-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathutils.py
267 lines (215 loc) · 11.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Union
import numpy as np
import torch
from monai.config import IgniteInfo, KeysCollection
from monai.utils import deprecated, ensure_tuple, get_torch_version_tuple, min_version, optional_import
idist, _ = optional_import("ignite", IgniteInfo.OPT_IMPORT_VERSION, min_version, "distributed")
if TYPE_CHECKING:
from ignite.engine import Engine
else:
Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine")
__all__ = [
"stopping_fn_from_metric",
"stopping_fn_from_loss",
"evenly_divisible_all_gather",
"string_list_all_gather",
"write_metrics_reports",
"from_engine",
]
def stopping_fn_from_metric(metric_name: str):
"""
Returns a stopping function for ignite.handlers.EarlyStopping using the given metric name.
"""
def stopping_fn(engine: Engine):
return engine.state.metrics[metric_name]
return stopping_fn
def stopping_fn_from_loss():
"""
Returns a stopping function for ignite.handlers.EarlyStopping using the loss value.
"""
def stopping_fn(engine: Engine):
return -engine.state.output
return stopping_fn
@deprecated(since="0.6.0", removed="0.7.0", msg_suffix="The API had been moved to monai.utils module.")
def evenly_divisible_all_gather(data: torch.Tensor) -> torch.Tensor:
"""
Utility function for distributed data parallel to pad at first dim to make it evenly divisible and all_gather.
Args:
data: source tensor to pad and execute all_gather in distributed data parallel.
Note:
The input data on different ranks must have exactly same `dtype`.
"""
if not isinstance(data, torch.Tensor):
raise ValueError("input data must be PyTorch Tensor.")
if idist.get_world_size() <= 1:
return data
# make sure the data is evenly-divisible on multi-GPUs
length = data.shape[0]
all_lens = idist.all_gather(length)
max_len = max(all_lens)
if length < max_len:
size = [max_len - length] + list(data.shape[1:])
data = torch.cat([data, data.new_full(size, 0)], dim=0)
# all gather across all processes
data = idist.all_gather(data)
# delete the padding NaN items
return torch.cat([data[i * max_len : i * max_len + l, ...] for i, l in enumerate(all_lens)], dim=0)
@deprecated(since="0.6.0", removed="0.7.0", msg_suffix="The API had been moved to monai.utils module.")
def string_list_all_gather(strings: List[str]) -> List[str]:
"""
Utility function for distributed data parallel to all gather a list of strings.
Note that if the item in `strings` is longer than 1024 chars, it will be truncated to 1024:
https://pytorch.org/ignite/v0.4.5/distributed.html#ignite.distributed.utils.all_gather.
Args:
strings: a list of strings to all gather.
"""
world_size = idist.get_world_size()
if world_size <= 1:
return strings
result: List[List[str]] = [[] for _ in range(world_size)]
# get length of strings
length = len(strings)
all_lens = idist.all_gather(length)
max_len = max(all_lens)
# pad the item to make sure the same length
if length < max_len:
strings += ["" for _ in range(max_len - length)]
if get_torch_version_tuple() <= (1, 6):
raise RuntimeError("string all_gather can not be supported in PyTorch < 1.7.0.")
for s in strings:
gathered = idist.all_gather(s)
for i, g in enumerate(gathered):
if len(g) > 0:
result[i].append(g)
return [i for k in result for i in k]
def write_metrics_reports(
save_dir: str,
images: Optional[Sequence[str]],
metrics: Optional[Dict[str, Union[torch.Tensor, np.ndarray]]],
metric_details: Optional[Dict[str, Union[torch.Tensor, np.ndarray]]],
summary_ops: Optional[Union[str, Sequence[str]]],
deli: str = "\t",
output_type: str = "csv",
):
"""
Utility function to write the metrics into files, contains 3 parts:
1. if `metrics` dict is not None, write overall metrics into file, every line is a metric name and value pair.
2. if `metric_details` dict is not None, write raw metric data of every image into file, every line for 1 image.
3. if `summary_ops` is not None, compute summary based on operations on `metric_details` and write to file.
Args:
save_dir: directory to save all the metrics reports.
images: name or path of every input image corresponding to the metric_details data.
if None, will use index number as the filename of every input image.
metrics: a dictionary of (metric name, metric value) pairs.
metric_details: a dictionary of (metric name, metric raw values) pairs, usually, it comes from metrics
computation, for example, the raw value can be the mean_dice of every channel of every input image.
summary_ops: expected computation operations to generate the summary report.
it can be: None, "*" or list of strings, default to None.
None - don't generate summary report for every expected metric_details.
