This repository has been archived by the owner on Apr 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathjobs.py
1142 lines (1004 loc) · 42.4 KB
/
jobs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Module containing tasks and flows for interacting with dbt Cloud jobs"""
import asyncio
import shlex
import time
from json import JSONDecodeError
from typing import Any, Awaitable, Callable, Dict, List, Optional, Union
from httpx import HTTPStatusError
from prefect import flow, get_run_logger, task
from prefect.blocks.abstract import JobBlock, JobRun
from prefect.context import FlowRunContext
from prefect.utilities.asyncutils import sync_compatible
from pydantic import VERSION as PYDANTIC_VERSION
if PYDANTIC_VERSION.startswith("2."):
from pydantic.v1 import Field
else:
from pydantic import Field
from typing_extensions import Literal
from prefect_dbt.cloud.credentials import DbtCloudCredentials
from prefect_dbt.cloud.exceptions import (
DbtCloudGetJobFailed,
DbtCloudGetRunArtifactFailed,
DbtCloudGetRunFailed,
DbtCloudJobRunCancelled,
DbtCloudJobRunFailed,
DbtCloudJobRunIncomplete,
DbtCloudJobRunTimedOut,
DbtCloudJobRunTriggerFailed,
DbtCloudListRunArtifactsFailed,
)
from prefect_dbt.cloud.models import TriggerJobRunOptions
from prefect_dbt.cloud.runs import (
DbtCloudJobRunStatus,
get_dbt_cloud_run_artifact,
get_dbt_cloud_run_info,
list_dbt_cloud_run_artifacts,
wait_for_dbt_cloud_job_run,
)
from prefect_dbt.cloud.utils import extract_user_message
EXE_COMMANDS = ("build", "run", "test", "seed", "snapshot")
@task(
name="Get dbt Cloud job details",
description="Retrieves details of a dbt Cloud job "
"for the job with the given job_id.",
retries=3,
retry_delay_seconds=10,
)
async def get_dbt_cloud_job_info(
dbt_cloud_credentials: DbtCloudCredentials,
job_id: int,
order_by: Optional[str] = None,
) -> Dict:
"""
A task to retrieve information about a dbt Cloud job.
Args:
dbt_cloud_credentials: Credentials for authenticating with dbt Cloud.
job_id: The ID of the job to get.
Returns:
The job data returned by the dbt Cloud administrative API.
Example:
Get status of a dbt Cloud job:
```python
from prefect import flow
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import get_job
@flow
def get_job_flow():
credentials = DbtCloudCredentials(api_key="my_api_key", account_id=123456789)
return get_job(
dbt_cloud_credentials=credentials,
job_id=42
)
get_job_flow()
```
""" # noqa
try:
async with dbt_cloud_credentials.get_administrative_client() as client:
response = await client.get_job(
job_id=job_id,
order_by=order_by,
)
except HTTPStatusError as ex:
raise DbtCloudGetJobFailed(extract_user_message(ex)) from ex
return response.json()["data"]
@task(
name="Trigger dbt Cloud job run",
description="Triggers a dbt Cloud job run for the job "
"with the given job_id and optional overrides.",
retries=3,
retry_delay_seconds=10,
)
async def trigger_dbt_cloud_job_run(
dbt_cloud_credentials: DbtCloudCredentials,
job_id: int,
options: Optional[TriggerJobRunOptions] = None,
) -> Dict:
"""
A task to trigger a dbt Cloud job run.
Args:
dbt_cloud_credentials: Credentials for authenticating with dbt Cloud.
job_id: The ID of the job to trigger.
options: An optional TriggerJobRunOptions instance to specify overrides
for the triggered job run.
Returns:
The run data returned from the dbt Cloud administrative API.
