diff --git a/monai/data/image_writer.py b/monai/data/image_writer.py index 0274c44900..db0bfa96b8 100644 --- a/monai/data/image_writer.py +++ b/monai/data/image_writer.py @@ -373,13 +373,14 @@ class ITKWriter(ImageWriter): output_dtype: DtypeLike = None channel_dim: int | None - def __init__(self, output_dtype: DtypeLike = np.float32, affine_lps_to_ras: bool = True, **kwargs): + def __init__(self, output_dtype: DtypeLike = np.float32, affine_lps_to_ras: bool | None = True, **kwargs): """ Args: output_dtype: output data type. affine_lps_to_ras: whether to convert the affine matrix from "LPS" to "RAS". Defaults to ``True``. Set to ``True`` to be consistent with ``NibabelWriter``, otherwise the affine matrix is assumed already in the ITK convention. + Set to ``None`` to use ``data_array.meta[MetaKeys.SPACE]`` to determine the flag. kwargs: keyword arguments passed to ``ImageWriter``. The constructor will create ``self.output_dtype`` internally. @@ -406,7 +407,7 @@ def set_data_array( kwargs: keyword arguments passed to ``self.convert_to_channel_last``, currently support ``spatial_ndim`` and ``contiguous``, defauting to ``3`` and ``False`` respectively. """ - _r = len(data_array.shape) + n_chns = data_array.shape[channel_dim] if channel_dim is not None else 0 self.data_obj = self.convert_to_channel_last( data=data_array, channel_dim=channel_dim, @@ -414,9 +415,12 @@ def set_data_array( spatial_ndim=kwargs.pop("spatial_ndim", 3), contiguous=kwargs.pop("contiguous", True), ) - self.channel_dim = ( - channel_dim if self.data_obj is not None and len(self.data_obj.shape) >= _r else None - ) # channel dim is at the end + self.channel_dim = -1 # in most cases, the data is set to channel last + if squeeze_end_dims and n_chns <= 1: # num_channel==1 squeezed + self.channel_dim = None + if not squeeze_end_dims and n_chns < 1: # originally no channel and convert_to_channel_last added a channel + self.channel_dim = None + self.data_obj = self.data_obj[..., 0] def set_metadata(self, meta_dict: Mapping | None = None, resample: bool = True, **options): """ @@ -478,7 +482,7 @@ def create_backend_obj( channel_dim: int | None = 0, affine: NdarrayOrTensor | None = None, dtype: DtypeLike = np.float32, - affine_lps_to_ras: bool = True, + affine_lps_to_ras: bool | None = True, **kwargs, ): """ @@ -492,14 +496,18 @@ def create_backend_obj( affine_lps_to_ras: whether to convert the affine matrix from "LPS" to "RAS". Defaults to ``True``. Set to ``True`` to be consistent with ``NibabelWriter``, otherwise the affine matrix is assumed already in the ITK convention. + Set to ``None`` to use ``data_array.meta[MetaKeys.SPACE]`` to determine the flag. kwargs: keyword arguments. Current `itk.GetImageFromArray` will read ``ttype`` from this dictionary. see also: - https://github.com/InsightSoftwareConsortium/ITK/blob/v5.2.1/Wrapping/Generators/Python/itk/support/extras.py#L389 + """ - if isinstance(data_array, MetaTensor) and data_array.meta.get(MetaKeys.SPACE, SpaceKeys.LPS) != SpaceKeys.LPS: - affine_lps_to_ras = False # do the converting from LPS to RAS only if the space type is currently LPS. + if isinstance(data_array, MetaTensor) and affine_lps_to_ras is None: + affine_lps_to_ras = ( + data_array.meta.get(MetaKeys.SPACE, SpaceKeys.LPS) != SpaceKeys.LPS + ) # do the converting from LPS to RAS only if the space type is currently LPS. data_array = super().create_backend_obj(data_array) _is_vec = channel_dim is not None if _is_vec: diff --git a/monai/networks/layers/filtering.py b/monai/networks/layers/filtering.py index ae43eb3f73..0ff1187dcc 100644 --- a/monai/networks/layers/filtering.py +++ b/monai/networks/layers/filtering.py @@ -32,13 +32,10 @@ class BilateralFilter(torch.autograd.Function): Args: input: input tensor. - spatial_sigma: the standard deviation of the spatial blur. Higher values can hurt performance when not using the approximate method (see fast approx). - color_sigma: the standard deviation of the color blur. Lower values preserve edges better whilst higher values tend to a simple gaussian spatial blur. - fast approx: This flag chooses between two implementations. The approximate method may produce artifacts in some scenarios whereas the exact solution may be intolerably slow for high spatial standard deviations. @@ -76,9 +73,7 @@ class PHLFilter(torch.autograd.Function): Args: input: