-
Notifications
You must be signed in to change notification settings - Fork 696
/
densenet_training_array.py
140 lines (124 loc) · 5.84 KB
/
densenet_training_array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
import monai
from monai.data import ImageDataset, DataLoader
from monai.transforms import EnsureChannelFirst, Compose, RandRotate90, Resize, ScaleIntensity
def main():
monai.config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
# IXI dataset as a demo, downloadable from https://brain-development.org/ixi-dataset/
# the path of ixi IXI-T1 dataset
data_path = os.sep.join([".", "workspace", "data", "medical", "ixi", "IXI-T1"])
images = [
"IXI314-IOP-0889-T1.nii.gz",
"IXI249-Guys-1072-T1.nii.gz",
"IXI609-HH-2600-T1.nii.gz",
"IXI173-HH-1590-T1.nii.gz",
"IXI020-Guys-0700-T1.nii.gz",
"IXI342-Guys-0909-T1.nii.gz",
"IXI134-Guys-0780-T1.nii.gz",
"IXI577-HH-2661-T1.nii.gz",
"IXI066-Guys-0731-T1.nii.gz",
"IXI130-HH-1528-T1.nii.gz",
"IXI607-Guys-1097-T1.nii.gz",
"IXI175-HH-1570-T1.nii.gz",
"IXI385-HH-2078-T1.nii.gz",
"IXI344-Guys-0905-T1.nii.gz",
"IXI409-Guys-0960-T1.nii.gz",
"IXI584-Guys-1129-T1.nii.gz",
"IXI253-HH-1694-T1.nii.gz",
"IXI092-HH-1436-T1.nii.gz",
"IXI574-IOP-1156-T1.nii.gz",
"IXI585-Guys-1130-T1.nii.gz",
]
images = [os.sep.join([data_path, f]) for f in images]
# 2 binary labels for gender classification: man and woman
labels = np.array([0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype=np.int64)
# Define transforms
train_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((96, 96, 96)), RandRotate90()])
val_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((96, 96, 96))])
# Define image dataset, data loader
check_ds = ImageDataset(image_files=images, labels=labels, transform=train_transforms)
check_loader = DataLoader(check_ds, batch_size=2, num_workers=2, pin_memory=torch.cuda.is_available())
im, label = monai.utils.misc.first(check_loader)
print(type(im), im.shape, label)
# create a training data loader
train_ds = ImageDataset(image_files=images[:10], labels=labels[:10], transform=train_transforms)
train_loader = DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=2, pin_memory=torch.cuda.is_available())
# create a validation data loader
val_ds = ImageDataset(image_files=images[-10:], labels=labels[-10:], transform=val_transforms)
val_loader = DataLoader(val_ds, batch_size=2, num_workers=2, pin_memory=torch.cuda.is_available())
# Create DenseNet121, CrossEntropyLoss and Adam optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = monai.networks.nets.DenseNet121(spatial_dims=3, in_channels=1, out_channels=2).to(device)
loss_function = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), 1e-5)
# start a typical PyTorch training
val_interval = 2
best_metric = -1
epoch_loss_values = list()
metric_values = list()
writer = SummaryWriter()
for epoch in range(5):
print("-" * 10)
print(f"epoch {epoch + 1}/{5}")
model.train()
epoch_loss = 0
step = 0
for batch_data in train_loader:
step += 1
inputs, labels = batch_data[0].to(device), batch_data[1].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_len = len(train_ds) // train_loader.batch_size
print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step)
epoch_loss /= step
epoch_loss_values.append(epoch_loss)
print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")
if (epoch + 1) % val_interval == 0:
model.eval()
with torch.no_grad():
num_correct = 0.0
metric_count = 0
for val_data in val_loader:
val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
val_outputs = model(val_images)
value = torch.eq(val_outputs.argmax(dim=1), val_labels)
metric_count += len(value)
num_correct += value.sum().item()
metric = num_correct / metric_count
metric_values.append(metric)
if metric > best_metric:
best_metric = metric
best_metric_epoch = epoch + 1
torch.save(model.state_dict(), "best_metric_model_classification3d_array.pth")
print("saved new best metric model")
print(
"current epoch: {} current accuracy: {:.4f} best accuracy: {:.4f} at epoch {}".format(
epoch + 1, metric, best_metric, best_metric_epoch
)
)
writer.add_scalar("val_accuracy", metric, epoch + 1)
print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}")
writer.close()
if __name__ == "__main__":
main()