Examples:
Trigger a dbt Cloud job run:
```python
from prefect import flow
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run
@flow
def trigger_dbt_cloud_job_run_flow():
credentials = DbtCloudCredentials(api_key="my_api_key", account_id=123456789)
trigger_dbt_cloud_job_run(dbt_cloud_credentials=credentials, job_id=1)
trigger_dbt_cloud_job_run_flow()
```
Trigger a dbt Cloud job run with overrides:
```python
from prefect import flow
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run
from prefect_dbt.cloud.models import TriggerJobRunOptions
@flow
def trigger_dbt_cloud_job_run_flow():
credentials = DbtCloudCredentials(api_key="my_api_key", account_id=123456789)
trigger_dbt_cloud_job_run(
dbt_cloud_credentials=credentials,
job_id=1,
options=TriggerJobRunOptions(
git_branch="staging",
schema_override="dbt_cloud_pr_123",
dbt_version_override="0.18.0",
target_name_override="staging",
timeout_seconds_override=3000,
generate_docs_override=True,
threads_override=8,
steps_override=[
"dbt seed",
"dbt run --fail-fast",
"dbt test --fail-fast",
],
),
)
trigger_dbt_cloud_job_run()
```
""" # noqa
logger = get_run_logger()
logger.info(f"Triggering run for job with ID {job_id}")
try:
async with dbt_cloud_credentials.get_administrative_client() as client:
response = await client.trigger_job_run(job_id=job_id, options=options)
except HTTPStatusError as ex:
raise DbtCloudJobRunTriggerFailed(extract_user_message(ex)) from ex
run_data = response.json()["data"]
if "project_id" in run_data and "id" in run_data:
logger.info(
f"Run successfully triggered for job with ID {job_id}. "
"You can view the status of this run at "
f"https://{dbt_cloud_credentials.domain}/#/accounts/"
f"{dbt_cloud_credentials.account_id}/projects/{run_data['project_id']}/"
f"runs/{run_data['id']}/"
)
return run_data
@task(
name="Get dbt Cloud job run ID",
description="Extracts the run ID from a trigger job run API response",
)
def get_run_id(obj: Dict):
"""
Task that extracts the run ID from a trigger job run API response,
This task is mainly used to maintain dependency tracking between the
`trigger_dbt_cloud_job_run` task and downstream tasks/flows that use the run ID.
Args:
obj: The JSON body from the trigger job run response.
Example:
```python
from prefect import flow
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run, get_run_id
@flow
def trigger_run_and_get_id():
dbt_cloud_credentials=DbtCloudCredentials(
api_key="my_api_key",
account_id=123456789
)
triggered_run_data = trigger_dbt_cloud_job_run(
dbt_cloud_credentials=dbt_cloud_credentials,
job_id=job_id,
options=trigger_job_run_options,
)
run_id = get_run_id.submit(triggered_run_data)
return run_id
trigger_run_and_get_id()
```
"""
id = obj.get("id")
if id is None:
raise RuntimeError("Unable to determine run ID for triggered job.")
return id
@flow(
name="Trigger dbt Cloud job run and wait for completion",
description="Triggers a dbt Cloud job run and waits for the"
"triggered run to complete.",
)
async def trigger_dbt_cloud_job_run_and_wait_for_completion(
dbt_cloud_credentials: DbtCloudCredentials,
job_id: int,
trigger_job_run_options: Optional[TriggerJobRunOptions] = None,
max_wait_seconds: int = 900,
poll_frequency_seconds: int = 10,
retry_filtered_models_attempts: int = 3,
) -> Dict:
"""
Flow that triggers a job run and waits for the triggered run to complete.
Args:
dbt_cloud_credentials: Credentials for authenticating with dbt Cloud.
job_id: The ID of the job to trigger.
trigger_job_run_options: An optional TriggerJobRunOptions instance to
specify overrides for the triggered job run.
max_wait_seconds: Maximum number of seconds to wait for job to complete
poll_frequency_seconds: Number of seconds to wait in between checks for
run completion.
retry_filtered_models_attempts: Number of times to retry models selected by `retry_status_filters`.
