if sidechain_mode:
# Fill in noise for masked positions since xt is initialized to zeros at each step
dummy_fill_noise = torch.randn_like(xt) * utils.expand(sigma, xt)
zero_atom_mask = utils.atom37_mask_from_aatype(s_hat, seq_mask)
dummy_fill_mask = 1 - zero_atom_mask[..., None]
xt = xt * zero_atom_mask[..., None] + dummy_fill_noise * dummy_fill_mask
else: # backbone only
bb_seq = (seq_mask * residue_constants.restype_order["G"]).long()
bb_atom_mask = utils.atom37_mask_from_aatype(bb_seq, seq_mask)
xt *= bb_atom_mask[..., None]
# Enable grad for reconstruction guidance
if use_reconstruction_guidance:
torch.set_grad_enabled(True)
xt.requires_grad = True
# Run denoising network
run_mpnn = sidechain_mode and i > begin_mpnn_step
use_mpnn = sidechain_mode and i > begin_mpnn_step
### Settings for deterministic & stochastic samplers
if not sidechain_mode:
if gamma > 0: # backbone stochastic sampler, karras scheme
sigma_hat = sigma + gamma * sigma
sigma_delta = torch.sqrt(sigma_hat**2 - sigma**2)
noiser_xt = xt + utils.expand(
sigma_delta, xt
) * noise_scale * torch.randn_like(xt).to(xt)
xt_hat = noiser_xt * utils.expand(seq_mask, noiser_xt)
xt_hat *= bb_atom_mask[..., None]
x0, s_logprobs, x_self_cond, s_self_cond = d_theta(
xt_hat,
sigma_hat,
x_self_cond,
s_self_cond,
crop_cond_coords,
run_mpnn,
use_mpnn,
)
else: # backbone deterministic sampler, karras scheme
x0, s_logprobs, x_self_cond, s_self_cond = d_theta(
xt,
sigma,
x_self_cond,
s_self_cond,
crop_cond_coords,
run_mpnn,
use_mpnn,
)
else: # all-atom stochastic & deterministic samplers, Euler-Maruyama scheme
x0, s_logprobs, x_self_cond, s_self_cond = d_theta(
xt,
sigma,
x_self_cond,
s_self_cond,
crop_cond_coords,
run_mpnn,
use_mpnn,
)
# Compute additional stuff for guidance
if motif_scaffolding and use_reconstruction_guidance:
loss = (x0 - gt_coords).pow(2).sum(-1)
loss = loss * gt_cond_atom_mask
loss = loss.sum() / gt_cond_atom_mask.sum().clamp(min=1)
loss = (
loss
* (sigma[0] ** 2 + self.sigma_data**2)
/ (sigma[0] ** 2 * self.sigma_data**2)
)
xt.retain_grad()
loss.backward()
guidance = xt.grad.clone()
xt.grad *= 0
torch.set_grad_enabled(False)
if use_classifier_free_guidance:
assert not use_reconstruction_guidance
uncond_x0, _, _, _ = self.forward(
noisy_coords=xt,
noise_level=sigma,
seq_mask=seq_mask,
residue_index=residue_index,
struct_self_cond=x_self_cond,
seq_self_cond=s_self_cond,
run_mpnn_model=run_mpnn,
use_mpnn_model=use_mpnn,
)
# Structure denoising step
if not sidechain_mode: # backbone
guidance_in = None
if (i + 1) / n_steps <= apply_cond_proportion:
if use_reconstruction_guidance:
bb_atom_mask37 = bb_atom_mask.bool()
guidance_in = (
guidance,
bb_atom_mask37.float(),
(i + 1) / n_steps,
)
elif use_classifier_free_guidance:
guidance_in = (uncond_x0, (i + 1) / n_steps)
if gamma > 0:
step_sigma_prev = (
torch.ones(*xt.shape[:-1]).to(xt) * sigma_hat[..., None, None]
)
step_sigma_prev *= bb_atom_mask # b, n, 37
step_sigma_next = sigma_next[..., None, None] # b, 1, 1
