-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPhy2Neurosuite.m
executable file
·291 lines (255 loc) · 10.4 KB
/
Phy2Neurosuite.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
function Phy2Neurosuite(basepath,clustering_path)
% Converts Phy output (NPY files) to Neurosuite files: fet, res, clu, spk files.
% Based on the GPU enable filter from Kilosort and fractions from Brendon
% Watson's code for saving Neurosuite files.
% The script has a high memory usage as all waveforms are loaded into
% memory at the same time. If you experience a memory error, increase
% your swap/cashe file, and increase the amount of memory MATLAB can use.
%
% 1) Waveforms are extracted from the dat file via GPU enabled filters.
% 2) Features are calculated in parfor loops.
%
% Inputs:
% path - rez structure from Kilosort
%
% By Peter Petersen 2018
% petersen.peter@gmail.com
t1 = tic;
cd(clustering_path)
if exist('rez.mat')
load('rez.mat')
spikeTimes = uint64(rez.st3(:,1)); % uint64
basename = rez.ops.basename;
elseif exist(fullfile(basepath,'ops.mat'))
rez = [];
load(fullfile(basepath,'ops.mat'))
rez.ops = ops;
spikeTimes = readNPY(fullfile(clustering_path, 'spike_times.npy'));
% load(fullfile(basepath,'chanMap.mat'))
rez.connected = ones(1,ops.NchanTOT);
basename = bz_BasenameFromBasepath(basepath);
else
disp('No rez.mat or ops.mat file exist!')
end
rez.ops.root = clustering_path;
rez.ops.fbinary = fullfile(basepath, [basename,'.dat']);
rez.ops.fshigh = 500;
spikeTemplates = double(readNPY(fullfile(clustering_path, 'spike_clusters.npy')));
spike_clusters = unique(spikeTemplates);
cluster_ids = readNPY(fullfile(clustering_path, 'cluster_ids.npy'));
template_kcoords = readNPY(fullfile(clustering_path, 'shanks.npy'));
kcoords = rez.ops.kcoords;
Nchan = rez.ops.Nchan;
samples = rez.ops.nt0;
kcoords2 = unique(template_kcoords);
ia = [];
for i = 1:length(kcoords2)
kcoords3 = kcoords2(i);
if mod(i,4)==1; fprintf('\n'); end
fprintf(['Loading data for spike group ', num2str(kcoords3),'. '])
template_index = cluster_ids(find(template_kcoords == kcoords3));
ia{i} = find(ismember(spikeTemplates,template_index));
end
rez.ia = ia;
fprintf('\n'); toc(t1)
fprintf('\nSaving .clu files to disk (cluster indexes)')
for i = 1:length(kcoords2)
kcoords3 = kcoords2(i);
if mod(i,4)==1; fprintf('\n'); end
fprintf(['Saving .clu file for group ', num2str(kcoords3),'. '])
tclu = spikeTemplates(ia{i});
tclu = cat(1,length(unique(tclu)),double(tclu));
cluname = fullfile([basename '.clu.' num2str(kcoords3)]);
fid=fopen(cluname,'w');
fprintf(fid,'%.0f\n',tclu);
fclose(fid);
clear fid
end
fprintf('\n'); toc(t1)
fprintf('\nSaving .res files to disk (spike times)')
for i = 1:length(kcoords2)
kcoords3 = kcoords2(i);
tspktimes = spikeTimes(ia{i});
if mod(i,4)==1; fprintf('\n'); end
fprintf(['Saving .res file for group ', num2str(kcoords3),'. '])
resname = fullfile([basename '.res.' num2str(kcoords3)]);
fid=fopen(resname,'w');
fprintf(fid,'%.0f\n',tspktimes);