Raises:
DbtCloudJobRunCancelled: The triggered dbt Cloud job run was cancelled.
DbtCloudJobRunFailed: The triggered dbt Cloud job run failed.
RuntimeError: The triggered dbt Cloud job run ended in an unexpected state.
Returns:
The run data returned by the dbt Cloud administrative API.
Examples:
Trigger a dbt Cloud job and wait for completion as a stand alone flow:
```python
import asyncio
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run_and_wait_for_completion
asyncio.run(
trigger_dbt_cloud_job_run_and_wait_for_completion(
dbt_cloud_credentials=DbtCloudCredentials(
api_key="my_api_key",
account_id=123456789
),
job_id=1
)
)
```
Trigger a dbt Cloud job and wait for completion as a sub-flow:
```python
from prefect import flow
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run_and_wait_for_completion
@flow
def my_flow():
...
run_result = trigger_dbt_cloud_job_run_and_wait_for_completion(
dbt_cloud_credentials=DbtCloudCredentials(
api_key="my_api_key",
account_id=123456789
),
job_id=1
)
...
my_flow()
```
Trigger a dbt Cloud job with overrides:
```python
import asyncio
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run_and_wait_for_completion
from prefect_dbt.cloud.models import TriggerJobRunOptions
asyncio.run(
trigger_dbt_cloud_job_run_and_wait_for_completion(
dbt_cloud_credentials=DbtCloudCredentials(
api_key="my_api_key",
account_id=123456789
),
job_id=1,
trigger_job_run_options=TriggerJobRunOptions(
git_branch="staging",
schema_override="dbt_cloud_pr_123",
dbt_version_override="0.18.0",
target_name_override="staging",
timeout_seconds_override=3000,
generate_docs_override=True,
threads_override=8,
steps_override=[
"dbt seed",
"dbt run --fail-fast",
"dbt test --fail fast",
],
),
)
)
```
""" # noqa
logger = get_run_logger()
triggered_run_data_future = await trigger_dbt_cloud_job_run.submit(
dbt_cloud_credentials=dbt_cloud_credentials,
job_id=job_id,
options=trigger_job_run_options,
)
run_id = (await triggered_run_data_future.result()).get("id")
if run_id is None:
raise RuntimeError("Unable to determine run ID for triggered job.")
final_run_status, run_data = await wait_for_dbt_cloud_job_run(
run_id=run_id,
dbt_cloud_credentials=dbt_cloud_credentials,
max_wait_seconds=max_wait_seconds,
poll_frequency_seconds=poll_frequency_seconds,
)
if final_run_status == DbtCloudJobRunStatus.SUCCESS:
try:
list_run_artifacts_future = await list_dbt_cloud_run_artifacts.submit(
dbt_cloud_credentials=dbt_cloud_credentials,
run_id=run_id,
)
run_data["artifact_paths"] = await list_run_artifacts_future.result()
except DbtCloudListRunArtifactsFailed as ex:
logger.warning(
"Unable to retrieve artifacts for job run with ID %s. Reason: %s",
run_id,
ex,
)
logger.info(
"dbt Cloud job run with ID %s completed successfully!",
run_id,
)
return run_data
elif final_run_status == DbtCloudJobRunStatus.CANCELLED:
raise DbtCloudJobRunCancelled(
f"Triggered job run with ID {run_id} was cancelled."
)
elif final_run_status == DbtCloudJobRunStatus.FAILED:
while retry_filtered_models_attempts > 0:
logger.info(
f"Retrying job run with ID: {run_id} "
f"{retry_filtered_models_attempts} more times"
)
try:
retry_filtered_models_attempts -= 1
run_data = await (
retry_dbt_cloud_job_run_subset_and_wait_for_completion(
dbt_cloud_credentials=dbt_cloud_credentials,
run_id=run_id,
trigger_job_run_options=trigger_job_run_options,
max_wait_seconds=max_wait_seconds,
poll_frequency_seconds=poll_frequency_seconds,
)
)
return run_data
except Exception:
pass
else:
raise DbtCloudJobRunFailed(f"Triggered job run with ID: {run_id} failed.")
else:
raise RuntimeError(
f"Triggered job run with ID: {run_id} ended with unexpected"
f"status {final_run_status.value}."
