diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index 3eb8edf..edbb34e 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -31,6 +31,7 @@ jobs: version: ${{ matrix.version }} arch: ${{ matrix.arch }} - uses: julia-actions/cache@v1 + - run: julia --project=. -e 'import Pkg; Pkg.add(url="https://github.com/PerezHz/TaylorIntegration.jl", rev="jp/ts-pr-361"); Pkg.instantiate()' - uses: julia-actions/julia-buildpkg@v1 - uses: julia-actions/julia-runtest@v1 env: diff --git a/Project.toml b/Project.toml index f45b8bd..10a5ee2 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "PlanetaryEphemeris" uuid = "d83715d0-7e5f-11e9-1a59-4137b20d8363" authors = ["Jorge A. Pérez Hernández", "Luis Benet", "Luis Eduardo Ramírez Montoya"] -version = "0.8.3" +version = "0.8.4" [deps] ArgParse = "c7e460c6-2fb9-53a9-8c5b-16f535851c63" @@ -24,5 +24,5 @@ JLD2 = "0.4" PrecompileTools = "1.1" Quadmath = "0.5" TaylorIntegration = "0.15" -TaylorSeries = "0.17" +TaylorSeries = "0.18" julia = "1.6" diff --git a/src/dynamics/jetcoeffs.jl b/src/dynamics/jetcoeffs.jl index 58d9e90..cc32180 100644 --- a/src/dynamics/jetcoeffs.jl +++ b/src/dynamics/jetcoeffs.jl @@ -329,111 +329,143 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr accZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end tmp1295 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp1295) + for i = eachindex(tmp1295) tmp1295[i] = Taylor1(zero(constant_term(q[1])), order) end + tmp1913 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp1913) + tmp1913[i] = Taylor1(zero(constant_term(q[1])), order) + end tmp1297 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp1297) + for i = eachindex(tmp1297) tmp1297[i] = Taylor1(zero(constant_term(q[1])), order) end + tmp1914 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp1914) + tmp1914[i] = Taylor1(zero(constant_term(q[1])), order) + end tmp1298 = Array{Taylor1{_S}}(undef, size(tmp1295)) - for i = CartesianIndices(tmp1298) + for i = eachindex(tmp1298) tmp1298[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1300 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp1300) + for i = eachindex(tmp1300) tmp1300[i] = Taylor1(zero(constant_term(q[1])), order) end + tmp1915 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp1915) + tmp1915[i] = Taylor1(zero(constant_term(q[1])), order) + end tmp1239 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp1239) + for i = eachindex(tmp1239) tmp1239[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1241 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp1241) + for i = eachindex(tmp1241) tmp1241[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1244 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp1244) + for i = eachindex(tmp1244) tmp1244[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1246 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp1246) + for i = eachindex(tmp1246) tmp1246[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1249 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp1249) + for i = eachindex(tmp1249) tmp1249[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1251 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp1251) + for i = eachindex(tmp1251) tmp1251[i] = Taylor1(zero(constant_term(q[1])), order) end pn2x = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(pn2x) + for i = eachindex(pn2x) pn2x[i] = Taylor1(zero(constant_term(q[1])), order) end pn2y = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(pn2y) + for i = eachindex(pn2y) pn2y[i] = Taylor1(zero(constant_term(q[1])), order) end pn2z = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(pn2z) + for i = eachindex(pn2z) pn2z[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1259 = Array{Taylor1{_S}}(undef, size(UU)) - for i = CartesianIndices(tmp1259) + for i = eachindex(tmp1259) tmp1259[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1262 = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(tmp1262) + for i = eachindex(tmp1262) tmp1262[i] = Taylor1(zero(constant_term(q[1])), order) end + tmp1908 = Array{Taylor1{_S}}(undef, size(X)) + for i = eachindex(tmp1908) + tmp1908[i] = Taylor1(zero(constant_term(q[1])), order) + end tmp1264 = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(tmp1264) + for i = eachindex(tmp1264) tmp1264[i] = Taylor1(zero(constant_term(q[1])), order) end + tmp1909 = Array{Taylor1{_S}}(undef, size(Y)) + for i = eachindex(tmp1909) + tmp1909[i] = Taylor1(zero(constant_term(q[1])), order) + end tmp1265 = Array{Taylor1{_S}}(undef, size(tmp1262)) - for i = CartesianIndices(tmp1265) + for i = eachindex(tmp1265) tmp1265[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1267 = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(tmp1267) + for i = eachindex(tmp1267) tmp1267[i] = Taylor1(zero(constant_term(q[1])), order) end + tmp1910 = Array{Taylor1{_S}}(undef, size(Z)) + for i = eachindex(tmp1910) + tmp1910[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1911 = Array{Taylor1{_S}}(undef, size(r_p2)) + for i = eachindex(tmp1911) + tmp1911[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp1912 = Array{Taylor1{_S}}(undef, size(r_p2)) + for i = eachindex(tmp1912) + tmp1912[i] = Taylor1(zero(constant_term(q[1])), order) + end tmp1275 = Array{Taylor1{_S}}(undef, size(pn2x)) - for i = CartesianIndices(tmp1275) + for