-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
240 lines (205 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import argparse
import json
import datetime
import os
import logging
import torch
import torch.nn as nn
import train
import test
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import math
import csv
from torchvision import transforms
from image_train import ImageTrain
from image_helper import ImageHelper
from utils.utils import dict_html
import utils.csv_record as csv_record
import yaml
import time
import visdom
import numpy as np
import random
import config
import copy
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
logger = logging.getLogger("logger")
# logger.setLevel("ERROR")
vis = visdom.Visdom(port=8097)
criterion = torch.nn.CrossEntropyLoss()
torch.manual_seed(1)
torch.cuda.manual_seed(1)
random.seed(1)
def trigger_test_byindex(helper, index, vis, epoch):
epoch_loss, epoch_acc, epoch_corret, epoch_total = \
test.Mytest_poison_trigger(helper=helper, model=helper.target_model,
adver_trigger_index=index)
csv_record.poisontriggertest_result.append(
['global', "global_in_index_" + str(index) + "_trigger", "", epoch,
epoch_loss, epoch_acc, epoch_corret, epoch_total])
if helper.params['vis_trigger_split_test']:
helper.target_model.trigger_agent_test_vis(vis=vis, epoch=epoch, acc=epoch_acc, loss=None,
eid=helper.params['environment_name'],
name="global_in_index_" + str(index) + "_trigger")
def trigger_test_byname(helper, agent_name_key, vis, epoch):
epoch_loss, epoch_acc, epoch_corret, epoch_total = \
test.Mytest_poison_agent_trigger(helper=helper, model=helper.target_model, agent_name_key=agent_name_key)
csv_record.poisontriggertest_result.append(
['global', "global_in_" + str(agent_name_key) + "_trigger", "", epoch,
epoch_loss, epoch_acc, epoch_corret, epoch_total])
if helper.params['vis_trigger_split_test']:
helper.target_model.trigger_agent_test_vis(vis=vis, epoch=epoch, acc=epoch_acc, loss=None,
eid=helper.params['environment_name'],
name="global_in_" + str(agent_name_key) + "_trigger")
def vis_agg_weight(helper, names, weights, epoch, vis, adversarial_name_keys):
print(names)
print(adversarial_name_keys)
for i in range(0, len(names)):
_name = names[i]
_weight = weights[i]
_is_poison = False
if _name in adversarial_name_keys:
_is_poison = True
helper.target_model.weight_vis(vis=vis, epoch=epoch, weight=_weight, eid=helper.params['environment_name'],
name=_name, is_poisoned=_is_poison)
def vis_fg_alpha(helper, names, alphas, epoch, vis, adversarial_name_keys):
print(names)
print(adversarial_name_keys)
for i in range(0, len(names)):
_name = names[i]
_alpha = alphas[i]
_is_poison = False
if _name in adversarial_name_keys:
_is_poison = True
helper.target_model.alpha_vis(vis=vis, epoch=epoch, alpha=_alpha, eid=helper.params['environment_name'],
name=_name, is_poisoned=_is_poison)
if __name__ == '__main__':
print('Start training')
np.random.seed(1)
time_start_load_everything = time.time()
parser = argparse.ArgumentParser(description='PPDL')
parser.add_argument('--params', dest='params')
args = parser.parse_args()
with open(f'./{args.params}', 'r') as f:
params_loaded = yaml.safe_load(f)
current_time = datetime.datetime.now().strftime('%b.%d_%H.%M.%S')
if params_loaded['type'] == config.TYPE_CIFAR:
helper = ImageHelper(current_time=current_time, params=params_loaded,
name=params_loaded.get('name', 'cifar'))
helper.load_data()
else:
helper = None
logger.info(f'load data done')
helper.create_model()
logger.info(f'create model done')
### Create models
if helper.params['is_poison']:
logger.info(f"后门C端参与者: {(helper.params['total_list'])}")
best_loss = float('inf')
vis.text(text=dict_html(helper.params, current_time=helper.params["current_time"]),
env=helper.params['environment_name'], opts=dict(width=300, height=400))
logger.info(f"实验数据集: {helper.params['environment_name']}")
weight_accumulator = helper.init_weight_accumulator(helper.target_model)
# save parameters:
with open(f'{helper.folder_path}/params.yaml', 'w') as f:
yaml.dump(helper.params, f)
submit_update_dict = None
num_no_progress = 0
for epoch in range(helper.start_epoch, helper.params['epochs'] + 1, helper.params['aggr_epoch_interval']):
start_time = time.time()
t = time.time()
agent_name_keys = helper.participants_list
adversarial_name_keys = []
if helper.params['is_random_namelist']:
if helper.params['is_random_adversary']: # random choose , maybe don't have advasarial
agent_name_keys = random.sample(helper.participants_list, helper.params['no_models'])
for _name_keys in agent_name_keys:
if _name_keys in helper.params['total_list']:
adversarial_name_keys.append(_name_keys)
else: # must have advasarial if this epoch is in their poison epoch
ongoing_epochs = list(range(epoch, epoch + helper.params['aggr_epoch_interval']))
for idx in range(0, len(helper.params['total_list'])):
for ongoing_epoch in ongoing_epochs:
if ongoing_epoch in helper.params[str(idx) + '_poison_epochs']:
if helper.params['total_list'][idx] not in adversarial_name_keys:
adversarial_name_keys.append(helper.params['total_list'][idx])
nonattacker = []
for adv in helper.params['total_list']:
if adv not in adversarial_name_keys:
nonattacker.append(copy.deepcopy(adv))
benign_num = helper.params['no_models'] - len(adversarial_name_keys)
random_agent_name_keys = random.sample(helper.benign_namelist + nonattacker, benign_num)
agent_name_keys = adversarial_name_keys + random_agent_name_keys
else:
if helper.params['is_random_adversary'] == False:
adversarial_name_keys = copy.deepcopy(helper.params['total_list'])
logger.info(f'当前轮次:{epoch} 本轮的参与方 : {agent_name_keys}.')