)
async def _build_trigger_job_run_options(
dbt_cloud_credentials: DbtCloudCredentials,
trigger_job_run_options: TriggerJobRunOptions,
run_id: str,
run_info: Dict[str, Any],
job_info: Dict[str, Any],
):
"""
Compiles a list of steps (commands) to retry, then either build trigger job
run options from scratch if it does not exist, else overrides the existing.
"""
generate_docs = job_info.get("generate_docs", False)
generate_sources = job_info.get("generate_sources", False)
steps_override = []
for run_step in run_info["run_steps"]:
status = run_step["status_humanized"].lower()
# Skipping cloning, profile setup, and dbt deps - always the first three
# steps in any run, and note, index starts at 1 instead of 0
if run_step["index"] <= 3 or status == "success":
continue
# get dbt build from "Invoke dbt with `dbt build`"
command = run_step["name"].partition("`")[2].partition("`")[0]
# These steps will be re-run regardless if
# generate_docs or generate_sources are enabled for a given job
# so if we don't skip, it'll run twice
freshness_in_command = (
"dbt source snapshot-freshness" in command
or "dbt source freshness" in command
)
if "dbt docs generate" in command and generate_docs:
continue
elif freshness_in_command and generate_sources:
continue
# find an executable command like `build` or `run`
# search in a list so that there aren't false positives, like
# `"run" in "dbt run-operation"`, which is True; we actually want
# `"run" in ["dbt", "run-operation"]` which is False
command_components = shlex.split(command)
for exe_command in EXE_COMMANDS:
if exe_command in command_components:
break
else:
exe_command = ""
is_exe_command = exe_command in EXE_COMMANDS
is_not_success = status in ("error", "skipped", "cancelled")
is_skipped = status == "skipped"
if (not is_exe_command and is_not_success) or (is_exe_command and is_skipped):
# if no matches like `run-operation`, we will be rerunning entirely
# or if it's one of the expected commands and is skipped
steps_override.append(command)
else:
# errors and failures are when we need to inspect to figure
# out the point of failure
try:
run_artifact_future = await get_dbt_cloud_run_artifact.with_options(
retries=0, retry_delay_seconds=0
).submit(
dbt_cloud_credentials=dbt_cloud_credentials,
run_id=run_id,
path="run_results.json",
step=run_step["index"],
)
run_artifact = await run_artifact_future.result()
except JSONDecodeError:
# get the run results scoped to the step which had an error
# an error here indicates that either:
# 1) the fail-fast flag was set, in which case
# the run_results.json file was never created; or
# 2) there was a problem on dbt Cloud's side saving
# this artifact
steps_override.append(command)
else:
# we only need to find the individual nodes for those run commands
run_results = run_artifact["results"]
# select nodes that were not successful
# note "fail" here instead of "cancelled" because
# nodes do not have a cancelled state
run_nodes = " ".join(
run_result["unique_id"].split(".")[2]
for run_result in run_results
if run_result["status"] in ("error", "skipped", "fail")
)
select_arg = None
if "-s" in command_components:
select_arg = "-s"
elif "--select" in command_components:
select_arg = "--select"
# prevent duplicate --select/-s statements
if select_arg is not None:
# dbt --fail-fast run, -s, bad_mod --vars '{"env": "prod"}' to:
# dbt --fail-fast run -s other_mod bad_mod --vars '{"env": "prod"}'
command_start, select_arg, command_end = command.partition(
select_arg
)
modified_command = (
f"{command_start} {select_arg} {run_nodes} {command_end}"
)
else:
# dbt --fail-fast, build, --vars '{"env": "prod"}' to:
# dbt --fail-fast build --select bad_model --vars '{"env": "prod"}'
dbt_global_args, exe_command, exe_args = command.partition(
exe_command
)
modified_command = (
f"{dbt_global_args} {exe_command} -s {run_nodes} {exe_args}"
)
steps_override.append(modified_command)
if trigger_job_run_options is None:
trigger_job_run_options_override = TriggerJobRunOptions(
steps_override=steps_override
)
else:
trigger_job_run_options_override = trigger_job_run_options.copy()
trigger_job_run_options_override.steps_override = steps_override
return trigger_job_run_options_override
@flow(
name="Retry subset of dbt Cloud job run and wait for completion",
description=(
"Retries a subset of dbt Cloud job run, filtered by select statuses, "
"and waits for the triggered retry to complete."