fclose(fid);
clear fid
end
fprintf('\n'); toc(t1)
fprintf('\nExtracting waveforms\n')
waveforms_all = Kilosort_ExtractWaveforms(rez);
fprintf('\n'); toc(t1)
fprintf('\nSaving .spk files to disk (waveforms)')
for i = 1:length(kcoords2)
if mod(i,4)==1; fprintf('\n'); end
fprintf(['Saving .spk for group ', num2str(kcoords2(i)),'. '])
fid=fopen([basename,'.spk.',num2str(kcoords2(i))],'w');
fwrite(fid,waveforms_all{i}(:),'int16');
fclose(fid);
end
fprintf('\n'); toc(t1)
fprintf('\nComputing PCAs')
% Starting parpool if stated in the Kilosort settings
if (rez.ops.parfor & isempty(gcp('nocreate'))); parpool; end
for i = 1:length(kcoords2)
kcoords3 = kcoords2(i);
if mod(i,2)==1; fprintf('\n'); end
fprintf(['Computing PCAs for group ', num2str(kcoords3),'. '])
PCAs_global = zeros(3,sum(kcoords==kcoords3),length(ia{i}));
waveforms = waveforms_all{i};
waveforms2 = reshape(waveforms,[size(waveforms,1)*size(waveforms,2),size(waveforms,3)]);
wranges = int64(range(waveforms2,1));
wpowers = int64(sum(waveforms2.^2,1)/size(waveforms2,1)/100);
% Calculating PCAs in parallel if stated in ops.parfor
if isempty(gcp('nocreate'))
for k = 1:size(waveforms,1)
PCAs_global(:,k,:) = pca(zscore(permute(waveforms(k,:,:),[2,3,1]),[],2),'NumComponents',3)';
end
else
parfor k = 1:size(waveforms,1)
PCAs_global(:,k,:) = pca(zscore(permute(waveforms(k,:,:),[2,3,1]),[],2),'NumComponents',3)';
end
end
fprintf(['Saving .fet files for group ', num2str(kcoords3),'. '])
PCAs_global2 = reshape(PCAs_global,size(PCAs_global,1)*size(PCAs_global,2),size(PCAs_global,3));
factor = (2^15)./max(abs(PCAs_global2'));
PCAs_global2 = int64(PCAs_global2 .* factor');
fid=fopen([basename,'.fet.',num2str(kcoords3)],'w');
Fet = double([PCAs_global2; wranges; wpowers; spikeTimes(ia{i})']);
nFeatures = size(Fet, 1);
formatstring = '%d';
for ii=2:nFeatures
formatstring = [formatstring,'\t%d'];
end
formatstring = [formatstring,'\n'];
fprintf(fid, '%d\n', nFeatures);
fprintf(fid,formatstring,Fet);
fclose(fid);
end
fprintf('\n'); toc(t1)
fprintf('\nComplete!')
function waveforms_all = Kilosort_ExtractWaveforms(rez)
% Extracts waveforms from a dat file using GPU enable filters.
% Based on the GPU enable filter from Kilosort.
% All settings and content are extracted from the rez input structure
%
% Inputs:
% rez - rez structure from Kilosort
%
% Outputs:
% waveforms_all - structure with extracted waveforms
% Extracting content from the .rez file
ops = rez.ops;
NT = ops.NT;
if exist(ops.fbinary) == 0
warning(['Binary file does not exist: ', ops.fbinary])
end
d = dir(ops.fbinary);
NchanTOT = ops.NchanTOT;
chanMap = ops.chanMap;
chanMapConn = chanMap(rez.connected>1e-6);
kcoords = ops.kcoords;
ia = rez.ia;
spikeTimes = rez.st3(:,1);
if ispc
dmem = memory;
memfree = dmem.MemAvailableAllArrays/8;
memallocated = min(ops.ForceMaxRAMforDat, dmem.MemAvailableAllArrays) - memfree;
memallocated = max(0, memallocated);
else
memallocated = ops.ForceMaxRAMforDat;
end
ops.ForceMaxRAMforDat = 10000000000;