i = eachindex(tmp1275) tmp1275[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1276 = Array{Taylor1{_S}}(undef, size(tmp1275)) - for i = CartesianIndices(tmp1276) + for i = eachindex(tmp1276) tmp1276[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1287 = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(tmp1287) + for i = eachindex(tmp1287) tmp1287[i] = Taylor1(zero(constant_term(q[1])), order) end temp_001 = Array{Taylor1{_S}}(undef, size(tmp1287)) - for i = CartesianIndices(temp_001) + for i = eachindex(temp_001) temp_001[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1289 = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(tmp1289) + for i = eachindex(tmp1289) tmp1289[i] = Taylor1(zero(constant_term(q[1])), order) end temp_002 = Array{Taylor1{_S}}(undef, size(tmp1289)) - for i = CartesianIndices(temp_002) + for i = eachindex(temp_002) temp_002[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1291 = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(tmp1291) + for i = eachindex(tmp1291) tmp1291[i] = Taylor1(zero(constant_term(q[1])), order) end temp_003 = Array{Taylor1{_S}}(undef, size(tmp1291)) - for i = CartesianIndices(temp_003) + for i = eachindex(temp_003) temp_003[i] = Taylor1(zero(constant_term(q[1])), order) end temp_004 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) - for i = CartesianIndices(temp_004) + for i = eachindex(temp_004) temp_004[i] = Taylor1(zero(constant_term(q[1])), order) end #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:327 =# Threads.@threads for j = 1:N @@ -465,13 +497,18 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr tmp1259[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) vi_dot_vj[i, j] = Taylor1(constant_term(tmp1259[i, j]) + constant_term(WW[i, j]), order) tmp1262[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) + tmp1908[i, j] = Taylor1(zero(constant_term(X[i, j])), order) tmp1264[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) + tmp1909[i, j] = Taylor1(zero(constant_term(Y[i, j])), order) tmp1265[i, j] = Taylor1(constant_term(tmp1262[i, j]) + constant_term(tmp1264[i, j]), order) tmp1267[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) + tmp1910[i, j] = Taylor1(zero(constant_term(Z[i, j])), order) r_p2[i, j] = Taylor1(constant_term(tmp1265[i, j]) + constant_term(tmp1267[i, j]), order) r_p1d2[i, j] = Taylor1(sqrt(constant_term(r_p2[i, j])), order) r_p3d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(1.5)), order) + tmp1911[i, j] = Taylor1(zero(constant_term(r_p2[i, j])), order) r_p7d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(3.5)), order) + tmp1912[i, j] = Taylor1(zero(constant_term(r_p2[i, j])), order) newtonianCoeff[i, j] = Taylor1(constant_term(μ[i]) / constant_term(r_p3d2[i, j]), order) tmp1275[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) tmp1276[i, j] = Taylor1(constant_term(tmp1275[i, j]) + constant_term(pn2z[i, j]), order) @@ -498,9 +535,12 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr end end tmp1295[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) + tmp1913[3j - 2] = Taylor1(zero(constant_term(dq[3j - 2])), order) tmp1297[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) + tmp1914[3j - 1] = Taylor1(zero(constant_term(dq[3j - 1])), order) tmp1298[3j - 2] = Taylor1(constant_term(tmp1295[3j - 2]) + constant_term(tmp1297[3j - 1]), order) tmp1300[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) + tmp1915[3j] = Taylor1(zero(constant_term(dq[3j])), order) v2[j] = Taylor1(constant_term(tmp1298[3j - 2]) + constant_term(tmp1300[3j]), order) end tmp1302 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) @@ -519,531 +559,547 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr S22M_t = Taylor1(constant_term(tmp1316) / constant_term(2), order) J2_t[mo] = Taylor1(identity(constant_term(J2M_t)), order) tmp1328 = Array{Taylor1{_S}}(undef, size(X_bf_1)) - for i = CartesianIndices(tmp1328) + for i = eachindex(tmp1328) tmp1328[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1330 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) - for i = CartesianIndices(tmp1330) + for i = eachindex(tmp1330) tmp1330[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1332 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) - for i = CartesianIndices(tmp1332) + for i = eachindex(tmp1332) tmp1332[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1336 = Array{Taylor1{_S}}(undef, size(X_bf)) - for i = CartesianIndices(tmp1336) + for i = eachindex(tmp1336) tmp1336[i] = Taylor1(zero(constant_term(q[1])), order) end + tmp1916 = Array{Taylor1{_S}}(undef, size(X_bf)) + for i = eachindex(tmp1916) + tmp1916[i] = Taylor1(zero(constant_term(q[1])), order) + end tmp1338 = Array{Taylor1{_S}}(undef, size(Y_bf)) - for i = CartesianIndices(tmp1338) + for i = eachindex(tmp1338) tmp1338[i] = Taylor1(zero(constant_term(q[1])), order) end + tmp1917 = Array{Taylor1{_S}}(undef, size(Y_bf)) + for i = eachindex(tmp1917) + tmp1917[i] = Taylor1(zero(constant_term(q[1])), order) + end tmp1339 = Array{Taylor1{_S}}(undef, size(tmp1336)) - for i = CartesianIndices(tmp1339) + for i = eachindex(tmp1339) tmp1339[i] = Taylor1(zero(constant_term(q[1])), order) end + tmp1919 = Array{Taylor1{_S}}(undef, size(r_p2)) + for i = eachindex(tmp1919) + tmp1919[i] = Taylor1(zero(constant_term(q[1])), order) + end