),
)
async def retry_dbt_cloud_job_run_subset_and_wait_for_completion(
dbt_cloud_credentials: DbtCloudCredentials,
run_id: int,
trigger_job_run_options: Optional[TriggerJobRunOptions] = None,
max_wait_seconds: int = 900,
poll_frequency_seconds: int = 10,
) -> Dict:
"""
Flow that retrys a subset of dbt Cloud job run, filtered by select statuses,
and waits for the triggered retry to complete.
Args:
dbt_cloud_credentials: Credentials for authenticating with dbt Cloud.
trigger_job_run_options: An optional TriggerJobRunOptions instance to
specify overrides for the triggered job run.
max_wait_seconds: Maximum number of seconds to wait for job to complete
poll_frequency_seconds: Number of seconds to wait in between checks for
run completion.
run_id: The ID of the job run to retry.
Raises:
ValueError: If `trigger_job_run_options.steps_override` is set by the user.
Returns:
The run data returned by the dbt Cloud administrative API.
Examples:
Retry a subset of models in a dbt Cloud job run and wait for completion:
```python
from prefect import flow
from prefect_dbt.cloud import DbtCloudCredentials
from prefect_dbt.cloud.jobs import retry_dbt_cloud_job_run_subset_and_wait_for_completion
@flow
def retry_dbt_cloud_job_run_subset_and_wait_for_completion_flow():
credentials = DbtCloudCredentials.load("MY_BLOCK_NAME")
retry_dbt_cloud_job_run_subset_and_wait_for_completion(
dbt_cloud_credentials=credentials,
run_id=88640123,
)
retry_dbt_cloud_job_run_subset_and_wait_for_completion_flow()
```
""" # noqa
if trigger_job_run_options and trigger_job_run_options.steps_override is not None:
raise ValueError(
"Do not set `steps_override` in `trigger_job_run_options` "
"because this flow will automatically set it"
)
run_info_future = await get_dbt_cloud_run_info.submit(
dbt_cloud_credentials=dbt_cloud_credentials,
run_id=run_id,
include_related=["run_steps"],
)
run_info = await run_info_future.result()
job_id = run_info["job_id"]
job_info_future = await get_dbt_cloud_job_info.submit(
dbt_cloud_credentials=dbt_cloud_credentials,
job_id=job_id,
)
job_info = await job_info_future.result()
trigger_job_run_options_override = await _build_trigger_job_run_options(
dbt_cloud_credentials=dbt_cloud_credentials,
trigger_job_run_options=trigger_job_run_options,
run_id=run_id,
run_info=run_info,
job_info=job_info,
)
# to circumvent `RuntimeError: The task runner is already started!`
flow_run_context = FlowRunContext.get()
task_runner_type = type(flow_run_context.task_runner)
run_data = await trigger_dbt_cloud_job_run_and_wait_for_completion.with_options(
task_runner=task_runner_type()
)(
dbt_cloud_credentials=dbt_cloud_credentials,
job_id=job_id,
retry_filtered_models_attempts=0,
trigger_job_run_options=trigger_job_run_options_override,
max_wait_seconds=max_wait_seconds,
poll_frequency_seconds=poll_frequency_seconds,
)
return run_data
class DbtCloudJobRun(JobRun): # NOT A BLOCK
"""
Class that holds the information and methods to interact
with the resulting run of a dbt Cloud job.
