-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
array.py
1029 lines (841 loc) · 44 KB
/
array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A collection of "vanilla" transforms for the model output tensors.
"""
from __future__ import annotations
import warnings
from collections.abc import Callable, Iterable, Sequence
import numpy as np
import torch
import torch.nn.functional as F
from monai.config.type_definitions import NdarrayOrTensor
from monai.data.meta_obj import get_track_meta
from monai.data.meta_tensor import MetaTensor
from monai.networks import one_hot
from monai.networks.layers import GaussianFilter, apply_filter, separable_filtering
from monai.transforms.inverse import InvertibleTransform
from monai.transforms.transform import Transform
from monai.transforms.utility.array import ToTensor
from monai.transforms.utils import (
convert_applied_interp_mode,
distance_transform_edt,
fill_holes,
get_largest_connected_component_mask,
get_unique_labels,
remove_small_objects,
)
from monai.transforms.utils_pytorch_numpy_unification import unravel_index
from monai.utils import TransformBackends, convert_data_type, convert_to_tensor, ensure_tuple, look_up_option
from monai.utils.type_conversion import convert_to_dst_type
__all__ = [
"Activations",
"AsDiscrete",
"FillHoles",
"KeepLargestConnectedComponent",
"RemoveSmallObjects",
"LabelFilter",
"LabelToContour",
"MeanEnsemble",
"ProbNMS",
"SobelGradients",
"VoteEnsemble",
"Invert",
"DistanceTransformEDT",
]
class Activations(Transform):
"""
Activation operations, typically `Sigmoid` or `Softmax`.
Args:
sigmoid: whether to execute sigmoid function on model output before transform.
Defaults to ``False``.
softmax: whether to execute softmax function on model output before transform.
Defaults to ``False``.
other: callable function to execute other activation layers, for example:
`other = lambda x: torch.tanh(x)`. Defaults to ``None``.
kwargs: additional parameters to `torch.softmax` (used when ``softmax=True``).
Defaults to ``dim=0``, unrecognized parameters will be ignored.
Raises:
TypeError: When ``other`` is not an ``Optional[Callable]``.
"""
backend = [TransformBackends.TORCH]
def __init__(self, sigmoid: bool = False, softmax: bool = False, other: Callable | None = None, **kwargs) -> None:
self.sigmoid = sigmoid
self.softmax = softmax
self.kwargs = kwargs
if other is not None and not callable(other):
raise TypeError(f"other must be None or callable but is {type(other).__name__}.")
self.other = other
def __call__(
self,
img: NdarrayOrTensor,
sigmoid: bool | None = None,
softmax: bool | None = None,
other: Callable | None = None,
) -> NdarrayOrTensor:
"""
Args:
sigmoid: whether to execute sigmoid function on model output before transform.
Defaults to ``self.sigmoid``.
softmax: whether to execute softmax function on model output before transform.
Defaults to ``self.softmax``.
other: callable function to execute other activation layers, for example:
`other = torch.tanh`. Defaults to ``self.other``.
Raises:
ValueError: When ``sigmoid=True`` and ``softmax=True``. Incompatible values.
TypeError: When ``other`` is not an ``Optional[Callable]``.
ValueError: When ``self.other=None`` and ``other=None``. Incompatible values.
"""
if sigmoid and softmax:
raise ValueError("Incompatible values: sigmoid=True and softmax=True.")
if other is not None and not callable(other):
raise TypeError(f"other must be None or callable but is {type(other).__name__}.")
# convert to float as activation must operate on float tensor
img = convert_to_tensor(img, track_meta=get_track_meta())
img_t, *_ = convert_data_type(img, torch.Tensor, dtype=torch.float)
if sigmoid or self.sigmoid:
img_t = torch.sigmoid(img_t)
if softmax or self.softmax:
img_t = torch.softmax(img_t, dim=self.kwargs.get("dim", 0))
act_func = self.other if other is None else other
if act_func is not None:
img_t = act_func(img_t)
out, *_ = convert_to_dst_type(img_t, img)
return out
class AsDiscrete(Transform):
"""
Convert the input tensor/array into discrete values, possible operations are:
- `argmax`.
- threshold input value to binary values.
- convert input value to One-Hot format (set ``to_one_hot=N``, `N` is the number of classes).
- round the value to the closest integer.
Args:
argmax: whether to execute argmax function on input data before transform.
Defaults to ``False``.
to_onehot: if not None, convert input data into the one-hot format with specified number of classes.
Defaults to ``None``.
threshold: if not None, threshold the float values to int number 0 or 1 with specified threshold.
Defaults to ``None``.
rounding: if not None, round the data according to the specified option,
available options: ["torchrounding"].
kwargs: additional parameters to `torch.argmax`, `monai.networks.one_hot`.
currently ``dim``, ``keepdim``, ``dtype`` are supported, unrecognized parameters will be ignored.
