-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathenums.py
756 lines (577 loc) · 19.1 KB
/
enums.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import random
from enum import Enum
from typing import TYPE_CHECKING
from monai.utils.module import min_version, optional_import
__all__ = [
"StrEnum",
"NumpyPadMode",
"GridSampleMode",
"SplineMode",
"InterpolateMode",
"UpsampleMode",
"BlendMode",
"PytorchPadMode",
"NdimageMode",
"GridSamplePadMode",
"Average",
"MetricReduction",
"LossReduction",
"DiceCEReduction",
"Weight",
"ChannelMatching",
"SkipMode",
"Method",
"TraceKeys",
"TraceStatusKeys",
"CommonKeys",
"GanKeys",
"PostFix",
"ForwardMode",
"TransformBackends",
"CompInitMode",
"BoxModeName",
"GridPatchSort",
"FastMRIKeys",
"SpaceKeys",
"MetaKeys",
"ColorOrder",
"EngineStatsKeys",
"DataStatsKeys",
"ImageStatsKeys",
"LabelStatsKeys",
"HoVerNetMode",
"HoVerNetBranch",
"LazyAttr",
"BundleProperty",
"BundlePropertyConfig",
"AlgoKeys",
"IgniteInfo",
]
class StrEnum(str, Enum):
"""
Enum subclass that converts its value to a string.
.. code-block:: python
from monai.utils import StrEnum
class Example(StrEnum):
MODE_A = "A"
MODE_B = "B"
assert (list(Example) == ["A", "B"])
assert Example.MODE_A == "A"
assert str(Example.MODE_A) == "A"
assert monai.utils.look_up_option("A", Example) == "A"
"""
def __str__(self):
return self.value
def __repr__(self):
return self.value
class NumpyPadMode(StrEnum):
"""
See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html
"""
CONSTANT = "constant"
EDGE = "edge"
LINEAR_RAMP = "linear_ramp"
MAXIMUM = "maximum"
MEAN = "mean"
MEDIAN = "median"
MINIMUM = "minimum"
REFLECT = "reflect"
SYMMETRIC = "symmetric"
WRAP = "wrap"
EMPTY = "empty"
class NdimageMode(StrEnum):
"""
The available options determine how the input array is extended beyond its boundaries when interpolating.
See also: https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html
"""
REFLECT = "reflect"
GRID_MIRROR = "grid-mirror"
CONSTANT = "constant"
GRID_CONSTANT = "grid-constant"
NEAREST = "nearest"
MIRROR = "mirror"
GRID_WRAP = "grid-wrap"
WRAP = "wrap"
class GridSampleMode(StrEnum):
"""
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
interpolation mode of `torch.nn.functional.grid_sample`
Note:
(documentation from `torch.nn.functional.grid_sample`)
`mode='bicubic'` supports only 4-D input.
When `mode='bilinear'` and the input is 5-D, the interpolation mode used internally will actually be trilinear.
However, when the input is 4-D, the interpolation mode will legitimately be bilinear.
"""
NEAREST = "nearest"
BILINEAR = "bilinear"
BICUBIC = "bicubic"
class SplineMode(StrEnum):
"""
Order of spline interpolation.