"""
def __init__(self, run_id: int, dbt_cloud_job: "DbtCloudJob"):
self.run_id = run_id
self._dbt_cloud_job = dbt_cloud_job
self._dbt_cloud_credentials = dbt_cloud_job.dbt_cloud_credentials
@property
def _log_prefix(self):
return f"dbt Cloud job {self._dbt_cloud_job.job_id} run {self.run_id}."
async def _wait_until_state(
self,
in_final_state_fn: Awaitable[Callable],
get_state_fn: Awaitable[Callable],
log_state_fn: Callable = None,
timeout_seconds: int = 60,
interval_seconds: int = 1,
):
"""
Wait until the job run reaches a specific state.
Args:
in_final_state_fn: An async function that accepts a run state
and returns a boolean indicating whether the job run is
in a final state.
get_state_fn: An async function that returns
the current state of the job run.
log_state_fn: A callable that accepts a run
state and makes it human readable.
timeout_seconds: The maximum amount of time, in seconds, to wait
for the job run to reach the final state.
interval_seconds: The number of seconds to wait between checks of
the job run's state.
"""
start_time = time.time()
last_state = run_state = None
while not in_final_state_fn(run_state):
run_state = await get_state_fn()
if run_state != last_state:
if self.logger is not None:
self.logger.info(
"%s has new state: %s",
self._log_prefix,
log_state_fn(run_state),
)
last_state = run_state
elapsed_time_seconds = time.time() - start_time
if elapsed_time_seconds > timeout_seconds:
raise DbtCloudJobRunTimedOut(
f"Max wait time of {timeout_seconds} "
"seconds exceeded while waiting"
)
await asyncio.sleep(interval_seconds)
@sync_compatible
async def get_run(self) -> Dict[str, Any]:
"""
Makes a request to the dbt Cloud API to get the run data.
Returns:
The run data.
"""
try:
dbt_cloud_credentials = self._dbt_cloud_credentials
async with dbt_cloud_credentials.get_administrative_client() as client:
response = await client.get_run(self.run_id)
except HTTPStatusError as ex:
raise DbtCloudGetRunFailed(extract_user_message(ex)) from ex
run_data = response.json()["data"]
return run_data
@sync_compatible
async def get_status_code(self) -> int:
"""
Makes a request to the dbt Cloud API to get the run status.
Returns:
The run status code.
"""
run_data = await self.get_run()
run_status_code = run_data.get("status")
return run_status_code
@sync_compatible
async def wait_for_completion(self) -> None:
"""
Waits for the job run to reach a terminal state.
"""
await self._wait_until_state(
in_final_state_fn=DbtCloudJobRunStatus.is_terminal_status_code,
get_state_fn=self.get_status_code,
log_state_fn=DbtCloudJobRunStatus,
timeout_seconds=self._dbt_cloud_job.timeout_seconds,
interval_seconds=self._dbt_cloud_job.interval_seconds,
)
@sync_compatible
async def fetch_result(self, step: Optional[int] = None) -> Dict[str, Any]:
"""
Gets the results from the job run. Since the results
may not be ready, use wait_for_completion before calling this method.
Args:
step: The index of the step in the run to query for artifacts. The
first step in the run has the index 1. If the step parameter is
omitted, then this method will return the artifacts compiled
for the last step in the run.