input tensor to be filtered. - features: feature tensor used to filter the input. - sigmas: the standard deviations of each feature in the filter. Returns: @@ -114,13 +109,9 @@ class TrainableBilateralFilterFunction(torch.autograd.Function): Args: input: input tensor to be filtered. - sigma x: trainable standard deviation of the spatial filter kernel in x direction. - sigma y: trainable standard deviation of the spatial filter kernel in y direction. - sigma z: trainable standard deviation of the spatial filter kernel in z direction. - color sigma: trainable standard deviation of the intensity range kernel. This filter parameter determines the degree of edge preservation. @@ -200,11 +191,9 @@ class TrainableBilateralFilter(torch.nn.Module): Args: input: input tensor to be filtered. - spatial_sigma: tuple (sigma_x, sigma_y, sigma_z) initializing the trainable standard deviations of the spatial filter kernels. Tuple length must equal the number of spatial input dimensions. - color_sigma: trainable standard deviation of the intensity range kernel. This filter parameter determines the degree of edge preservation. @@ -280,15 +269,10 @@ class TrainableJointBilateralFilterFunction(torch.autograd.Function): Args: input: input tensor to be filtered. - guide: guidance image tensor to be used during filtering. - sigma x: trainable standard deviation of the spatial filter kernel in x direction. - sigma y: trainable standard deviation of the spatial filter kernel in y direction. - sigma z: trainable standard deviation of the spatial filter kernel in z direction. - color sigma: trainable standard deviation of the intensity range kernel. This filter parameter determines the degree of edge preservation. @@ -373,13 +357,10 @@ class TrainableJointBilateralFilter(torch.nn.Module): Args: input: input tensor to be filtered. - guide: guidance image tensor to be used during filtering. - spatial_sigma: tuple (sigma_x, sigma_y, sigma_z) initializing the trainable standard deviations of the spatial filter kernels. Tuple length must equal the number of spatial input dimensions. - color_sigma: trainable standard deviation of the intensity range kernel. This filter parameter determines the degree of edge preservation. diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index 56d284d46f..a21a070b15 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -40,6 +40,7 @@ PydicomReader, ) from monai.data.meta_tensor import MetaTensor +from monai.data.utils import is_no_channel from monai.transforms.transform import Transform from monai.transforms.utility.array import EnsureChannelFirst from monai.utils import GridSamplePadMode @@ -440,6 +441,7 @@ def set_options(self, init_kwargs=None, data_kwargs=None, meta_kwargs=None, writ self.meta_kwargs.update(meta_kwargs) if write_kwargs is not None: self.write_kwargs.update(write_kwargs) + return self def __call__(self, img: torch.Tensor | np.ndarray, meta_data: dict | None = None): """ @@ -450,8 +452,15 @@ def __call__(self, img: torch.Tensor | np.ndarray, meta_data: dict | None = None meta_data = img.meta if isinstance(img, MetaTensor) else meta_data kw = self.fname_formatter(meta_data, self) filename = self.folder_layout.filename(**kw) - if meta_data and len(ensure_tuple(meta_data.get("spatial_shape", ()))) == len(img.shape): - self.data_kwargs["channel_dim"] = None + if meta_data: + meta_spatial_shape = ensure_tuple(meta_data.get("spatial_shape", ())) + if len(meta_spatial_shape) >= len(img.shape): + self.data_kwargs["channel_dim"] = None + elif is_no_channel(self.data_kwargs.get("channel_dim")): + warnings.warn( + f"data shape {img.shape} (with spatial shape {meta_spatial_shape}) " + f"but SaveImage `channel_dim` is set to {self.data_kwargs.get('channel_dim')} no channel." + ) err = [] for writer_cls in self.writers: diff --git a/monai/transforms/io/dictionary.py b/monai/transforms/io/dictionary.py index ec2e5e403d..47dfbf7e28 100644 --- a/monai/transforms/io/dictionary.py +++ b/monai/transforms/io/dictionary.py @@ -296,6 +296,7 @@ def __init__( def set_options(self, init_kwargs=None, data_kwargs=None, meta_kwargs=None, write_kwargs=None): self.saver.set_options(init_kwargs, data_kwargs, meta_kwargs, write_kwargs) + return self def __call__(self, data): d = dict(data) diff --git a/tests/test_auto3dseg_ensemble.py b/tests/test_auto3dseg_ensemble.py index 