forked from lacker/ikalman
-
Notifications
You must be signed in to change notification settings - Fork 1
/
matrix.cpp
296 lines (269 loc) · 6.73 KB
/
matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/* Matrix math. */
#include <assert.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "matrix.h"
/* This could be reduced to a single malloc if it mattered. */
Matrix alloc_matrix(int rows, int cols) {
Matrix m;
m.rows = rows;
m.cols = cols;
m.data = (double**) malloc(sizeof(double*) * m.rows);
int i;
for (i = 0; i < m.rows; ++i) {
m.data[i] = (double*) malloc(sizeof(double) * m.cols);
assert(m.data[i]);
int j;
for (j = 0; j < m.cols; ++j) {
m.data[i][j] = 0.0;
}
}
return m;
}
void free_matrix(Matrix m) {
assert(m.data != NULL);
int i;
for (i = 0; i < m.rows; ++i) {
free(m.data[i]);
}
free(m.data);
}
void set_matrix(Matrix m, ...) {
va_list ap;
va_start(ap, m);
int i;
for (i = 0; i < m.rows; ++i) {
int j;
for (j = 0; j < m.cols; ++j) {
m.data[i][j] = va_arg(ap, double);
}
}
va_end(ap);
}
void set_identity_matrix(Matrix m) {
assert(m.rows == m.cols);
int i;
for (i = 0; i < m.rows; ++i) {
int j;
for (j = 0; j < m.cols; ++j) {
if (i == j) {
m.data[i][j] = 1.0;
} else {
m.data[i][j] = 0.0;
}
}
}
}
void copy_matrix(Matrix source, Matrix destination) {
assert(source.rows == destination.rows);
assert(source.cols == destination.cols);
int i;
for (i = 0; i < source.rows; ++i) {
int j;
for (j = 0; j < source.cols; ++j) {
destination.data[i][j] = source.data[i][j];
}
}
}
void print_matrix(Matrix m) {
int i;
for (i = 0; i < m.rows; ++i) {
int j;
for (j = 0; j < m.cols; ++j) {
if (j > 0) {
printf(" ");
}
printf("%6.2f", m.data[i][j]);
}
printf("\n");
}
}
void add_matrix(Matrix a, Matrix b, Matrix c) {
assert(a.rows == b.rows);
assert(a.rows == c.rows);
assert(a.cols == b.cols);
assert(a.cols == c.cols);
int i;
for (i = 0; i < a.rows; ++i) {
int j;
for (j = 0; j < a.cols; ++j) {
c.data[i][j] = a.data[i][j] + b.data[i][j];
}
}
}
void subtract_matrix(Matrix a, Matrix b, Matrix c) {
assert(a.rows == b.rows);
assert(a.rows == c.rows);
assert(a.cols == b.cols);
assert(a.cols == c.cols);
int i;
for (i = 0; i < a.rows; ++i) {
int j;
for (j = 0; j < a.cols; ++j) {
c.data[i][j] = a.data[i][j] - b.data[i][j];
}
}
}
void subtract_from_identity_matrix(Matrix a) {
assert(a.rows == a.cols);
int i;
for (i = 0; i < a.rows; ++i) {
int j;
for (j = 0; j < a.cols; ++j) {
if (i == j) {
a.data[i][j] = 1.0 - a.data[i][j];
} else {
a.data[i][j] = 0.0 - a.data[i][j];
}
}
}
}
void multiply_matrix(Matrix a, Matrix b, Matrix c) {
assert(a.cols == b.rows);
assert(a.rows == c.rows);
assert(b.cols == c.cols);
int i;
for ( i = 0; i < c.rows; ++i) {
int j;
for (j = 0; j < c.cols; ++j) {
/* Calculate element c.data[i][j] via a dot product of one row of a
with one column of b */
c.data[i][j] = 0.0;
int k;
for (k = 0; k < a.cols; ++k) {
c.data[i][j] += a.data[i][k] * b.data[k][j];
}
}
}
}
/* This is multiplying a by b-tranpose so it is like multiply_matrix
but references to b reverse rows and cols. */
void multiply_by_transpose_matrix(Matrix a, Matrix b, Matrix c) {
assert(a.cols == b.cols);
assert(a.rows == c.rows);
assert(b.rows == c.cols);