"""
run_data = await self.get_run()
run_status = DbtCloudJobRunStatus(run_data.get("status"))
if run_status == DbtCloudJobRunStatus.SUCCESS:
try:
async with self._dbt_cloud_credentials.get_administrative_client() as client: # noqa
response = await client.list_run_artifacts(
run_id=self.run_id, step=step
)
run_data["artifact_paths"] = response.json()["data"]
self.logger.info("%s completed successfully!", self._log_prefix)
except HTTPStatusError as ex:
raise DbtCloudListRunArtifactsFailed(extract_user_message(ex)) from ex
return run_data
elif run_status == DbtCloudJobRunStatus.CANCELLED:
raise DbtCloudJobRunCancelled(f"{self._log_prefix} was cancelled.")
elif run_status == DbtCloudJobRunStatus.FAILED:
raise DbtCloudJobRunFailed(f"{self._log_prefix} has failed.")
else:
raise DbtCloudJobRunIncomplete(
f"{self._log_prefix} is still running; "
"use wait_for_completion() to wait until results are ready."
)
@sync_compatible
async def get_run_artifacts(
self,
path: Literal["manifest.json", "catalog.json", "run_results.json"],
step: Optional[int] = None,
) -> Union[Dict[str, Any], str]:
"""
Get an artifact generated for a completed run.
Args:
path: The relative path to the run artifact.
step: The index of the step in the run to query for artifacts. The
first step in the run has the index 1. If the step parameter is
omitted, then this method will return the artifacts compiled
for the last step in the run.
Returns:
The contents of the requested manifest. Returns a `Dict` if the
requested artifact is a JSON file and a `str` otherwise.
"""
try:
dbt_cloud_credentials = self._dbt_cloud_credentials
async with dbt_cloud_credentials.get_administrative_client() as client:
response = await client.get_run_artifact(
run_id=self.run_id, path=path, step=step
)
except HTTPStatusError as ex:
raise DbtCloudGetRunArtifactFailed(extract_user_message(ex)) from ex
if path.endswith(".json"):
artifact_contents = response.json()
else:
artifact_contents = response.text
return artifact_contents
def _select_unsuccessful_commands(
self,
run_results: List[Dict[str, Any]],
command_components: List[str],
command: str,
exe_command: str,
) -> List[str]:
"""
Select nodes that were not successful and rebuild a command.
"""
# note "fail" here instead of "cancelled" because
# nodes do not have a cancelled state
run_nodes = " ".join(
run_result["unique_id"].split(".")[2]
for run_result in run_results
if run_result["status"] in ("error", "skipped", "fail")
)
select_arg = None
if "-s" in command_components:
select_arg = "-s"
elif "--select" in command_components:
select_arg = "--select"
# prevent duplicate --select/-s statements
if select_arg is not None:
# dbt --fail-fast run, -s, bad_mod --vars '{"env": "prod"}' to:
# dbt --fail-fast run -s other_mod bad_mod --vars '{"env": "prod"}'
command_start, select_arg, command_end = command.partition(select_arg)
modified_command = (
f"{command_start} {select_arg} {run_nodes} {command_end}" # noqa
)
else:
# dbt --fail-fast, build, --vars '{"env": "prod"}' to:
# dbt --fail-fast build --select bad_model --vars '{"env": "prod"}'
dbt_global_args, exe_command, exe_args = command.partition(exe_command)
modified_command = (
f"{dbt_global_args} {exe_command} -s {run_nodes} {exe_args}"
)
return modified_command
async def _build_trigger_job_run_options(
self,
job: Dict[str, Any],
run: Dict[str, Any],
) -> TriggerJobRunOptions:
"""
Compiles a list of steps (commands) to retry, then either build trigger job
run options from scratch if it does not exist, else overrides the existing.
