-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathpreprocess.py
158 lines (129 loc) · 4.74 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# python3 and python2
import numpy as np
import cv2
import glob, os
import tqdm
from itertools import repeat
from multiprocessing import Pool
from functools import partial
def align_2p(img, left_eye, right_eye):
width = 256
eye_width = 70
transform = np.matrix([
[1, 0, left_eye[0]],
[0, 1, left_eye[1]],
[0, 0, 1]
], dtype='float')
th = np.pi + -np.arctan2(left_eye[1] - right_eye[1], left_eye[0] - right_eye[0])
transform *= np.matrix([
[np.cos(th), np.sin(th), 0],
[-np.sin(th), np.cos(th), 0],
[0, 0, 1]
], dtype='float')
scale = np.sqrt((left_eye[1] - right_eye[1]) ** 2 + (left_eye[0] - right_eye[0]) ** 2) / eye_width
transform *= np.matrix([
[scale, 0, 0],
[0, scale, 0],
[0, 0, 1]
], dtype='float')
transform *= np.matrix([
[1, 0, -(width - eye_width) / 2],
[0, 1, -width / 2.42],
[0, 0, 1]
], dtype='float')
transform = np.linalg.inv(transform)
jmg = cv2.warpAffine(img, transform[:2], (width, width))
return jmg
def align_face_2p(img, landmarks):
left_eye = (landmarks[0], landmarks[1])
right_eye = (landmarks[2], landmarks[3])
aligned_img = align_2p(img, left_eye, right_eye)
return aligned_img
# average landmarks
mean_face_lm5p = np.array([
[-0.17607, -0.172844], # left eye pupil
[0.1736, -0.17356], # right eye pupil
[-0.00182, 0.0357164], # nose tip
[-0.14617, 0.20185], # left mouth corner
[0.14496, 0.19943], # right mouth corner
])
def _get_align_5p_mat23_size_256(lm):
# legacy code
width = 256
mf = mean_face_lm5p.copy()
# Assumptions:
# 1. The output image size is 256x256 pixels
# 2. The distance between two eye pupils is 70 pixels
ratio = 70.0 / (
256.0 * 0.34967
) # magic number 0.34967 to compensate scaling from average landmarks
left_eye_pupil_y = mf[0][1]
# In an aligned face image, the ratio between the vertical distances from eye to the top and bottom is 1:1.42
ratioy = (left_eye_pupil_y * ratio + 0.5) * (1 + 1.42)
mf[:, 0] = (mf[:, 0] * ratio + 0.5) * width
mf[:, 1] = (mf[:, 1] * ratio + 0.5) * width / ratioy
mx = mf[:, 0].mean()
my = mf[:, 1].mean()
dmx = lm[:, 0].mean()
dmy = lm[:, 1].mean()
mat = np.zeros((3, 3), dtype=float)
ux = mf[:, 0] - mx
uy = mf[:, 1] - my
dux = lm[:, 0] - dmx
duy = lm[:, 1] - dmy
c1 = (ux * dux + uy * duy).sum()
c2 = (ux * duy - uy * dux).sum()
c3 = (dux**2 + duy**2).sum()
a = c1 / c3
b = c2 / c3
kx = 1
ky = 1
s = c3 / (c1**2 + c2**2)
ka = c1 * s
kb = c2 * s
transform = np.zeros((2, 3))
transform[0][0] = kx * a
transform[0][1] = kx * b
transform[0][2] = mx - kx * a * dmx - kx * b * dmy
transform[1][0] = -ky * b
transform[1][1] = ky * a
transform[1][2] = my - ky * a * dmy + ky * b * dmx
return transform
def get_align_5p_mat23(lm5p, size):
"""Align a face given 5 facial landmarks of
left_eye_pupil, right_eye_pupil, nose_tip, left_mouth_corner, right_mouth_corner
:param lm5p: nparray of (5, 2), 5 facial landmarks,
:param size: an integer, the output image size. The face is aligned to the mean face
:return: a affine transformation matrix of shape (2, 3)
"""
mat23 = _get_align_5p_mat23_size_256(lm5p.copy())
mat23 *= size / 256
return mat23
def align_given_lm5p(img, lm5p, size):
mat23 = get_align_5p_mat23(lm5p, size)
return cv2.warpAffine(img, mat23, (size, size))
def align_face_5p(img, landmarks):
aligned_img = align_given_lm5p(img, np.array(landmarks).reshape((5, 2)), 256)
return aligned_img
def work(data_dir, out_dir, landmarks, i):
src_imname = os.path.join(data_dir, 'data', '{:06d}.jpg'.format(i+1))
des_imname = os.path.join(out_dir, '{:06d}.jpg'.format(i+1))
img = cv2.imread(src_imname)
aligned_img = align_face_5p(img, landmarks[i])
cv2.imwrite(des_imname, aligned_img)
return 0
def main(data_dir, out_dir, thread_num):
if not os.path.exists(out_dir):
os.makedirs(out_dir)
with open(os.path.join(data_dir, 'list_landmarks_celeba.txt'), 'r') as f:
landmarks = [list(map(int, x.split()[1:11])) for x in f.read().strip().split('\n')[2:]]
im_list = glob.glob(os.path.join(data_dir, 'data/*.jpg'))
pool = Pool(thread_num)
# pool.starmap(work, zip(range(len(im_list)), repeat(data_dir), repeat(out_dir), repeat(landmarks)))
partial_work = partial(work, data_dir, out_dir, landmarks)
pool.map(partial_work, range(len(im_list)))
pool.close()
pool.join()
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = ''
main('./datasets/celebA/', './datasets/celebA/align_5p/', 30)