These default to ``0``, ``True``, ``torch.float`` respectively.
Example:
>>> transform = AsDiscrete(argmax=True)
>>> print(transform(np.array([[[0.0, 1.0]], [[2.0, 3.0]]])))
# [[[1.0, 1.0]]]
>>> transform = AsDiscrete(threshold=0.6)
>>> print(transform(np.array([[[0.0, 0.5], [0.8, 3.0]]])))
# [[[0.0, 0.0], [1.0, 1.0]]]
>>> transform = AsDiscrete(argmax=True, to_onehot=2, threshold=0.5)
>>> print(transform(np.array([[[0.0, 1.0]], [[2.0, 3.0]]])))
# [[[0.0, 0.0]], [[1.0, 1.0]]]
"""
backend = [TransformBackends.TORCH]
def __init__(
self,
argmax: bool = False,
to_onehot: int | None = None,
threshold: float | None = None,
rounding: str | None = None,
**kwargs,
) -> None:
self.argmax = argmax
if isinstance(to_onehot, bool): # for backward compatibility
raise ValueError("`to_onehot=True/False` is deprecated, please use `to_onehot=num_classes` instead.")
self.to_onehot = to_onehot
self.threshold = threshold
self.rounding = rounding
self.kwargs = kwargs
def __call__(
self,
img: NdarrayOrTensor,
argmax: bool | None = None,
to_onehot: int | None = None,
threshold: float | None = None,
rounding: str | None = None,
) -> NdarrayOrTensor:
"""
Args:
img: the input tensor data to convert, if no channel dimension when converting to `One-Hot`,
will automatically add it.
argmax: whether to execute argmax function on input data before transform.
Defaults to ``self.argmax``.
to_onehot: if not None, convert input data into the one-hot format with specified number of classes.
Defaults to ``self.to_onehot``.
threshold: if not None, threshold the float values to int number 0 or 1 with specified threshold value.
Defaults to ``self.threshold``.
rounding: if not None, round the data according to the specified option,
available options: ["torchrounding"].
"""
if isinstance(to_onehot, bool):
raise ValueError("`to_onehot=True/False` is deprecated, please use `to_onehot=num_classes` instead.")
img = convert_to_tensor(img, track_meta=get_track_meta())
img_t, *_ = convert_data_type(img, torch.Tensor)
argmax = self.argmax if argmax is None else argmax
if argmax:
img_t = torch.argmax(img_t, dim=self.kwargs.get("dim", 0), keepdim=self.kwargs.get("keepdim", True))
to_onehot = self.to_onehot if to_onehot is None else to_onehot
if to_onehot is not None:
if not isinstance(to_onehot, int):
raise ValueError(f"the number of classes for One-Hot must be an integer, got {type(to_onehot)}.")
img_t = one_hot(
img_t, num_classes=to_onehot, dim=self.kwargs.get("dim", 0), dtype=self.kwargs.get("dtype", torch.float)
)
threshold = self.threshold if threshold is None else threshold
if threshold is not None:
img_t = img_t >= threshold
rounding = self.rounding if rounding is None else rounding
if rounding is not None:
look_up_option(rounding, ["torchrounding"])
img_t = torch.round(img_t)
img, *_ = convert_to_dst_type(img_t, img, dtype=self.kwargs.get("dtype", torch.float))
return img
class KeepLargestConnectedComponent(Transform):
"""
Keeps only the largest connected component in the image.
This transform can be used as a post-processing step to clean up over-segment areas in model output.
The input is assumed to be a channel-first PyTorch Tensor:
1) For not OneHot format data, the values correspond to expected labels,
0 will be treated as background and the over-segment pixels will be set to 0.
2) For OneHot format data, the values should be 0, 1 on each labels,
the over-segment pixels will be set to 0 in its channel.
