forked from amrrs/real-time-live-streamlit-dashboard-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
74 lines (50 loc) · 2.18 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import streamlit as st # web development
import numpy as np # np mean, np random
import pandas as pd # read csv, df manipulation
import time # to simulate a real time data, time loop
import plotly.express as px # interactive charts
# read csv from a github repo
df = pd.read_csv("https://raw.githubusercontent.com/Lexie88rus/bank-marketing-analysis/master/bank.csv")
st.set_page_config(
page_title = 'Real-Time Data Science Dashboard',
page_icon = '✅',
layout = 'wide'
)
# dashboard title
st.title("Real-Time / Live Data Science Dashboard")
# top-level filters
job_filter = st.selectbox("Select the Job", pd.unique(df['job']))
# creating a single-element container.
placeholder = st.empty()
# dataframe filter
df = df[df['job']==job_filter]
# near real-time / live feed simulation
for seconds in range(200):
#while True:
df['age_new'] = df['age'] * np.random.choice(range(1,5))
df['balance_new'] = df['balance'] * np.random.choice(range(1,5))
# creating KPIs
avg_age = np.mean(df['age_new'])
count_married = int(df[(df["marital"]=='married')]['marital'].count() + np.random.choice(range(1,30)))
balance = np.mean(df['balance_new'])
with placeholder.container():
# create three columns
kpi1, kpi2, kpi3 = st.columns(3)
# fill in those three columns with respective metrics or KPIs
kpi1.metric(label="Age ⏳", value=round(avg_age), delta= round(avg_age) - 10)
kpi2.metric(label="Married Count 💍", value= int(count_married), delta= - 10 + count_married)
kpi3.metric(label="A/C Balance $", value= f"$ {round(balance,2)} ", delta= - round(balance/count_married) * 100)
# create two columns for charts
fig_col1, fig_col2 = st.columns(2)
with fig_col1:
st.markdown("### First Chart")
fig = px.density_heatmap(data_frame=df, y = 'age_new', x = 'marital')
st.write(fig)
with fig_col2:
st.markdown("### Second Chart")
fig2 = px.histogram(data_frame = df, x = 'age_new')
st.write(fig2)
st.markdown("### Detailed Data View")
st.dataframe(df)
time.sleep(1)
#placeholder.empty()