See also: https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html
"""
ZERO = 0
ONE = 1
TWO = 2
THREE = 3
FOUR = 4
FIVE = 5
class InterpolateMode(StrEnum):
"""
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html
"""
NEAREST = "nearest"
NEAREST_EXACT = "nearest-exact"
LINEAR = "linear"
BILINEAR = "bilinear"
BICUBIC = "bicubic"
TRILINEAR = "trilinear"
AREA = "area"
class UpsampleMode(StrEnum):
"""
See also: :py:class:`monai.networks.blocks.UpSample`
"""
DECONV = "deconv"
DECONVGROUP = "deconvgroup"
NONTRAINABLE = "nontrainable" # e.g. using torch.nn.Upsample
PIXELSHUFFLE = "pixelshuffle"
class BlendMode(StrEnum):
"""
See also: :py:class:`monai.data.utils.compute_importance_map`
"""
CONSTANT = "constant"
GAUSSIAN = "gaussian"
class PytorchPadMode(StrEnum):
"""
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
"""
CONSTANT = "constant"
REFLECT = "reflect"
REPLICATE = "replicate"
CIRCULAR = "circular"
class GridSamplePadMode(StrEnum):
"""
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
"""
ZEROS = "zeros"
BORDER = "border"
REFLECTION = "reflection"
class Average(StrEnum):
"""
See also: :py:class:`monai.metrics.rocauc.compute_roc_auc`
"""
MACRO = "macro"
WEIGHTED = "weighted"
MICRO = "micro"
NONE = "none"
class MetricReduction(StrEnum):
"""
See also: :py:func:`monai.metrics.utils.do_metric_reduction`
"""
NONE = "none"
MEAN = "mean"
SUM = "sum"
MEAN_BATCH = "mean_batch"
SUM_BATCH = "sum_batch"
MEAN_CHANNEL = "mean_channel"
SUM_CHANNEL = "sum_channel"
class LossReduction(StrEnum):
"""
See also:
- :py:class:`monai.losses.dice.DiceLoss`
- :py:class:`monai.losses.dice.GeneralizedDiceLoss`
- :py:class:`monai.losses.focal_loss.FocalLoss`
- :py:class:`monai.losses.tversky.TverskyLoss`
"""
NONE = "none"
MEAN = "mean"
SUM = "sum"
class DiceCEReduction(StrEnum):
"""
See also:
- :py:class:`monai.losses.dice.DiceCELoss`
"""
MEAN = "mean"
SUM = "sum"
class Weight(StrEnum):
"""
See also: :py:class:`monai.losses.dice.GeneralizedDiceLoss`
"""
SQUARE = "square"
SIMPLE = "simple"
UNIFORM = "uniform"
class ChannelMatching(StrEnum):
"""
See also: :py:class:`monai.networks.nets.HighResBlock`
"""
PAD = "pad"
PROJECT = "project"
class SkipMode(StrEnum):
"""
See also: :py:class:`monai.networks.layers.SkipConnection`
"""
CAT = "cat"
ADD = "add"
MUL = "mul"
class Method(StrEnum):
"""
See also: :py:class:`monai.transforms.croppad.array.SpatialPad`
"""
SYMMETRIC = "symmetric"
END = "end"
class ForwardMode(StrEnum):
"""
See also: :py:class:`monai.transforms.engines.evaluator.Evaluator`
"""
TRAIN = "train"
EVAL = "eval"
class TraceKeys(StrEnum):
"""Extra metadata keys used for traceable transforms."""
CLASS_NAME: str = "class"
ID: str = "id"
ORIG_SIZE: str = "orig_size"
EXTRA_INFO: str = "extra_info"
DO_TRANSFORM: str = "do_transforms"
KEY_SUFFIX: str = "_transforms"
NONE: str = "none"
TRACING: str = "tracing"
STATUSES: str = "statuses"
LAZY: str = "lazy"
class TraceStatusKeys(StrEnum):
"""Enumerable status keys for the TraceKeys.STATUS flag"""
PENDING_DURING_APPLY = "pending_during_apply"
class CommonKeys(StrEnum):
"""
A set of common keys for dictionary based supervised training process.
`IMAGE` is the input image data.
`LABEL` is the training or evaluation label of segmentation or classification task.
`PRED` is the prediction data of model output.
`LOSS` is the loss value of current iteration.
`INFO` is some useful information during training or evaluation, like loss value, etc.
"""
IMAGE = "image"
LABEL = "label"
PRED = "pred"
LOSS = "loss"
METADATA = "metadata"
class GanKeys(StrEnum):
"""
A set of common keys for generative adversarial networks.
"""
REALS = "reals"
FAKES = "fakes"
LATENTS = "latents"
GLOSS = "g_loss"
DLOSS = "d_loss"
class PostFix(StrEnum):
"""Post-fixes."""