For example:
Use with applied_labels=[1], is_onehot=False, connectivity=1::
[1, 0, 0] [0, 0, 0]
[0, 1, 1] => [0, 1 ,1]
[0, 1, 1] [0, 1, 1]
Use with applied_labels=[1, 2], is_onehot=False, independent=False, connectivity=1::
[0, 0, 1, 0 ,0] [0, 0, 1, 0 ,0]
[0, 2, 1, 1 ,1] [0, 2, 1, 1 ,1]
[1, 2, 1, 0 ,0] => [1, 2, 1, 0 ,0]
[1, 2, 0, 1 ,0] [1, 2, 0, 0 ,0]
[2, 2, 0, 0 ,2] [2, 2, 0, 0 ,0]
Use with applied_labels=[1, 2], is_onehot=False, independent=True, connectivity=1::
[0, 0, 1, 0 ,0] [0, 0, 1, 0 ,0]
[0, 2, 1, 1 ,1] [0, 2, 1, 1 ,1]
[1, 2, 1, 0 ,0] => [0, 2, 1, 0 ,0]
[1, 2, 0, 1 ,0] [0, 2, 0, 0 ,0]
[2, 2, 0, 0 ,2] [2, 2, 0, 0 ,0]
Use with applied_labels=[1, 2], is_onehot=False, independent=False, connectivity=2::
[0, 0, 1, 0 ,0] [0, 0, 1, 0 ,0]
[0, 2, 1, 1 ,1] [0, 2, 1, 1 ,1]
[1, 2, 1, 0 ,0] => [1, 2, 1, 0 ,0]
[1, 2, 0, 1 ,0] [1, 2, 0, 1 ,0]
[2, 2, 0, 0 ,2] [2, 2, 0, 0 ,2]
"""
backend = [TransformBackends.NUMPY, TransformBackends.CUPY]
def __init__(
self,
applied_labels: Sequence[int] | int | None = None,
is_onehot: bool | None = None,
independent: bool = True,
connectivity: int | None = None,
num_components: int = 1,
) -> None:
"""
Args:
applied_labels: Labels for applying the connected component analysis on.
If given, voxels whose value is in this list will be analyzed.
If `None`, all non-zero values will be analyzed.
is_onehot: if `True`, treat the input data as OneHot format data, otherwise, not OneHot format data.
default to None, which treats multi-channel data as OneHot and single channel data as not OneHot.
independent: whether to treat ``applied_labels`` as a union of foreground labels.
If ``True``, the connected component analysis will be performed on each foreground label independently
and return the intersection of the largest components.
If ``False``, the analysis will be performed on the union of foreground labels.
default is `True`.
connectivity: Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor.
Accepted values are ranging from 1 to input.ndim. If ``None``, a full
connectivity of ``input.ndim`` is used. for more details:
https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.label.
num_components: The number of largest components to preserve.
"""
super().__init__()
self.applied_labels = ensure_tuple(applied_labels) if applied_labels is not None else None
self.is_onehot = is_onehot
self.independent = independent
self.connectivity = connectivity
self.num_components = num_components
def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor:
"""
Args:
img: shape must be (C, spatial_dim1[, spatial_dim2, ...]).
Returns:
An array with shape (C, spatial_dim1[, spatial_dim2, ...]).
"""
is_onehot = img.shape[0] > 1 if self.is_onehot is None else self.is_onehot
if self.applied_labels is not None:
applied_labels = self.applied_labels
else:
applied_labels = tuple(get_unique_labels(img, is_onehot, discard=0))
img = convert_to_tensor(img, track_meta=get_track_meta())
img_: torch.Tensor = convert_to_tensor(img, track_meta=False)
if self.independent:
for i in applied_labels:
foreground = img_[i] > 0 if is_onehot else img_[0] == i
mask = get_largest_connected_component_mask(foreground, self.connectivity, self.num_components)
if is_onehot:
img_[i][foreground != mask] = 0
else:
img_[0][foreground != mask] = 0
return convert_to_dst_type(img_, dst=img)[0]
if not is_onehot: # not one-hot, union of labels
labels, *_ = convert_to_dst_type(applied_labels, dst=img_, wrap_sequence=True)
foreground = (img_[..., None] == labels).any(-1)[0]
mask = get_largest_connected_component_mask(foreground, self.connectivity, self.num_components)
img_[0][foreground != mask] = 0
return convert_to_dst_type(img_, dst=img)[0]
# one-hot, union of labels
foreground = (img_[applied_labels, ...] == 1).any(0)
mask = get_largest_connected_component_mask(foreground, self.connectivity, self.num_components)
for i in applied_labels:
img_[i][foreground != mask] = 0
return convert_to_dst_type(img_, dst=img)[0]
class RemoveSmallObjects(Transform):
"""
Use `skimage.morphology.remove_small_objects` to remove small objects from images.
See: https://scikit-image.org/docs/dev/api/skimage.morphology.html#remove-small-objects.
Data should be one-hotted.
Args:
min_size: objects smaller than this size (in number of voxels; or surface area/volume value
in whatever units your image is if by_measure is True) are removed.
connectivity: Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor.
Accepted values are ranging from 1 to input.ndim. If ``None``, a full
connectivity of ``input.ndim`` is used. For more details refer to linked scikit-image
documentation.
independent_channels: Whether or not to consider channels as independent. If true, then
conjoining islands from different labels will be removed if they are below the threshold.