tmp1354 = Array{Taylor1{_S}}(undef, size(P_n)) - for i = CartesianIndices(tmp1354) + for i = eachindex(tmp1354) tmp1354[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1355 = Array{Taylor1{_S}}(undef, size(tmp1354)) - for i = CartesianIndices(tmp1355) + for i = eachindex(tmp1355) tmp1355[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1357 = Array{Taylor1{_S}}(undef, size(dP_n)) - for i = CartesianIndices(tmp1357) + for i = eachindex(tmp1357) tmp1357[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1358 = Array{Taylor1{_S}}(undef, size(tmp1357)) - for i = CartesianIndices(tmp1358) + for i = eachindex(tmp1358) tmp1358[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1359 = Array{Taylor1{_S}}(undef, size(tmp1358)) - for i = CartesianIndices(tmp1359) + for i = eachindex(tmp1359) tmp1359[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1456 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - for i = CartesianIndices(tmp1456) + for i = eachindex(tmp1456) tmp1456[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1459 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - for i = CartesianIndices(tmp1459) + for i = eachindex(tmp1459) tmp1459[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1461 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1461) + for i = eachindex(tmp1461) tmp1461[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1462 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1462) + for i = eachindex(tmp1462) tmp1462[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1463 = Array{Taylor1{_S}}(undef, size(tmp1461)) - for i = CartesianIndices(tmp1463) + for i = eachindex(tmp1463) tmp1463[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1464 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1464) + for i = eachindex(tmp1464) tmp1464[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1466 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1466) + for i = eachindex(tmp1466) tmp1466[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1467 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1467) + for i = eachindex(tmp1467) tmp1467[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1468 = Array{Taylor1{_S}}(undef, size(tmp1466)) - for i = CartesianIndices(tmp1468) + for i = eachindex(tmp1468) tmp1468[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1469 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1469) + for i = eachindex(tmp1469) tmp1469[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1471 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1471) + for i = eachindex(tmp1471) tmp1471[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1472 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1472) + for i = eachindex(tmp1472) tmp1472[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1473 = Array{Taylor1{_S}}(undef, size(tmp1471)) - for i = CartesianIndices(tmp1473) + for i = eachindex(tmp1473) tmp1473[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1474 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1474) + for i = eachindex(tmp1474) tmp1474[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1476 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1476) + for i = eachindex(tmp1476) tmp1476[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1477 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1477) + for i = eachindex(tmp1477) tmp1477[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1478 = Array{Taylor1{_S}}(undef, size(tmp1476)) - for i = CartesianIndices(tmp1478) + for i = eachindex(tmp1478) tmp1478[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1479 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1479) + for i = eachindex(tmp1479) tmp1479[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1481 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1481) + for i = eachindex(tmp1481) tmp1481[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1482 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1482) + for i = eachindex(tmp1482) tmp1482[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1483 = Array{Taylor1{_S}}(undef, size(tmp1481)) - for i = CartesianIndices(tmp1483) + for i = eachindex(tmp1483) tmp1483[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1484 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1484) + for i = eachindex(tmp1484) tmp1484[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1486 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1486) + for i = eachindex(tmp1486) tmp1486[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1487 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1487) + for i = eachindex(tmp1487) tmp1487[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1488 = Array{Taylor1{_S}}(undef, size(tmp1486)) - for i = CartesianIndices(tmp1488) + for i = eachindex(tmp1488) tmp1488[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1489 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1489) + for i = eachindex(tmp1489) tmp1489[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1491 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1491) + for i = eachindex(tmp1491) tmp1491[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1492 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1492) + for i = eachindex(tmp1492) tmp1492[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1493 = Array{Taylor1{_S}}(undef, size(tmp1491)) - for i = CartesianIndices(tmp1493) + for i = eachindex(tmp1493) tmp1493[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1494 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1494) + for i = eachindex(tmp1494) tmp1494[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1496 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1496) + for i = eachindex(tmp1496) tmp1496[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1497 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1497) + for i = eachindex(tmp1497) tmp1497[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1498 = Array{Taylor1{_S}}(undef, size(tmp1496)) - for i = CartesianIndices(tmp1498) + for i = eachindex(tmp1498) tmp1498[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1499 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1499) + for i = eachindex(tmp1499) tmp1499[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1501 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1501) + for i = eachindex(tmp1501) tmp1501[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1502 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1502) + for i = eachindex(tmp1502) tmp1502[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1503 = Array{Taylor1{_S}}(undef, size(tmp1501)) - for i = CartesianIndices(tmp1503) + for i = eachindex(tmp1503) tmp1503[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1504 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp1504) + for i = eachindex(tmp1504) tmp1504[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1506 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp1506) + for i = eachindex(tmp1506) tmp1506[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1507 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp1507) + for i = eachindex(tmp1507) tmp1507[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1508 = Array{Taylor1{_S}}(undef, size(tmp1506)) - for i = CartesianIndices(tmp1508) + for i = eachindex(tmp1508) tmp1508[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1509 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp1509) + for i = eachindex(tmp1509) tmp1509[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1511 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp1511) + for i = eachindex(tmp1511) tmp1511[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1512 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp1512) + for i = eachindex(tmp1512) tmp1512[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1513 = Array{Taylor1{_S}}(undef, size(tmp1511)) - for i = CartesianIndices(tmp1513) + for i = eachindex(tmp1513) tmp1513[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1514 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp1514) + for i = eachindex(tmp1514) tmp1514[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1516 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp1516) + for i = eachindex(tmp1516) tmp1516[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1517 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp1517) + for i = eachindex(tmp1517) tmp1517[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1518 = Array{Taylor1{_S}}(undef, size(tmp1516)) - for i = CartesianIndices(tmp1518) + for i = eachindex(tmp1518) tmp1518[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1519 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp1519) + for i = eachindex(tmp1519) tmp1519[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1344 = Array{Taylor1{_S}}(undef, size(P_n)) - for i = CartesianIndices(tmp1344) + for i = eachindex(tmp1344) tmp1344[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1345 = Array{Taylor1{_S}}(undef, size(tmp1344)) - for i = CartesianIndices(tmp1345) + for i = eachindex(tmp1345) tmp1345[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1346 = Array{Taylor1{_S}}(undef, size(P_n)) - for i = CartesianIndices(tmp1346) + for i = eachindex(tmp1346) tmp1346[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1348 = Array{Taylor1{_S}}(undef, size(dP_n)) - for i = CartesianIndices(tmp1348) + for i = eachindex(tmp1348) tmp1348[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1349 = Array{Taylor1{_S}}(undef, size(P_n)) - for i = CartesianIndices(tmp1349) + for i = eachindex(tmp1349) tmp1349[i] = Taylor1(zero(constant_term(q[1])), order) end + tmp1918 = Array{Taylor1{_S}}(undef, size(r_p1d2)) + for i = eachindex(tmp1918) + tmp1918[i] = Taylor1(zero(constant_term(q[1])), order) + end tmp1361 = Array{Taylor1{_S}}(undef, size(P_n)) - for i = CartesianIndices(tmp1361) + for i = eachindex(tmp1361) tmp1361[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1362 = Array{Taylor1{_S}}(undef, size(tmp1361)) - for i = CartesianIndices(tmp1362) + for i = eachindex(tmp1362) tmp1362[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1363 = Array{Taylor1{_S}}(undef, size(tmp1362)) - for i = CartesianIndices(tmp1363) + for i = eachindex(tmp1363) tmp1363[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1365 = Array{Taylor1{_S}}(undef, size(dP_n)) - for i = CartesianIndices(tmp1365) + for i = eachindex(tmp1365) tmp1365[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1366 = Array{Taylor1{_S}}(undef, size(tmp1365)) - for i = CartesianIndices(tmp1366) + for i = eachindex(tmp1366) tmp1366[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1367 = Array{Taylor1{_S}}(undef, size(tmp1366)) - for i = CartesianIndices(tmp1367) + for i = eachindex(tmp1367) tmp1367[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1368 = Array{Taylor1{_S}}(undef, size(tmp1367)) - for i = CartesianIndices(tmp1368) + for i = eachindex(tmp1368) tmp1368[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1393 = Array{Taylor1{_S}}(undef, size(P_nm)) - for i = CartesianIndices(tmp1393) + for i = eachindex(tmp1393) tmp1393[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1394 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp1394) + for i = eachindex(tmp1394) tmp1394[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1395 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp1395) + for i = eachindex(tmp1395) tmp1395[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1396 = Array{Taylor1{_S}}(undef, size(tmp1394)) - for i = CartesianIndices(tmp1396) + for i = eachindex(tmp1396) tmp1396[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1397 = Array{Taylor1{_S}}(undef, size(tmp1393)) - for i = CartesianIndices(tmp1397) + for i = eachindex(tmp1397) tmp1397[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1398 = Array{Taylor1{_S}}(undef, size(P_nm)) - for i = CartesianIndices(tmp1398) + for i = eachindex(tmp1398) tmp1398[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1399 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp1399) + for i = eachindex(tmp1399) tmp1399[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1400 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp1400) + for i = eachindex(tmp1400) tmp1400[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1401 = Array{Taylor1{_S}}(undef, size(tmp1399)) - for i = CartesianIndices(tmp1401) + for i = eachindex(tmp1401) tmp1401[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1402 = Array{Taylor1{_S}}(undef, size(tmp1398)) - for i = CartesianIndices(tmp1402) + for i = eachindex(tmp1402) tmp1402[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1403 = Array{Taylor1{_S}}(undef, size(tmp1397)) - for i = CartesianIndices(tmp1403) + for i = eachindex(tmp1403) tmp1403[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1405 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp1405) + for i = eachindex(tmp1405) tmp1405[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1406 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp1406) + for i = eachindex(tmp1406) tmp1406[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1407 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp1407) + for i = eachindex(tmp1407) tmp1407[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1408 = Array{Taylor1{_S}}(undef, size(tmp1406)) - for i = CartesianIndices(tmp1408) + for i = eachindex(tmp1408) tmp1408[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1409 = Array{Taylor1{_S}}(undef, size(tmp1405)) - for i = CartesianIndices(tmp1409) + for i = eachindex(tmp1409) tmp1409[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1410 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp1410) + for i = eachindex(tmp1410) tmp1410[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1411 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp1411) + for i = eachindex(tmp1411) tmp1411[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1412 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp1412) + for i = eachindex(tmp1412) tmp1412[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1413 = Array{Taylor1{_S}}(undef, size(tmp1411)) - for i = CartesianIndices(tmp1413) + for i = eachindex(tmp1413) tmp1413[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1414 = Array{Taylor1{_S}}(undef, size(tmp1410)) - for i = CartesianIndices(tmp1414) + for i = eachindex(tmp1414) tmp1414[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1415 = Array{Taylor1{_S}}(undef, size(tmp1409)) - for i = CartesianIndices(tmp1415) + for i = eachindex(tmp1415) tmp1415[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1417 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp1417) + for i = eachindex(tmp1417) tmp1417[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1418 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp1418) + for i = eachindex(tmp1418) tmp1418[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1419 = Array{Taylor1{_S}}(undef, size(tmp1417)) - for i = CartesianIndices(tmp1419) + for i = eachindex(tmp1419) tmp1419[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1420 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - for i = CartesianIndices(tmp1420) + for i = eachindex(tmp1420) tmp1420[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1421 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp1421) + for i = eachindex(tmp1421) tmp1421[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1422 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp1422) + for i = eachindex(tmp1422) tmp1422[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1423 = Array{Taylor1{_S}}(undef, size(tmp1421)) - for i = CartesianIndices(tmp1423) + for i = eachindex(tmp1423) tmp1423[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1424 