@staticmethod
def _get_str(prefix: str | None, suffix: str) -> str:
return suffix if prefix is None else f"{prefix}_{suffix}"
@staticmethod
def meta(key: str | None = None) -> str:
return PostFix._get_str(key, "meta_dict")
@staticmethod
def orig_meta(key: str | None = None) -> str:
return PostFix._get_str(key, "orig_meta_dict")
@staticmethod
def transforms(key: str | None = None) -> str:
return PostFix._get_str(key, TraceKeys.KEY_SUFFIX[1:])
class TransformBackends(StrEnum):
"""
Transform backends. Most of `monai.transforms` components first converts the input data into ``torch.Tensor`` or
``monai.data.MetaTensor``. Internally, some transforms are made by converting the data into ``numpy.array`` or
``cupy.array`` and use the underlying transform backend API to achieve the actual output array and
converting back to ``Tensor``/``MetaTensor``. Transforms with more than one backend indicate the that they may
convert the input data types to accommodate the underlying API.
"""
TORCH = "torch"
NUMPY = "numpy"
CUPY = "cupy"
class CompInitMode(StrEnum):
"""
Mode names for instantiating a class or calling a callable.
See also: :py:func:`monai.utils.module.instantiate`
"""
DEFAULT = "default"
CALLABLE = "callable"
DEBUG = "debug"
class JITMetadataKeys(StrEnum):
"""
Keys stored in the metadata file for saved Torchscript models. Some of these are generated by the routines
and others are optionally provided by users.
"""
NAME = "name"
TIMESTAMP = "timestamp"
VERSION = "version"
DESCRIPTION = "description"
class BoxModeName(StrEnum):
"""
Box mode names.
"""
XYXY = "xyxy" # [xmin, ymin, xmax, ymax]
XYZXYZ = "xyzxyz" # [xmin, ymin, zmin, xmax, ymax, zmax]
XXYY = "xxyy" # [xmin, xmax, ymin, ymax]
XXYYZZ = "xxyyzz" # [xmin, xmax, ymin, ymax, zmin, zmax]
XYXYZZ = "xyxyzz" # [xmin, ymin, xmax, ymax, zmin, zmax]
XYWH = "xywh" # [xmin, ymin, xsize, ysize]
XYZWHD = "xyzwhd" # [xmin, ymin, zmin, xsize, ysize, zsize]
CCWH = "ccwh" # [xcenter, ycenter, xsize, ysize]
CCCWHD = "cccwhd" # [xcenter, ycenter, zcenter, xsize, ysize, zsize]
class ProbMapKeys(StrEnum):
"""
The keys to be used for generating the probability maps from patches
"""
LOCATION = "mask_location"
SIZE = "mask_size"
COUNT = "num_patches"
NAME = "name"
class GridPatchSort(StrEnum):
"""
The sorting method for the generated patches in `GridPatch`
"""
RANDOM = "random"
MIN = "min"
MAX = "max"
@staticmethod
def min_fn(x):
return x[0].sum()
@staticmethod
def max_fn(x):
return -x[0].sum()
@staticmethod
def get_sort_fn(sort_fn):
if sort_fn == GridPatchSort.RANDOM:
return random.random
elif sort_fn == GridPatchSort.MIN:
return GridPatchSort.min_fn
elif sort_fn == GridPatchSort.MAX:
return GridPatchSort.max_fn
else:
raise ValueError(
f'sort_fn should be one of the following values, "{sort_fn}" was given:',
[e.value for e in GridPatchSort],
)
class PatchKeys(StrEnum):
"""
The keys to be used for metadata of patches extracted from any kind of image
"""
LOCATION = "location"
SIZE = "size"
COUNT = "count"
class WSIPatchKeys(StrEnum):
"""
The keys to be used for metadata of patches extracted from whole slide images
"""
LOCATION = PatchKeys.LOCATION
SIZE = PatchKeys.SIZE
COUNT = PatchKeys.COUNT
LEVEL = "level"
PATH = "path"
class FastMRIKeys(StrEnum):
"""
The keys to be used for extracting data from the fastMRI dataset
"""
KSPACE = "kspace"
MASK = "mask"
FILENAME = "filename"
RECON = "reconstruction_rss"
ACQUISITION = "acquisition"
MAX = "max"
NORM = "norm"
PID = "patient_id"
class SpaceKeys(StrEnum):
"""
The coordinate system keys, for example, Nifti1 uses Right-Anterior-Superior or "RAS",
DICOM (0020,0032) uses Left-Posterior-Superior or "LPS". This type does not distinguish spatial 1/2/3D.