If false, the overall size islands made from all non-background voxels will be used.
by_measure: Whether the specified min_size is in number of voxels. if this is True then min_size
represents a surface area or volume value of whatever units your image is in (mm^3, cm^2, etc.)
default is False. e.g. if min_size is 3, by_measure is True and the units of your data is mm,
objects smaller than 3mm^3 are removed.
pixdim: the pixdim of the input image. if a single number, this is used for all axes.
If a sequence of numbers, the length of the sequence must be equal to the image dimensions.
Example::
.. code-block:: python
from monai.transforms import RemoveSmallObjects, Spacing, Compose
from monai.data import MetaTensor
data1 = torch.tensor([[[0, 0, 0, 0, 0], [0, 1, 1, 0, 1], [0, 0, 0, 1, 1]]])
affine = torch.as_tensor([[2,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]], dtype=torch.float64)
data2 = MetaTensor(data1, affine=affine)
# remove objects smaller than 3mm^3, input is MetaTensor
trans = RemoveSmallObjects(min_size=3, by_measure=True)
out = trans(data2)
# remove objects smaller than 3mm^3, input is not MetaTensor
trans = RemoveSmallObjects(min_size=3, by_measure=True, pixdim=(2, 1, 1))
out = trans(data1)
# remove objects smaller than 3 (in pixel)
trans = RemoveSmallObjects(min_size=3)
out = trans(data2)
# If the affine of the data is not identity, you can also add Spacing before.
trans = Compose([
Spacing(pixdim=(1, 1, 1)),
RemoveSmallObjects(min_size=3)
])
"""
backend = [TransformBackends.NUMPY]
def __init__(
self,
min_size: int = 64,
connectivity: int = 1,
independent_channels: bool = True,
by_measure: bool = False,
pixdim: Sequence[float] | float | np.ndarray | None = None,
) -> None:
self.min_size = min_size
self.connectivity = connectivity
self.independent_channels = independent_channels
self.by_measure = by_measure
self.pixdim = pixdim
def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor:
"""
Args:
img: shape must be (C, spatial_dim1[, spatial_dim2, ...]). Data
should be one-hotted.
Returns:
An array with shape (C, spatial_dim1[, spatial_dim2, ...]).
"""
return remove_small_objects(
img, self.min_size, self.connectivity, self.independent_channels, self.by_measure, self.pixdim
)
class LabelFilter(Transform):
"""
This transform filters out labels and can be used as a processing step to view only certain labels.
The list of applied labels defines which labels will be kept.
Note:
All labels which do not match the `applied_labels` are set to the background label (0).
For example:
Use LabelFilter with applied_labels=[1, 5, 9]::
[1, 2, 3] [1, 0, 0]
[4, 5, 6] => [0, 5 ,0]
[7, 8, 9] [0, 0, 9]
"""
backend = [TransformBackends.TORCH, TransformBackends.NUMPY]
def __init__(self, applied_labels: Iterable[int] | int) -> None:
"""
Initialize the LabelFilter class with the labels to filter on.
Args:
applied_labels: Label(s) to filter on.
"""
self.applied_labels = ensure_tuple(applied_labels)
def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor:
"""
Filter the image on the `applied_labels`.
Args:
img: Pytorch tensor or numpy array of any shape.
Raises:
NotImplementedError: The provided image was not a Pytorch Tensor or numpy array.
Returns:
Pytorch tensor or numpy array of the same shape as the input.
"""
if not isinstance(img, (np.ndarray, torch.Tensor)):
raise NotImplementedError(f"{self.__class__} can not handle data of type {type(img)}.")
if isinstance(img, torch.Tensor):
img = convert_to_tensor(img, track_meta=get_track_meta())
img_ = convert_to_tensor(img, track_meta=False)
if hasattr(torch, "isin"): # `isin` is new in torch 1.10.0
appl_lbls = torch.as_tensor(self.applied_labels, device=img_.device)
out = torch.where(torch.isin(img_, appl_lbls), img_, torch.tensor(0.0).to(img_))
return convert_to_dst_type(out, dst=img)[0]
out: NdarrayOrTensor = self(img_.detach().cpu().numpy()) # type: ignore
out = convert_to_dst_type(out, img)[0] # type: ignore
return out
return np.asarray(np.where(np.isin(img, self.applied_labels), img, 0))
class FillHoles(Transform):
r"""
This transform fills holes in the image and can be used to remove artifacts inside segments.
An enclosed hole is defined as a background pixel/voxel which is only enclosed by a single class.
The definition of enclosed can be defined with the connectivity parameter::
1-connectivity 2-connectivity diagonal connection close-up
[ ] [ ] [ ] [ ] [ ]
| \ | / | <- hop 2
[ ]--[x]--[ ] [ ]--[x]--[ ] [x]--[ ]
| / | \ hop 1
[ ] [ ] [ ] [ ]
It is possible to define for which labels the hole filling should be applied.