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - for i = CartesianIndices(tmp1424) + for i = eachindex(tmp1424) tmp1424[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1425 = Array{Taylor1{_S}}(undef, size(tmp1420)) - for i = CartesianIndices(tmp1425) + for i = eachindex(tmp1425) tmp1425[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1445 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) - for i = CartesianIndices(tmp1445) + for i = eachindex(tmp1445) tmp1445[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1446 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) - for i = CartesianIndices(tmp1446) + for i = eachindex(tmp1446) tmp1446[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1449 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) - for i = CartesianIndices(tmp1449) + for i = eachindex(tmp1449) tmp1449[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1450 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) - for i = CartesianIndices(tmp1450) + for i = eachindex(tmp1450) tmp1450[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1371 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp1371) + for i = eachindex(tmp1371) tmp1371[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1372 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp1372) + for i = eachindex(tmp1372) tmp1372[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1374 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp1374) + for i = eachindex(tmp1374) tmp1374[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1375 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp1375) + for i = eachindex(tmp1375) tmp1375[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1377 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp1377) + for i = eachindex(tmp1377) tmp1377[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1380 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp1380) + for i = eachindex(tmp1380) tmp1380[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1389 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp1389) + for i = eachindex(tmp1389) tmp1389[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1390 = Array{Taylor1{_S}}(undef, size(tmp1389)) - for i = CartesianIndices(tmp1390) + for i = eachindex(tmp1390) tmp1390[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1391 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp1391) + for i = eachindex(tmp1391) tmp1391[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1382 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp1382) + for i = eachindex(tmp1382) tmp1382[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1384 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp1384) + for i = eachindex(tmp1384) tmp1384[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1385 = Array{Taylor1{_S}}(undef, size(tmp1384)) - for i = CartesianIndices(tmp1385) + for i = eachindex(tmp1385) tmp1385[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1386 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp1386) + for i = eachindex(tmp1386) tmp1386[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1431 = Array{Taylor1{_S}}(undef, size(P_nm)) - for i = CartesianIndices(tmp1431) + for i = eachindex(tmp1431) tmp1431[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1432 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - for i = CartesianIndices(tmp1432) + for i = eachindex(tmp1432) tmp1432[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1433 = Array{Taylor1{_S}}(undef, size(tmp1431)) - for i = CartesianIndices(tmp1433) + for i = eachindex(tmp1433) tmp1433[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1434 = Array{Taylor1{_S}}(undef, size(tmp1433)) - for i = CartesianIndices(tmp1434) + for i = eachindex(tmp1434) tmp1434[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1436 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp1436) + for i = eachindex(tmp1436) tmp1436[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1437 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) - for i = CartesianIndices(tmp1437) + for i = eachindex(tmp1437) tmp1437[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1438 = Array{Taylor1{_S}}(undef, size(tmp1436)) - for i = CartesianIndices(tmp1438) + for i = eachindex(tmp1438) tmp1438[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1439 = Array{Taylor1{_S}}(undef, size(tmp1438)) - for i = CartesianIndices(tmp1439) + for i = eachindex(tmp1439) tmp1439[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1441 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - for i = CartesianIndices(tmp1441) + for i = eachindex(tmp1441) tmp1441[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1442 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - for i = CartesianIndices(tmp1442) + for i = eachindex(tmp1442) tmp1442[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1443 = Array{Taylor1{_S}}(undef, size(tmp1442)) - for i = CartesianIndices(tmp1443) + for i = eachindex(tmp1443) tmp1443[i] = Taylor1(zero(constant_term(q[1])), order) end #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:418 =# Threads.