memallocated = ops.ForceMaxRAMforDat;
nint16s = memallocated/2;
NTbuff = NT + 4*ops.ntbuff;
Nbatch = ceil(d.bytes/2/NchanTOT /(NT-ops.ntbuff));
Nbatch_buff = floor(4/5 * nint16s/ops.Nchan /(NT-ops.ntbuff)); % factor of 4/5 for storing PCs of spikes
Nbatch_buff = min(Nbatch_buff, Nbatch);
DATA =zeros(NT, NchanTOT,Nbatch_buff,'int16');
if isfield(ops,'fslow')&&ops.fslow<ops.fs/2
[b1, a1] = butter(3, [ops.fshigh/ops.fs,ops.fslow/ops.fs]*2, 'bandpass');
else
[b1, a1] = butter(3, ops.fshigh/ops.fs*2, 'high');
end
if isfield(ops,'xml')
disp('Loading xml from rez for probe layout')
xml = ops.xml;
elseif exist(fullfile(ops.root,[ops.basename,'.xml']))==2
disp('Loading xml for probe layout from root folder')
xml = LoadXml(fullfile(ops.root,[ops.basename,'.xml']));
ops.xml = xml;
end
fid = fopen(ops.fbinary, 'r');
waveforms_all = [];
kcoords2 = unique(ops.kcoords);
channel_order = {};
indicesTokeep = {};
% connected_index = zeros(size(rez.connected));
% connected_index(rez.connected)=1:length(chanMapConn);
for i = 1:length(kcoords2)
kcoords3 = kcoords2(i);
waveforms_all{i} = zeros(sum(kcoords==kcoords3),ops.nt0,size(rez.ia{i},1));
if exist('xml')
[channel_order,channel_index] = sort(xml.AnatGrps(kcoords2(i)).Channels+1);
[~,indicesTokeep{i},~] = intersect(chanMapConn,channel_order);
%indicesTokeep{i} = connected_index(indicesTokeep{i});
end
end
fprintf('Extraction of waveforms begun \n')
for ibatch = 1:Nbatch
if mod(ibatch,10)==0
if ibatch~=10
fprintf(repmat('\b',[1 length([num2str(round(100*(ibatch-10)/Nbatch)), ' percent complete'])]))
end
fprintf('%d percent complete', round(100*ibatch/Nbatch));
end
offset = max(0, 2*NchanTOT*((NT - ops.ntbuff) * (ibatch-1) - 2*ops.ntbuff));
if ibatch==1
ioffset = 0;
else
ioffset = ops.ntbuff;
end
fseek(fid, offset, 'bof');
buff = fread(fid, [NchanTOT NTbuff], '*int16');
% keyboard;
if isempty(buff)
break;
end
nsampcurr = size(buff,2);
if nsampcurr<NTbuff
buff(:, nsampcurr+1:NTbuff) = repmat(buff(:,nsampcurr), 1, NTbuff-nsampcurr);
end
if ops.GPU
dataRAW = gpuArray(buff);
else
dataRAW = buff;
end
dataRAW = dataRAW';
dataRAW = single(dataRAW);
dataRAW = dataRAW(:, chanMapConn);
dataRAW = dataRAW-median(dataRAW,2);
datr = filter(b1, a1, dataRAW);
datr = flipud(datr);
datr = filter(b1, a1, datr);
datr = flipud(datr);
DATA = gather_try(int16( datr(ioffset + (1:NT),:)));
dat_offset = offset/NchanTOT/2+ioffset;
% Saves the waveforms occuring within each batch
for i = 1:length(kcoords2)
kcoords3 = kcoords2(i);
% ch_subset = 1:length(chanMapConn);
temp = find(ismember(spikeTimes(ia{i}), [ops.nt0/2+1:size(DATA,1)-ops.nt0/2] + dat_offset));
temp2 = spikeTimes(ia{i}(temp))-dat_offset;
startIndicies = temp2-ops.nt0/2+1;
stopIndicies = temp2+ops.nt0/2;
X = cumsum(accumarray(cumsum([1;stopIndicies(:)-startIndicies(:)+1]),[startIndicies(:);0]-[0;stopIndicies(:)]-1)+1);
X = X(1:end-1);
waveforms_all{i}(:,:,temp) = reshape(DATA(X,indicesTokeep{i})',size(indicesTokeep{i},1),ops.nt0,[]);
end
end
end
end