The input image is assumed to be a PyTorch Tensor or numpy array with shape [C, spatial_dim1[, spatial_dim2, ...]].
If C = 1, then the values correspond to expected labels.
If C > 1, then a one-hot-encoding is expected where the index of C matches the label indexing.
Note:
The label 0 will be treated as background and the enclosed holes will be set to the neighboring class label.
The performance of this method heavily depends on the number of labels.
It is a bit faster if the list of `applied_labels` is provided.
Limiting the number of `applied_labels` results in a big decrease in processing time.
For example:
Use FillHoles with default parameters::
[1, 1, 1, 2, 2, 2, 3, 3] [1, 1, 1, 2, 2, 2, 3, 3]
[1, 0, 1, 2, 0, 0, 3, 0] => [1, 1 ,1, 2, 0, 0, 3, 0]
[1, 1, 1, 2, 2, 2, 3, 3] [1, 1, 1, 2, 2, 2, 3, 3]
The hole in label 1 is fully enclosed and therefore filled with label 1.
The background label near label 2 and 3 is not fully enclosed and therefore not filled.
"""
backend = [TransformBackends.NUMPY]
def __init__(self, applied_labels: Iterable[int] | int | None = None, connectivity: int | None = None) -> None:
"""
Initialize the connectivity and limit the labels for which holes are filled.
Args:
applied_labels: Labels for which to fill holes. Defaults to None, that is filling holes for all labels.
connectivity: Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor.
Accepted values are ranging from 1 to input.ndim. Defaults to a full connectivity of ``input.ndim``.
"""
super().__init__()
self.applied_labels = ensure_tuple(applied_labels) if applied_labels else None
self.connectivity = connectivity
def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor:
"""
Fill the holes in the provided image.
Note:
The value 0 is assumed as background label.
Args:
img: Pytorch Tensor or numpy array of shape [C, spatial_dim1[, spatial_dim2, ...]].
Raises:
NotImplementedError: The provided image was not a Pytorch Tensor or numpy array.
Returns:
Pytorch Tensor or numpy array of shape [C, spatial_dim1[, spatial_dim2, ...]].
"""
img = convert_to_tensor(img, track_meta=get_track_meta())
img_np, *_ = convert_data_type(img, np.ndarray)
out_np: np.ndarray = fill_holes(img_np, self.applied_labels, self.connectivity)
out, *_ = convert_to_dst_type(out_np, img)
return out
class LabelToContour(Transform):
"""
Return the contour of binary input images that only compose of 0 and 1, with Laplacian kernel
set as default for edge detection. Typical usage is to plot the edge of label or segmentation output.
Args:
kernel_type: the method applied to do edge detection, default is "Laplace".
Raises:
NotImplementedError: When ``kernel_type`` is not "Laplace".
"""
backend = [TransformBackends.TORCH]
def __init__(self, kernel_type: str = "Laplace") -> None:
if kernel_type != "Laplace":
raise NotImplementedError('Currently only kernel_type="Laplace" is supported.')
self.kernel_type = kernel_type
def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor:
"""
Args:
img: torch tensor data to extract the contour, with shape: [channels, height, width[, depth]]
Raises:
ValueError: When ``image`` ndim is not one of [3, 4].
Returns:
A torch tensor with the same shape as img, note:
1. it's the binary classification result of whether a pixel is edge or not.
2. in order to keep the original shape of mask image, we use padding as default.
3. the edge detection is just approximate because it defects inherent to Laplace kernel,
ideally the edge should be thin enough, but now it has a thickness.
"""
img = convert_to_tensor(img, track_meta=get_track_meta())
img_: torch.Tensor = convert_to_tensor(img, track_meta=False)
spatial_dims = len(img_.shape) - 1
img_ = img_.unsqueeze(0) # adds a batch dim
if spatial_dims == 2:
kernel = torch.tensor([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype=torch.float32)
elif spatial_dims == 3:
kernel = -1.0 * torch.ones(3, 3, 3, dtype=torch.float32)
kernel[1, 1, 1] = 26.0
else:
raise ValueError(f"{self.__class__} can only handle 2D or 3D images.")
contour_img = apply_filter(img_, kernel)
contour_img.clamp_(min=0.0, max=1.0)
output, *_ = convert_to_dst_type(contour_img.squeeze(0), img)
return output
class Ensemble:
@staticmethod
def get_stacked_torch(img: Sequence[NdarrayOrTensor] | NdarrayOrTensor) -> torch.Tensor:
"""Get either a sequence or single instance of np.ndarray/torch.Tensor. Return single torch.Tensor."""
if isinstance(img, Sequence) and isinstance(img[0], np.ndarray):
img = [torch.as_tensor(i) for i in img]
elif isinstance(img, np.ndarray):
img = torch.as_tensor(img)
out: torch.Tensor = torch.stack(img) if isinstance(img, Sequence) else img # type: ignore
return out
@staticmethod
def post_convert(img: torch.Tensor, orig_img: Sequence[NdarrayOrTensor] | NdarrayOrTensor) -> NdarrayOrTensor:
orig_img_ = orig_img[0] if isinstance(orig_img, Sequence) else orig_img
out, *_ = convert_to_dst_type(img, orig_img_)
return out
class MeanEnsemble(Ensemble, Transform):
"""
Execute mean ensemble on the input data.