"""
generate_docs = job.get("generate_docs", False)
generate_sources = job.get("generate_sources", False)
steps_override = []
for run_step in run["run_steps"]:
status = run_step["status_humanized"].lower()
# Skipping cloning, profile setup, and dbt deps - always the first three
# steps in any run, and note, index starts at 1 instead of 0
if run_step["index"] <= 3 or status == "success":
continue
# get dbt build from "Invoke dbt with `dbt build`"
command = run_step["name"].partition("`")[2].partition("`")[0]
# These steps will be re-run regardless if
# generate_docs or generate_sources are enabled for a given job
# so if we don't skip, it'll run twice
freshness_in_command = (
"dbt source snapshot-freshness" in command
or "dbt source freshness" in command
)
if "dbt docs generate" in command and generate_docs:
continue
elif freshness_in_command and generate_sources:
continue
# find an executable command like `build` or `run`
# search in a list so that there aren't false positives, like
# `"run" in "dbt run-operation"`, which is True; we actually want
# `"run" in ["dbt", "run-operation"]` which is False
command_components = shlex.split(command)
for exe_command in EXE_COMMANDS:
if exe_command in command_components:
break
else:
exe_command = ""
is_exe_command = exe_command in EXE_COMMANDS
is_not_success = status in ("error", "skipped", "cancelled")
is_skipped = status == "skipped"
if (not is_exe_command and is_not_success) or (
is_exe_command and is_skipped
):
# if no matches like `run-operation`, we will be rerunning entirely
# or if it's one of the expected commands and is skipped
steps_override.append(command)
else:
# errors and failures are when we need to inspect to figure
# out the point of failure
try:
run_artifact = await self.get_run_artifacts(
"run_results.json", run_step["index"]
)
except JSONDecodeError:
# get the run results scoped to the step which had an error
# an error here indicates that either:
# 1) the fail-fast flag was set, in which case
# the run_results.json file was never created; or
# 2) there was a problem on dbt Cloud's side saving
# this artifact
steps_override.append(command)
else:
# we only need to find the individual nodes
# for those run commands
run_results = run_artifact["results"]
modified_command = self._select_unsuccessful_commands(
run_results=run_results,
command_components=command_components,
command=command,
exe_command=exe_command,
)
steps_override.append(modified_command)
if self._dbt_cloud_job.trigger_job_run_options is None:
trigger_job_run_options_override = TriggerJobRunOptions(
steps_override=steps_override
)
else:
trigger_job_run_options_override = (
self._dbt_cloud_job.trigger_job_run_options.copy()
)
trigger_job_run_options_override.steps_override = steps_override
return trigger_job_run_options_override
@sync_compatible
async def retry_failed_steps(self) -> "DbtCloudJobRun": # noqa: F821
"""
Retries steps that did not complete successfully in a run.
Returns:
A representation of the dbt Cloud job run.
"""
job = await self._dbt_cloud_job.get_job()
run = await self.get_run()
trigger_job_run_options_override = await self._build_trigger_job_run_options(
job=job, run=run
)
num_steps = len(trigger_job_run_options_override.steps_override)
if num_steps == 0:
self.logger.info(f"{self._log_prefix} does not have any steps to retry.")
else:
self.logger.info(f"{self._log_prefix} has {num_steps} steps to retry.")
run = await self._dbt_cloud_job.trigger(
trigger_job_run_options=trigger_job_run_options_override,
)
return run
class DbtCloudJob(JobBlock):
"""
Block that holds the information and methods to interact with a dbt Cloud job.
Attributes:
dbt_cloud_credentials: The credentials to use to authenticate with dbt Cloud.
job_id: The id of the dbt Cloud job.
timeout_seconds: The number of seconds to wait for the job to complete.
interval_seconds:
The number of seconds to wait between polling for job completion.
trigger_job_run_options: The options to use when triggering a job run.
Examples:
Load a configured dbt Cloud job block.
```python
from prefect_dbt.cloud import DbtCloudJob
dbt_cloud_job = DbtCloudJob.load("BLOCK_NAME")
```
Triggers a dbt Cloud job, waits for completion, and fetches the results.
```python
from prefect import flow
from prefect_dbt.cloud import DbtCloudCredentials, DbtCloudJob
@flow
def dbt_cloud_job_flow():