new_xt, noisier_x, old_score, sigma_in = ode_step(
step_sigma_prev,
step_sigma_next,
xt_hat,
x0,
guidance_in=guidance_in,
return_addl=True,
sidechain_mode=False,
)
elif gamma == 0:
step_sigma_prev = (
torch.ones(*xt.shape[:-1]).to(xt) * sigma[..., None, None]
)
step_sigma_prev *= bb_atom_mask # b, n, 37
step_sigma_next = sigma_next[..., None, None] # b, 1, 1
new_xt, noisier_x, old_score, sigma_in = ode_step(
step_sigma_prev,
step_sigma_next,
xt,
x0,
guidance_in=guidance_in,
return_addl=True,
sidechain_mode=False,
)
xt = new_xt
if i == n_steps - 1 and use_fullmpnn_for_final:
s_hat = design_with_fullmpnn(
xt,
seq_mask,
cond_aatype=gt_aatype,
cond_seq_mask=gt_cond_seq_mask,
num_seqs=num_seqs,
mpnn_batch_size=mpnn_batch_size,
).to(x0.device)
if (i + 1) / n_steps <= apply_cond_proportion:
if gt_cond_seq_mask is not None and gt_aatype is not None:
if len(s_hat.shape) == 2: # for steps 0~498
s_hat = (
1 - gt_cond_seq_mask
) * s_hat + gt_cond_seq_mask * gt_aatype
s_hat = s_hat.long()
else: # allatom
# Write x0 into atom73_state_0 for atoms corresponding to old seqhat
atom73_state_0[mask73] = x0[mask37]
# Determine sequence resampling probability
if anneal_seq_resampling_rate is not None:
step_time = 1 - (i - begin_mpnn_step) / max(
1, n_steps - begin_mpnn_step
)
if anneal_seq_resampling_rate == "linear":
resampling_rate = step_time
elif anneal_seq_resampling_rate == "cosine":
k = 2
resampling_rate = (
1 + np.cos(2 * np.pi * (step_time - 0.5))
) / k
resample_this_step = np.random.uniform() < resampling_rate
# Resample sequence or design with full ProteinMPNN
if i == n_steps - 1 and use_fullmpnn_for_final:
s_hat = design_with_fullmpnn(
xt,
seq_mask,
cond_aatype=None,
cond_seq_mask=None,
).to(x0.device)
elif anneal_seq_resampling_rate is None or resample_this_step:
if run_mpnn and use_fullmpnn:
s_hat = design_with_fullmpnn(
xt,
seq_mask,
cond_aatype=gt_aatype,
cond_seq_mask=gt_cond_seq_mask,
).to(x0.device)
else:
s_hat = sample_aatype(s_logprobs)
# Overwrite s_hat with any conditioning information
if (i + 1) / n_steps <= apply_cond_proportion and not stage2_sampling:
if gt_cond_seq_mask is not None and gt_aatype is not None:
s_hat = (
1 - gt_cond_seq_mask
) * s_hat + gt_cond_seq_mask * gt_aatype
s_hat = s_hat.long()
elif stage2_sampling:
if gt_cond_seq_mask is not None and gt_aatype is not None:
s_hat = (
1 - gt_cond_seq_mask
) * s_hat + gt_cond_seq_mask * gt_aatype
s_hat = s_hat.long()
# Set masks for collapsing superposition using new sequence
mask37 = utils.atom37_mask_from_aatype(s_hat, seq_mask).bool()
mask73 = utils.atom73_mask_from_aatype(s_hat, seq_mask).bool()
# Determine prev noise levels for atoms corresponding to new sequence
step_sigma_prev = (
torch.ones(*xt.shape[:-1]).to(xt) * sigma[..., None, None]
)
step_sigma_prev[mask37] = sigma73_last[mask73] # b, n, 37
step_sigma_next = sigma_next[..., None, None] # b, 1, 1
# Denoising step on atoms corresponding to new sequence