The input data can be a list or tuple of PyTorch Tensor with shape: [C[, H, W, D]],
Or a single PyTorch Tensor with shape: [E, C[, H, W, D]], the `E` dimension represents
the output data from different models.
Typically, the input data is model output of segmentation task or classification task.
And it also can support to add `weights` for the input data.
Args:
weights: can be a list or tuple of numbers for input data with shape: [E, C, H, W[, D]].
or a Numpy ndarray or a PyTorch Tensor data.
the `weights` will be added to input data from highest dimension, for example:
1. if the `weights` only has 1 dimension, it will be added to the `E` dimension of input data.
2. if the `weights` has 2 dimensions, it will be added to `E` and `C` dimensions.
it's a typical practice to add weights for different classes:
to ensemble 3 segmentation model outputs, every output has 4 channels(classes),
so the input data shape can be: [3, 4, H, W, D].
and add different `weights` for different classes, so the `weights` shape can be: [3, 4].
for example: `weights = [[1, 2, 3, 4], [4, 3, 2, 1], [1, 1, 1, 1]]`.
"""
backend = [TransformBackends.TORCH]
def __init__(self, weights: Sequence[float] | NdarrayOrTensor | None = None) -> None:
self.weights = torch.as_tensor(weights, dtype=torch.float) if weights is not None else None
def __call__(self, img: Sequence[NdarrayOrTensor] | NdarrayOrTensor) -> NdarrayOrTensor:
img_ = self.get_stacked_torch(img)
if self.weights is not None:
self.weights = self.weights.to(img_.device)
shape = tuple(self.weights.shape)
for _ in range(img_.ndimension() - self.weights.ndimension()):
shape += (1,)
weights = self.weights.reshape(*shape)
img_ = img_ * weights / weights.mean(dim=0, keepdim=True)
out_pt = torch.mean(img_, dim=0)
return self.post_convert(out_pt, img)
class VoteEnsemble(Ensemble, Transform):
"""
Execute vote ensemble on the input data.
The input data can be a list or tuple of PyTorch Tensor with shape: [C[, H, W, D]],
Or a single PyTorch Tensor with shape: [E[, C, H, W, D]], the `E` dimension represents
the output data from different models.
Typically, the input data is model output of segmentation task or classification task.
Note:
This vote transform expects the input data is discrete values. It can be multiple channels
data in One-Hot format or single channel data. It will vote to select the most common data
between items.
The output data has the same shape as every item of the input data.
Args:
num_classes: if the input is single channel data instead of One-Hot, we can't get class number
from channel, need to explicitly specify the number of classes to vote.
"""
backend = [TransformBackends.TORCH]
def __init__(self, num_classes: int | None = None) -> None:
self.num_classes = num_classes
def __call__(self, img: Sequence[NdarrayOrTensor] | NdarrayOrTensor) -> NdarrayOrTensor:
img_ = self.get_stacked_torch(img)
if self.num_classes is not None:
has_ch_dim = True
if img_.ndimension() > 1 and img_.shape[1] > 1:
warnings.warn("no need to specify num_classes for One-Hot format data.")
else:
if img_.ndimension() == 1:
# if no channel dim, need to remove channel dim after voting
has_ch_dim = False
img_ = one_hot(img_, self.num_classes, dim=1)
img_ = torch.mean(img_.float(), dim=0)
if self.num_classes is not None:
# if not One-Hot, use "argmax" to vote the most common class
out_pt = torch.argmax(img_, dim=0, keepdim=has_ch_dim)
else:
# for One-Hot data, round the float number to 0 or 1
out_pt = torch.round(img_)
return self.post_convert(out_pt, img)
class ProbNMS(Transform):
"""
Performs probability based non-maximum suppression (NMS) on the probabilities map via
iteratively selecting the coordinate with highest probability and then move it as well
as its surrounding values. The remove range is determined by the parameter `box_size`.
If multiple coordinates have the same highest probability, only one of them will be
selected.
Args:
spatial_dims: number of spatial dimensions of the input probabilities map.
Defaults to 2.
sigma: the standard deviation for gaussian filter.