"""
RAS = "RAS"
LPS = "LPS"
class MetaKeys(StrEnum):
"""
Typical keys for MetaObj.meta
"""
AFFINE = "affine" # MetaTensor.affine
ORIGINAL_AFFINE = "original_affine" # the affine after image loading before any data processing
SPATIAL_SHAPE = "spatial_shape" # optional key for the length in each spatial dimension
SPACE = "space" # possible values of space type are defined in `SpaceKeys`
ORIGINAL_CHANNEL_DIM = "original_channel_dim" # an integer or float("nan")
SAVED_TO = "saved_to"
class ColorOrder(StrEnum):
"""
Enums for color order. Expand as necessary.
"""
RGB = "RGB"
BGR = "BGR"
class EngineStatsKeys(StrEnum):
"""
Default keys for the statistics of trainer and evaluator engines.
"""
RANK = "rank"
CURRENT_ITERATION = "current_iteration"
CURRENT_EPOCH = "current_epoch"
TOTAL_EPOCHS = "total_epochs"
TOTAL_ITERATIONS = "total_iterations"
BEST_VALIDATION_EPOCH = "best_validation_epoch"
BEST_VALIDATION_METRIC = "best_validation_metric"
class DataStatsKeys(StrEnum):
"""
Defaults keys for dataset statistical analysis modules
"""
SUMMARY = "stats_summary"
BY_CASE = "stats_by_cases"
BY_CASE_IMAGE_PATH = "image_filepath"
BY_CASE_LABEL_PATH = "label_filepath"
IMAGE_STATS = "image_stats"
FG_IMAGE_STATS = "image_foreground_stats"
LABEL_STATS = "label_stats"
IMAGE_HISTOGRAM = "image_histogram"
class ImageStatsKeys(StrEnum):
"""
Defaults keys for dataset statistical analysis image modules
"""
SHAPE = "shape"
CHANNELS = "channels"
CROPPED_SHAPE = "cropped_shape"
SPACING = "spacing"
SIZEMM = "sizemm"
INTENSITY = "intensity"
HISTOGRAM = "histogram"
class LabelStatsKeys(StrEnum):
"""
Defaults keys for dataset statistical analysis label modules
"""
LABEL_UID = "labels"
PIXEL_PCT = "foreground_percentage"
IMAGE_INTST = "image_intensity"
LABEL = "label"
LABEL_SHAPE = "shape"
LABEL_NCOMP = "ncomponents"
class HoVerNetMode(StrEnum):
"""
Modes for HoVerNet model:
`FAST`: a faster implementation (than original)
`ORIGINAL`: the original implementation
"""
FAST = "FAST"
ORIGINAL = "ORIGINAL"
class HoVerNetBranch(StrEnum):
"""
Three branches of HoVerNet model, which results in three outputs:
`HV` is horizontal and vertical gradient map of each nucleus (regression),
`NP` is the pixel prediction of all nuclei (segmentation), and
`NC` is the type of each nucleus (classification).
"""
HV = "horizontal_vertical"
NP = "nucleus_prediction"
NC = "type_prediction"
class LazyAttr(StrEnum):
"""
MetaTensor with pending operations requires some key attributes tracked especially when the primary array
is not up-to-date due to lazy evaluation.
This class specifies the set of key attributes to be tracked for each MetaTensor.
See also: :py:func:`monai.transforms.lazy.utils.resample` for more details.