int i;
for (i = 0; i < c.rows; ++i) {
int j;
for (j = 0; j < c.cols; ++j) {
/* Calculate element c.data[i][j] via a dot product of one row of a
with one row of b */
c.data[i][j] = 0.0;
int k;
for (k = 0; k < a.cols; ++k) {
c.data[i][j] += a.data[i][k] * b.data[j][k];
}
}
}
}
void transpose_matrix(Matrix input, Matrix output) {
assert(input.rows == output.cols);
assert(input.cols == output.rows);
int i;
for (i = 0; i < input.rows; ++i) {
int j;
for (j = 0; j < input.cols; ++j) {
output.data[j][i] = input.data[i][j];
}
}
}
int equal_matrix(Matrix a, Matrix b, double tolerance) {
assert(a.rows == b.rows);
assert(a.cols == b.cols);
int i;
for (i = 0; i < a.rows; ++i) {
int j;
for (j = 0; j < a.cols; ++j) {
if (abs(a.data[i][j] - b.data[i][j]) > tolerance) {
return 0;
}
}
}
return 1;
}
void scale_matrix(Matrix m, double scalar) {
assert(scalar != 0.0);
int i;
for (i = 0; i < m.rows; ++i) {
int j;
for (j = 0; j < m.cols; ++j) {
m.data[i][j] *= scalar;
}
}
}
void swap_rows(Matrix m, int r1, int r2) {
assert(r1 != r2);
double* tmp = m.data[r1];
m.data[r1] = m.data[r2];
m.data[r2] = tmp;
}
void scale_row(Matrix m, int r, double scalar) {
assert(scalar != 0.0);
int i;
for (i = 0; i < m.cols; ++i) {
m.data[r][i] *= scalar;
}
}
/* Add scalar * row r2 to row r1. */
void shear_row(Matrix m, int r1, int r2, double scalar) {
assert(r1 != r2);
int i;
for (i = 0; i < m.cols; ++i) {
m.data[r1][i] += scalar * m.data[r2][i];
}
}
/* Uses Gauss-Jordan elimination.
The elimination procedure works by applying elementary row
operations to our input matrix until the input matrix is reduced to
the identity matrix.
Simultaneously, we apply the same elementary row operations to a
separate identity matrix to produce the inverse matrix.
If this makes no sense, read wikipedia on Gauss-Jordan elimination.
This is not the fastest way to invert matrices, so this is quite
possibly the bottleneck. */
int destructive_invert_matrix(Matrix input, Matrix output) {
assert(input.rows == input.cols);
assert(input.rows == output.rows);
assert(input.rows == output.cols);
set_identity_matrix(output);
/* Convert input to the identity matrix via elementary row operations.
The ith pass through this loop turns the element at i,i to a 1
and turns all other elements in column i to a 0. */
int i;
for (i = 0; i < input.rows; ++i) {
if (input.data[i][i] == 0.0) {
/* We must swap rows to get a nonzero diagonal element. */
int r;
for (r = i + 1; r < input.rows; ++r) {
if (input.data[r][i] != 0.0) {
break;
}
}
if (r == input.rows) {
/* Every remaining element in this column is zero, so this
matrix cannot be inverted. */
return 0;
}
swap_rows(input, i, r);
swap_rows(output, i, r);
}
/* Scale this row to ensure a 1 along the diagonal.
We might need to worry about overflow from a huge scalar here. */
double scalar = 1.0 / input.data[i][i];
scale_row(input, i, scalar);
scale_row(output, i, scalar);
/* Zero out the other elements in this column. */
int j;
for (j = 0; j < input.rows; ++j) {
if (i == j) {
continue;
}
double shear_needed = -input.data[j][i];
shear_row(input, j, i, shear_needed);
shear_row(output, j, i, shear_needed);
}
}
return 1;
}