epochs_submit_update_dict, num_samples_dict = ImageTrain(helper=helper, start_epoch=epoch,
local_model=helper.local_model,
target_model=helper.target_model,
is_poison=helper.params['is_poison'],
agent_name_keys=agent_name_keys)
logger.info(f'time spent on training: {time.time() - t}')
weight_accumulator, updates = helper.accumulate_weight(weight_accumulator, epochs_submit_update_dict,
agent_name_keys, num_samples_dict)
is_updated = True
if helper.params['aggregation_methods'] == config.AGGR_MEAN:
# Average the models
is_updated = helper.average_shrink_models(weight_accumulator=weight_accumulator,
target_model=helper.target_model,
epoch_interval=helper.params['aggr_epoch_interval'])
num_oracle_calls = 1
elif helper.params['aggregation_methods'] == config.AGGR_GEO_MED:
maxiter = helper.params['geom_median_maxiter']
num_oracle_calls, is_updated, names, weights, alphas = helper.geometric_median_update(helper.target_model,
updates,
maxiter=maxiter)
vis_agg_weight(helper, names, weights, epoch, vis, adversarial_name_keys)
vis_fg_alpha(helper, names, alphas, epoch, vis, adversarial_name_keys)
elif helper.params['aggregation_methods'] == config.AGGR_FOOLSGOLD:
is_updated, names, weights, alphas = helper.foolsgold_update(helper.target_model, updates)
vis_agg_weight(helper, names, weights, epoch, vis, adversarial_name_keys)
vis_fg_alpha(helper, names, alphas, epoch, vis, adversarial_name_keys)
num_oracle_calls = 1
# clear the weight_accumulator
weight_accumulator = helper.init_weight_accumulator(helper.target_model)
temp_global_epoch = epoch + helper.params['aggr_epoch_interval'] - 1
epoch_loss, epoch_acc, epoch_corret, epoch_total = test.Mytest(helper=helper, epoch=temp_global_epoch,
model=helper.target_model, is_poison=False,
visualize=True, agent_name_key="global")
csv_record.test_result.append(["global", temp_global_epoch, epoch_loss, epoch_acc, epoch_corret, epoch_total])
if len(csv_record.scale_temp_one_row) > 0:
csv_record.scale_temp_one_row.append(round(epoch_acc, 4))
if helper.params['is_poison']:
epoch_loss, epoch_acc_p, epoch_corret, epoch_total = test.Mytest_poison(helper=helper,
epoch=temp_global_epoch,
model=helper.target_model,
is_poison=True,
visualize=True,
agent_name_key="global")
csv_record.posiontest_result.append(
["global", temp_global_epoch, epoch_loss, epoch_acc_p, epoch_corret, epoch_total])
# test on local triggers
csv_record.poisontriggertest_result.append(
["global", "combine", "", temp_global_epoch, epoch_loss, epoch_acc_p, epoch_corret, epoch_total])
if helper.params['vis_trigger_split_test']:
helper.target_model.trigger_agent_test_vis(vis=vis, epoch=epoch, acc=epoch_acc_p, loss=None,
eid=helper.params['environment_name'],
name="global_combine")
# if len(helper.params['total_list']) == 1: # centralized attack
# if helper.params['centralized_test_trigger'] == True: # centralized attack test on local triggers
# for j in range(0, helper.params['trigger_num']):
# trigger_test_byindex(helper, j, vis, epoch)
#else: # distributed attack
# for agent_name_key in helper.params['total_list']:
# trigger_test_byname(helper, agent_name_key, vis, epoch)
helper.save_model(epoch=epoch, val_loss=epoch_loss)
logger.info(f'Done in {time.time() - start_time} sec.')
csv_record.save_result_csv(epoch, helper.params['is_poison'], helper.folder_path)
logger.info('Saving all the graphs.')
logger.info(f"完成时间: {helper.params['current_time']}. "
f"Visdom 环境名: {helper.params['environment_name']}")
vis.save([helper.params['environment_name']])