"""
SHAPE = "lazy_shape" # spatial shape
AFFINE = "lazy_affine"
PADDING_MODE = "lazy_padding_mode"
INTERP_MODE = "lazy_interpolation_mode"
DTYPE = "lazy_dtype"
ALIGN_CORNERS = "lazy_align_corners"
RESAMPLE_MODE = "lazy_resample_mode"
class BundleProperty(StrEnum):
"""
Bundle property fields:
`DESC` is the description of the property.
`REQUIRED` is flag to indicate whether the property is required or optional.
"""
DESC = "description"
REQUIRED = "required"
class BundlePropertyConfig(StrEnum):
"""
additional bundle property fields for config based bundle workflow:
`ID` is the config item ID of the property.
`REF_ID` is the ID of config item which is supposed to refer to this property.
For properties that do not have `REF_ID`, `None` should be set.
this field is only useful to check the optional property ID.
"""
ID = "id"
REF_ID = "refer_id"
class AlgoKeys(StrEnum):
"""
Default keys for templated Auto3DSeg Algo.
`ID` is the identifier of the algorithm. The string has the format of <name>_<idx>_<other>.
`ALGO` is the Auto3DSeg Algo instance.
`IS_TRAINED` is the status that shows if the Algo has been trained.
`SCORE` is the score the Algo has achieved after training.
"""
ID = "identifier"
ALGO = "algo_instance"
IS_TRAINED = "is_trained"
SCORE = "best_metric"
class AdversarialKeys(StrEnum):
"""
Keys used by the AdversarialTrainer.
`REALS` are real images from the batch.
`FAKES` are fake images generated by the generator. Are the same as PRED.
`REAL_LOGITS` are logits of the discriminator for the real images.
`FAKE_LOGIT` are logits of the discriminator for the fake images.
`RECONSTRUCTION_LOSS` is the loss value computed by the reconstruction loss function.
`GENERATOR_LOSS` is the loss value computed by the generator loss function. It is the
discriminator loss for the fake images. That is backpropagated through the generator only.
`DISCRIMINATOR_LOSS` is the loss value computed by the discriminator loss function. It is the
discriminator loss for the real images and the fake images. That is backpropagated through the
discriminator only.
"""
REALS = "reals"
REAL_LOGITS = "real_logits"
FAKES = "fakes"
FAKE_LOGITS = "fake_logits"
RECONSTRUCTION_LOSS = "reconstruction_loss"
GENERATOR_LOSS = "generator_loss"
DISCRIMINATOR_LOSS = "discriminator_loss"
class OrderingType(StrEnum):
RASTER_SCAN = "raster_scan"
S_CURVE = "s_curve"
RANDOM = "random"
class OrderingTransformations(StrEnum):
ROTATE_90 = "rotate_90"
TRANSPOSE = "transpose"
REFLECT = "reflect"
class IgniteInfo(StrEnum):
"""
Config information of the PyTorch ignite package.
"""
OPT_IMPORT_VERSION = "0.4.4"
if TYPE_CHECKING:
from ignite.engine import EventEnum
else:
EventEnum, _ = optional_import(
"ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum", as_type="base"
)
class AdversarialIterationEvents(EventEnum):
"""
Keys used to define events as used in the AdversarialTrainer.
"""
RECONSTRUCTION_LOSS_COMPLETED = "reconstruction_loss_completed"
GENERATOR_FORWARD_COMPLETED = "generator_forward_completed"
GENERATOR_DISCRIMINATOR_FORWARD_COMPLETED = "generator_discriminator_forward_completed"
GENERATOR_LOSS_COMPLETED = "generator_loss_completed"
GENERATOR_BACKWARD_COMPLETED = "generator_backward_completed"
GENERATOR_MODEL_COMPLETED = "generator_model_completed"
DISCRIMINATOR_REALS_FORWARD_COMPLETED = "discriminator_reals_forward_completed"
DISCRIMINATOR_FAKES_FORWARD_COMPLETED = "discriminator_fakes_forward_completed"
DISCRIMINATOR_LOSS_COMPLETED = "discriminator_loss_completed"
DISCRIMINATOR_BACKWARD_COMPLETED = "discriminator_backward_completed"
DISCRIMINATOR_MODEL_COMPLETED = "discriminator_model_completed"