"*" - generate summary report for every metric_details with all the supported operations.
list of strings - generate summary report for every metric_details with specified operations, they
should be within list: ["mean", "median", "max", "min", "<int>percentile", "std", "notnans"].
the number in "<int>percentile" should be [0, 100], like: "15percentile". default: "90percentile".
for more details, please check: https://numpy.org/doc/stable/reference/generated/numpy.nanpercentile.html.
note that: for the overall summary, it computes `nanmean` of all classes for each image first,
then compute summary. example of the generated summary report::
class mean median max 5percentile 95percentile notnans
class0 6.0000 6.0000 7.0000 5.1000 6.9000 2.0000
class1 6.0000 6.0000 6.0000 6.0000 6.0000 1.0000
mean 6.2500 6.2500 7.0000 5.5750 6.9250 2.0000
deli: the delimiter character in the file, default to "\t".
output_type: expected output file type, supported types: ["csv"], default to "csv".
"""
if output_type.lower() != "csv":
raise ValueError(f"unsupported output type: {output_type}.")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if metrics is not None and len(metrics) > 0:
with open(os.path.join(save_dir, "metrics.csv"), "w") as f:
for k, v in metrics.items():
f.write(f"{k}{deli}{str(v)}\n")
if metric_details is not None and len(metric_details) > 0:
for k, v in metric_details.items():
if isinstance(v, torch.Tensor):
v = v.cpu().numpy()
if v.ndim == 0:
# reshape to [1, 1] if no batch and class dims
v = v.reshape((1, 1))
elif v.ndim == 1:
# reshape to [N, 1] if no class dim
v = v.reshape((-1, 1))
# add the average value of all classes to v
class_labels = ["class" + str(i) for i in range(v.shape[1])] + ["mean"]
v = np.concatenate([v, np.nanmean(v, axis=1, keepdims=True)], axis=1)
with open(os.path.join(save_dir, f"{k}_raw.csv"), "w") as f:
f.write(f"filename{deli}{deli.join(class_labels)}\n")
for i, b in enumerate(v):
f.write(f"{images[i] if images is not None else str(i)}{deli}{deli.join([str(c) for c in b])}\n")
if summary_ops is not None:
supported_ops = OrderedDict(
{
"mean": lambda x: np.nanmean(x),
"median": lambda x: np.nanmedian(x),
"max": lambda x: np.nanmax(x),
"min": lambda x: np.nanmin(x),
"90percentile": lambda x: np.nanpercentile(x[0], x[1]),
"std": lambda x: np.nanstd(x),
"notnans": lambda x: (~np.isnan(x)).sum(),
}
)
ops = ensure_tuple(summary_ops)
if "*" in ops:
ops = tuple(supported_ops.keys())
def _compute_op(op: str, d: np.ndarray):
if not op.endswith("percentile"):
return supported_ops[op](d)
threshold = int(op.split("percentile")[0])
return supported_ops["90percentile"]((d, threshold))
with open(os.path.join(save_dir, f"{k}_summary.csv"), "w") as f:
f.write(f"class{deli}{deli.join(ops)}\n")
for i, c in enumerate(np.transpose(v)):
f.write(f"{class_labels[i]}{deli}{deli.join([f'{_compute_op(k, c):.4f}' for k in ops])}\n")
def from_engine(keys: KeysCollection, first: bool = False):
"""
Utility function to simplify the `batch_transform` or `output_transform` args of ignite components
when handling dictionary or list of dictionaries(for example: `engine.state.batch` or `engine.state.output`).
Users only need to set the expected keys, then it will return a callable function to extract data from
dictionary and construct a tuple respectively.
If data is a list of dictionaries after decollating, extract expected keys and construct lists respectively,
for example, if data is `[{"A": 1, "B": 2}, {"A": 3, "B": 4}]`, from_engine(["A", "B"]): `([1, 3], [2, 4])`.
It can help avoid a complicated `lambda` function and make the arg of metrics more straight-forward.
For example, set the first key as the prediction and the second key as label to get the expected data
from `engine.state.output` for a metric::
from monai.handlers import MeanDice, from_engine
metric = MeanDice(
include_background=False,
output_transform=from_engine(["pred", "label"])
)
Args:
keys: specified keys to extract data from dictionary or decollated list of dictionaries.
first: whether only extract specified keys from the first item if input data is a list of dictionaries,
it's used to extract the scalar data which doesn't have batch dim and was replicated into every
dictionary when decollating, like `loss`, etc.
"""
keys = ensure_tuple(keys)
def _wrapper(data):
if isinstance(data, dict):
return tuple(data[k] for k in keys)
elif isinstance(data, list) and isinstance(data[0], dict):
# if data is a list of dictionaries, extract expected keys and construct lists,
# if `first=True`, only extract keys from the first item of the list
ret = [data[0][k] if first else [i[k] for i in data] for k in keys]
return tuple(ret) if len(ret) > 1 else ret[0]
return _wrapper