979ebf744b..0f41717a4a 100644 --- a/tests/test_auto3dseg_ensemble.py +++ b/tests/test_auto3dseg_ensemble.py @@ -70,7 +70,7 @@ @skip_if_quick -@SkipIfBeforePyTorchVersion((1, 10, 0)) +@SkipIfBeforePyTorchVersion((1, 13, 0)) @unittest.skipIf(not has_tb, "no tensorboard summary writer") class TestEnsembleBuilder(unittest.TestCase): def setUp(self) -> None: diff --git a/tests/test_image_rw.py b/tests/test_image_rw.py index 42f9b0c4e7..79e51c53eb 100644 --- a/tests/test_image_rw.py +++ b/tests/test_image_rw.py @@ -167,7 +167,7 @@ def nrrd_rw(self, test_data, reader, writer, dtype, resample=True): filepath = f"testfile_{ndim}d" saver = SaveImage( output_dir=self.test_dir, output_ext=output_ext, resample=resample, separate_folder=False, writer=writer - ) + ).set_options(init_kwargs={"affine_lps_to_ras": True}) test_data = MetaTensor( p(test_data), meta={"filename_or_obj": f"{filepath}{output_ext}", "spatial_shape": test_data.shape} ) diff --git a/tests/test_integration_autorunner.py b/tests/test_integration_autorunner.py index 84583852ef..e6d088116b 100644 --- a/tests/test_integration_autorunner.py +++ b/tests/test_integration_autorunner.py @@ -69,7 +69,7 @@ @skip_if_quick -@SkipIfBeforePyTorchVersion((1, 9, 1)) +@SkipIfBeforePyTorchVersion((1, 13, 0)) @unittest.skipIf(not has_tb, "no tensorboard summary writer") class TestAutoRunner(unittest.TestCase): def setUp(self) -> None: diff --git a/tests/test_integration_gpu_customization.py b/tests/test_integration_gpu_customization.py index 4c8772ea50..1defb8545d 100644 --- a/tests/test_integration_gpu_customization.py +++ b/tests/test_integration_gpu_customization.py @@ -69,7 +69,7 @@ @skip_if_quick -@SkipIfBeforePyTorchVersion((1, 9, 1)) +@SkipIfBeforePyTorchVersion((1, 13, 0)) @unittest.skipIf(not has_tb, "no tensorboard summary writer") class TestEnsembleGpuCustomization(unittest.TestCase): def setUp(self) -> None: diff --git a/tests/test_itk_writer.py b/tests/test_itk_writer.py index 869ec7b947..c9707b1b5a 100644 --- a/tests/test_itk_writer.py +++ b/tests/test_itk_writer.py @@ -52,6 +52,17 @@ def test_rgb(self): np.testing.assert_allclose(output.shape, (5, 5, 3)) np.testing.assert_allclose(output[1, 1], (5, 5, 4)) + def test_no_channel(self): + with tempfile.TemporaryDirectory() as tempdir: + fname = os.path.join(tempdir, "testing.nii.gz") + writer = ITKWriter(output_dtype=np.uint8) + writer.set_data_array(np.arange(48).reshape(3, 4, 4), channel_dim=None) + writer.write(fname) + + output = np.asarray(itk.imread(fname)) + np.testing.assert_allclose(output.shape, (4, 4, 3)) + np.testing.assert_allclose(output[1, 1], (5, 21, 37)) + if __name__ == "__main__": unittest.main() diff --git a/tests/testing_data/integration_answers.py b/tests/testing_data/integration_answers.py index b1f115e1d3..559cbe8a39 100644 --- a/tests/testing_data/integration_answers.py +++ b/tests/testing_data/integration_answers.py @@ -14,6 +14,62 @@ import numpy as np EXPECTED_ANSWERS = [ + { # test answers for PyTorch 2.0 + "integration_segmentation_3d": { + "losses": [ + 0.5430086106061935, + 0.47010003924369814, + 0.4453376233577728, + 0.451901963353157, + 0.4398456811904907, + 0.43450237810611725, + ], + "best_metric": 0.9329540133476257, + "infer_metric": 0.9330471754074097, + "output_sums": [ + 0.14212507078546172, + 0.15199039602949577, + 0.15133471939291526, + 0.13967984811021827, + 0.18831614355832332, + 0.1694076821827231, + 0.14663931509271658, + 0.16788710637623733, + 0.1569452710008219, + 0.17907130698392254, + 0.16244092698688475, + 0.1679350345855819, + 0.14437674754879065, + 0.11355098478396568, + 0.161660275855964, + 0.20082478187698194, + 0.17575491677668853, + 0.0974593860605401, + 0.19366775441539907, + 0.20293016863409002, + 0.19610441127101647, + 0.20812173772459808, + 0.16184212006067655, + 0.13185211452732482, + 0.14824716961304257, + 0.14229818359602905, + 0.23141282114085215, + 0.1609268635938338, + 0.14825300029123678, + 0.10286266811772046, + 0.11873484714087054, + 0.1296615212510262, + 0.11386621034856693, + 0.15203351148564773, + 0.16300823766585265, + 0.1936726544485426, + 0.2227251185536394, + 0.18067789917505797, + 0.19005874127683337, + 0.07462121515702229, + ], + } + }, { # test answers for PyTorch 1.12.1 "integration_classification_2d": { "losses": [0.776835828070428, 0.1615355300011149, 0.07492854832938523, 0.04591309238865877],