-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest.py
74 lines (66 loc) · 2.73 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import argparse
import copy
import numpy as np
import imageio
import torch
import torch.nn.functional as F
import torchvision
from model.rd3d import RD3D
from model.rd3d_plus import RD3D_plus
from data import test_dataset
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, required=True, help='path to model file')
parser.add_argument('--testsize', type=int, default=352, help='testing size')
parser.add_argument('--test_datasets', type=str, default=['NJU2000-test'], nargs='+', help='test dataset')
parser.add_argument('--data_path', type=str, default='data_path', help='test dataset')
parser.add_argument('--save_path', type=str, help='test dataset')
parser.add_argument('--model', type=str, help='RD3D or RD3D+')
# model
parser.add_argument('--multi_load', action='store_true', help='whether to load multi-gpu weight')
opt = parser.parse_args()
dataset_path = opt.data_path
test_datasets = opt.test_datasets
if opt.save_path is not None:
save_root = opt.save_path
else:
mode_dir_name = os.path.dirname(opt.model_path)
stime = mode_dir_name.split('\\')[-1]
save_root = os.path.join(mode_dir_name, f'{stime}_results')
# build model
resnet = torchvision.models.resnet50(pretrained=True)
if opt.model=="RD3D":
model = RD3D(32, copy.deepcopy(resnet))
else:
model = RD3D_plus(32, copy.deepcopy(resnet))
if opt.multi_load:
state_dict_multi = torch.load(opt.model_path)
state_dict = {k[7:]: v for k, v in state_dict_multi.items()}
else:
state_dict = torch.load(opt.model_path)
model.load_state_dict(state_dict)
model.cuda()
model.eval()
for dataset in test_datasets:
save_path = os.path.join(save_root, dataset)
if not os.path.exists(save_path):
os.makedirs(save_path)
image_root = os.path.join(dataset_path, dataset, 'images/')
gt_root = os.path.join(dataset_path, dataset, 'gts/')
depth_root = os.path.join(dataset_path, dataset, 'depths/')
test_loader = test_dataset(image_root, gt_root, depth_root, opt.testsize)
for i in range(test_loader.size):
image, gt, depth, name = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
depth = depth.cuda()
images = image.unsqueeze(2)
depths = depth.unsqueeze(2)
image = torch.cat([images, depths], 2)
res = model(image)
res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
imageio.imsave(os.path.join(save_path, name), res)
print(f"{os.path.join(save_path, name)} saved !")