It could be a single value, or `spatial_dims` number of values. Defaults to 0.0.
prob_threshold: the probability threshold, the function will stop searching if
the highest probability is no larger than the threshold. The value should be
no less than 0.0. Defaults to 0.5.
box_size: the box size (in pixel) to be removed around the pixel with the maximum probability.
It can be an integer that defines the size of a square or cube,
or a list containing different values for each dimensions. Defaults to 48.
Return:
a list of selected lists, where inner lists contain probability and coordinates.
For example, for 3D input, the inner lists are in the form of [probability, x, y, z].
Raises:
ValueError: When ``prob_threshold`` is less than 0.0.
ValueError: When ``box_size`` is a list or tuple, and its length is not equal to `spatial_dims`.
ValueError: When ``box_size`` has a less than 1 value.
"""
backend = [TransformBackends.NUMPY]
def __init__(
self,
spatial_dims: int = 2,
sigma: Sequence[float] | float | Sequence[torch.Tensor] | torch.Tensor = 0.0,
prob_threshold: float = 0.5,
box_size: int | Sequence[int] = 48,
) -> None:
self.sigma = sigma
self.spatial_dims = spatial_dims
if self.sigma != 0:
self.filter = GaussianFilter(spatial_dims=spatial_dims, sigma=sigma)
if prob_threshold < 0:
raise ValueError("prob_threshold should be no less than 0.0.")
self.prob_threshold = prob_threshold
if isinstance(box_size, int):
self.box_size = np.asarray([box_size] * spatial_dims)
elif len(box_size) != spatial_dims:
raise ValueError("the sequence length of box_size should be the same as spatial_dims.")
else:
self.box_size = np.asarray(box_size)
if self.box_size.min() <= 0:
raise ValueError("box_size should be larger than 0.")
self.box_lower_bd = self.box_size // 2
self.box_upper_bd = self.box_size - self.box_lower_bd
def __call__(self, prob_map: NdarrayOrTensor):
"""
prob_map: the input probabilities map, it must have shape (H[, W, ...]).
"""
if self.sigma != 0:
if not isinstance(prob_map, torch.Tensor):
prob_map = torch.as_tensor(prob_map, dtype=torch.float)
self.filter.to(prob_map.device)
prob_map = self.filter(prob_map)
prob_map_shape = prob_map.shape
outputs = []
while prob_map.max() > self.prob_threshold:
max_idx = unravel_index(prob_map.argmax(), prob_map_shape)
prob_max = prob_map[tuple(max_idx)]
max_idx = max_idx.cpu().numpy() if isinstance(max_idx, torch.Tensor) else max_idx
prob_max = prob_max.item() if isinstance(prob_max, torch.Tensor) else prob_max
outputs.append([prob_max] + list(max_idx))
idx_min_range = (max_idx - self.box_lower_bd).clip(0, None)
idx_max_range = (max_idx + self.box_upper_bd).clip(None, prob_map_shape)
# for each dimension, set values during index ranges to 0
slices = tuple(slice(idx_min_range[i], idx_max_range[i]) for i in range(self.spatial_dims))
prob_map[slices] = 0
return outputs
class Invert(Transform):
"""
Utility transform to automatically invert the previously applied transforms.
"""
backend = [TransformBackends.TORCH]
def __init__(
self,
transform: InvertibleTransform | None = None,
nearest_interp: bool | Sequence[bool] = True,
device: str | torch.device | None = None,
post_func: Callable | None = None,
to_tensor: bool | Sequence[bool] = True,
) -> None:
"""
Args:
transform: the previously applied transform.
nearest_interp: whether to use `nearest` interpolation mode when inverting the spatial transforms,
default to `True`. If `False`, use the same interpolation mode as the original transform.
device: move the inverted results to a target device before `post_func`, default to `None`.
post_func: postprocessing for the inverted result, should be a callable function.
to_tensor: whether to convert the inverted data into PyTorch Tensor first, default to `True`.
"""
if not isinstance(transform, InvertibleTransform):
raise ValueError("transform is not invertible, can't invert transform for the data.")
self.transform = transform
self.nearest_interp = nearest_interp
self.device = device
self.post_func = post_func
self.to_tensor = to_tensor
self._totensor = ToTensor()
def __call__(self, data):
if not isinstance(data, MetaTensor):
return data
if self.nearest_interp:
data.applied_operations = convert_applied_interp_mode(
trans_info=data.applied_operations, mode="nearest", align_corners=None
)
data = data.detach()
inverted = self.transform.inverse(data)
if self.to_tensor and not isinstance(inverted, MetaTensor):
inverted = self._totensor(inverted)
if isinstance(inverted, torch.Tensor):
inverted = inverted.to(device=self.device)
if callable(self.post_func):
inverted = self.post_func(inverted)
return inverted
class SobelGradients(Transform):
"""Calculate Sobel gradients of a grayscale image with the shape of CxH[xWxDx...] or BxH[xWxDx...].
Args:
kernel_size: the size of the Sobel kernel. Defaults to 3.
spatial_axes: the axes that define the direction of the gradient to be calculated. It calculate the gradient
along each of the provide axis. By default it calculate the gradient for all spatial axes.
normalize_kernels: if normalize the Sobel kernel to provide proper gradients. Defaults to True.
normalize_gradients: if normalize the output gradient to 0 and 1. Defaults to False.
padding_mode: the padding mode of the image when convolving with Sobel kernels. Defaults to `"reflect"`.
Acceptable values are ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
See ``torch.nn.Conv1d()`` for more information.
dtype: kernel data type (torch.dtype). Defaults to `torch.float32`.
"""
backend = [TransformBackends.TORCH]
def __init__(
self,
kernel_size: int = 3,
spatial_axes: Sequence[int] | int | None = None,
normalize_kernels: bool = True,
normalize_gradients: bool = False,
padding_mode: str = "reflect",
dtype: torch.dtype = torch.float32,
) -> None:
super().__init__()
self.padding = padding_mode
self.spatial_axes = spatial_axes
self.normalize_kernels = normalize_kernels
self.normalize_gradients = normalize_gradients
self.kernel_diff, self.kernel_smooth = self._get_kernel(kernel_size, dtype)
def _get_kernel(self, size, dtype) -> tuple[torch.Tensor, torch.Tensor]:
if size < 3:
raise ValueError(f"Sobel kernel size should be at least three. {size} was given.")
if size % 2 == 0:
raise ValueError(f"Sobel kernel size should be an odd number. {size} was given.")
kernel_diff = torch.tensor([[[-1, 0, 1]]], dtype=dtype)
kernel_smooth = torch.tensor([[[1, 2, 1]]], dtype=dtype)
kernel_expansion = torch.tensor([[[1, 2, 1]]], dtype=dtype)
if self.normalize_kernels:
if not dtype.is_floating_point:
raise ValueError(
f"`dtype` for Sobel kernel should be floating point when `normalize_kernel==True`. {dtype} was given."
)
kernel_diff /= 2.0
kernel_smooth /= 4.0
kernel_expansion /= 4.0
# Expand the kernel to larger size than 3
expand = (size - 3) // 2
for _ in range(expand):
kernel_diff = F.conv1d(kernel_diff, kernel_expansion, padding=2)
kernel_smooth = F.conv1d(kernel_smooth, kernel_expansion, padding=2)
return kernel_diff.squeeze(), kernel_smooth.squeeze()
def __call__(self, image: NdarrayOrTensor) -> torch.Tensor:
image_tensor = convert_to_tensor(image, track_meta=get_track_meta())
# Check/set spatial axes
n_spatial_dims = image_tensor.ndim - 1 # excluding the channel dimension
valid_spatial_axes = list(range(n_spatial_dims)) + list(range(-n_spatial_dims, 0))
# Check gradient axes to be valid
if self.spatial_axes is None:
spatial_axes = list(range(n_spatial_dims))
else:
invalid_axis = set(ensure_tuple(self.spatial_axes)) - set(valid_spatial_axes)
if invalid_axis:
raise ValueError(
f"The provide axes to calculate gradient is not valid: {invalid_axis}. "
f"The image has {n_spatial_dims} spatial dimensions so it should be: {valid_spatial_axes}."
)
spatial_axes = [ax % n_spatial_dims if ax < 0 else ax for ax in ensure_tuple(self.spatial_axes)]
# Add batch dimension for separable_filtering
image_tensor = image_tensor.unsqueeze(0)
# Get the Sobel kernels
kernel_diff = self.kernel_diff.to(image_tensor.device)
kernel_smooth = self.kernel_smooth.to(image_tensor.device)
# Calculate gradient
grad_list = []
for ax in spatial_axes:
kernels = [kernel_smooth] * n_spatial_dims
kernels[ax] = kernel_diff
grad = separable_filtering(image_tensor, kernels, mode=self.padding)
if self.normalize_gradients:
grad_min = grad.min()
if grad_min != grad.max():
grad -= grad_min
grad_max = grad.max()
if grad_max > 0:
grad /= grad_max
grad_list.append(grad)
grads = torch.cat(grad_list, dim=1)
# Remove batch dimension and convert the gradient type to be the same as input image
grads = convert_to_dst_type(grads.squeeze(0), image_tensor)[0]
return grads
class DistanceTransformEDT(Transform):
"""
Applies the Euclidean distance transform on the input.
Either GPU based with CuPy / cuCIM or CPU based with scipy.
To use the GPU implementation, make sure cuCIM is available and that the data is a `torch.tensor` on a GPU device.