@threads for j = 1:N_ext @@ -1069,7 +1125,9 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr Z_bf[i, j] = Taylor1(constant_term(tmp1332[i, j]) + constant_term(Z_bf_3[i, j]), order) sin_ϕ[i, j] = Taylor1(constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]), order) tmp1336[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) + tmp1916[i, j] = Taylor1(zero(constant_term(X_bf[i, j])), order) tmp1338[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) + tmp1917[i, j] = Taylor1(zero(constant_term(Y_bf[i, j])), order) tmp1339[i, j] = Taylor1(constant_term(tmp1336[i, j]) + constant_term(tmp1338[i, j]), order) r_xy[i, j] = Taylor1(sqrt(constant_term(tmp1339[i, j])), order) cos_ϕ[i, j] = Taylor1(constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]), order) @@ -1088,8 +1146,10 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr tmp1349[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) dP_n[i, j, n + 1] = Taylor1(constant_term(tmp1348[i, j, n]) + constant_term(tmp1349[i, j, n]), order) temp_rn[i, j, n] = Taylor1(constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])), order) + tmp1918[i, j] = Taylor1(zero(constant_term(r_p1d2[i, j])), order) end r_p4[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(2)), order) + tmp1919[i, j] = Taylor1(zero(constant_term(r_p2[i, j])), order) tmp1354[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) tmp1355[i, j, 3] = Taylor1(constant_term(tmp1354[i, j, 3]) * constant_term(J2_t[j]), order) F_J_ξ[i, j] = Taylor1(constant_term(tmp1355[i, j, 3]) / constant_term(r_p4[i, j]), order) @@ -1300,63 +1360,63 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr end end tmp1521 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - for i = CartesianIndices(tmp1521) + for i = eachindex(tmp1521) tmp1521[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1523 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - for i = CartesianIndices(tmp1523) + for i = eachindex(tmp1523) tmp1523[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1525 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - for i = CartesianIndices(tmp1525) + for i = eachindex(tmp1525) tmp1525[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1527 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - for i = CartesianIndices(tmp1527) + for i = eachindex(tmp1527) tmp1527[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1529 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - for i = CartesianIndices(tmp1529) + for i = eachindex(tmp1529) tmp1529[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1531 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - for i = CartesianIndices(tmp1531) + for i = eachindex(tmp1531) tmp1531[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1533 = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(tmp1533) + for i = eachindex(tmp1533) tmp1533[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1534 = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(tmp1534) + for i = eachindex(tmp1534) tmp1534[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1535 = Array{Taylor1{_S}}(undef, size(tmp1533)) - for i = CartesianIndices(tmp1535) + for i = eachindex(tmp1535) tmp1535[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1537 = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(tmp1537) + for i = eachindex(tmp1537) tmp1537[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1538 = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(tmp1538) + for i = eachindex(tmp1538) tmp1538[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1539 = Array{Taylor1{_S}}(undef, size(tmp1537)) - for i = CartesianIndices(tmp1539) + for i = eachindex(tmp1539) tmp1539[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1541 = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(tmp1541) + for i = eachindex(tmp1541) tmp1541[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1542 = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(tmp1542) + for i = eachindex(tmp1542) tmp1542[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1543 = Array{Taylor1{_S}}(undef, size(tmp1541)) - for i = CartesianIndices(tmp1543) + for i = eachindex(tmp1543) tmp1543[i] = Taylor1(zero(constant_term(q[1])), order) end for j = 1:N_ext @@ -1408,43 +1468,47 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr end end tmp1555 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) - for i = CartesianIndices(tmp1555) + for i = eachindex(tmp1555) tmp1555[i] = Taylor1(zero(constant_term(q[1])), order) end Xij_t_Ui = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(Xij_t_Ui) + for i = eachindex(Xij_t_Ui) Xij_t_Ui[i] = Taylor1(zero(constant_term(q[1])), order) end Yij_t_Vi = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(Yij_t_Vi) + for i = eachindex(Yij_t_Vi) Yij_t_Vi[i] = Taylor1(zero(constant_term(q[1])), order) end Zij_t_Wi = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(Zij_t_Wi) + for i = eachindex(Zij_t_Wi) Zij_t_Wi[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1561 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) - for i = CartesianIndices(tmp1561) + for i = eachindex(tmp1561) tmp1561[i] = Taylor1(zero(constant_term(q[1])), order) end Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp1561)) - for i = CartesianIndices(Rij_dot_Vi) + for i = eachindex(Rij_dot_Vi) Rij_dot_Vi[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1564 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) - for i = CartesianIndices(tmp1564) + for i = eachindex(tmp1564) tmp1564[i] = Taylor1(zero(constant_term(q[1])), order) end + tmp1920 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) + for i = eachindex(tmp1920) + tmp1920[i] = Taylor1(zero(constant_term(q[1])), order) + end pn1t7 = Array{Taylor1{_S}}(undef, size(tmp1564)) - for i = CartesianIndices(pn1t7) + for i = eachindex(pn1t7) pn1t7[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1567 = Array{Taylor1{_S}}(undef, size(pn1t7)) - for i = CartesianIndices(tmp1567) + for i = eachindex(tmp1567) tmp1567[i] = Taylor1(zero(constant_term(q[1])), order) end pn1t2_7 = Array{Taylor1{_S}}(undef, size(ϕs_and_vs)) - for i = CartesianIndices(pn1t2_7) + for i = eachindex(pn1t2_7) pn1t2_7[i] = Taylor1(zero(constant_term(q[1])), order) end #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:658 =# Threads.@threads for j = 1:N @@ -1465,6 +1529,7 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr tmp1561[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp1561[i, j]) + constant_term(Zij_t_Wi[i, j]), order) tmp1564[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) + tmp1920[i, j] = Taylor1(zero(constant_term(Rij_dot_Vi[i, j])), order) pn1t7[i, j] = Taylor1(constant_term(tmp1564[i, j]) / constant_term(r_p2[i, j]), order) tmp1567[i, j] = Taylor1(constant_term(1.5) * constant_term(pn1t7[i, j]), order) pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp1567[i, j]), order) @@ -1476,51 +1541,51 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr pntempZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end tmp1574 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) - for i = CartesianIndices(tmp1574) + for i = eachindex(tmp1574) tmp1574[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1575 = Array{Taylor1{_S}}(undef, size(tmp1574)) - for i = CartesianIndices(tmp1575) + for i = eachindex(tmp1575) tmp1575[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1576 = Array{Taylor1{_S}}(undef, size(tmp1575)) - for i = CartesianIndices(tmp1576) + for i = eachindex(tmp1576) tmp1576[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1584 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) - for i = CartesianIndices(tmp1584) + for i = eachindex(tmp1584) tmp1584[i] = Taylor1(zero(constant_term(q[1])), order) end termpnx = Array{Taylor1{_S}}(undef, size(X_t_pn1)) - for i = CartesianIndices(termpnx) + for i = eachindex(termpnx) termpnx[i] = Taylor1(zero(constant_term(q[1])), order) end sumpnx = Array{Taylor1{_S}}(undef, size(termpnx)) - for i = CartesianIndices(sumpnx) + for i = eachindex(sumpnx) sumpnx[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1587 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) - for i = CartesianIndices(tmp1587) + for i = eachindex(tmp1587) tmp1587[i] = Taylor1(zero(constant_term(q[1])), order) end termpny = Array{Taylor1{_S}}(undef, size(Y_t_pn1)) - for i = CartesianIndices(termpny) + for i = eachindex(termpny) termpny[i] = Taylor1(zero(constant_term(q[1])), order) end sumpny = Array{Taylor1{_S}}(undef, size(termpny)) - for i = CartesianIndices(sumpny) + for i = eachindex(sumpny) sumpny[i] = Taylor1(zero(constant_term(q[1])), order) end tmp1590 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) - for i = CartesianIndices(tmp1590) + for i = eachindex(tmp1590) tmp1590[i] = Taylor1(zero(constant_term(q[1])), order) end termpnz = Array{Taylor1{_S}}(undef, size(Z_t_pn1)) - for i = CartesianIndices(termpnz) + for i = eachindex(termpnz) termpnz[i] = Taylor1(zero(constant_term(q[1])), order) end sumpnz = Array{Taylor1{_S}}(undef, size(termpnz)) - for i = CartesianIndices(sumpnz) + for i = eachindex(sumpnz) sumpnz[i] = Taylor1(zero(constant_term(q[1])), order) end #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:697 =# Threads.@threads for j = 1:N @@ -1711,10 +1776,12 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr tmp1735 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp1734) - constant_term(tmp1735), order) tmp1739 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) + tmp1921 = Taylor1(zero(constant_term(sin_ϕ[ea, mo])), order) tmp1740 = Taylor1(constant_term(7) * constant_term(tmp1739), order) one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp1740), order) two_sinϕEM = Taylor1(constant_term(2) * constant_term(sin_ϕ[ea, mo]), order) tmp1745 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) + tmp1922 = Taylor1(zero(constant_term(r_p1d2[mo, ea])), order) N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp1745), order) tmp1747 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) tmp1748 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) @@ -1795,24 +1862,24 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr Ic_dωc_2 = Taylor1(constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2), order) Ic_dωc_3 = Taylor1(constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3), order) tmp1828 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp1908 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp1923 = Taylor1(cos(constant_term(q[6N + 3])), order) tmp1829 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp1828), order) tmp1830 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp1909 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp1924 = Taylor1(sin(constant_term(q[6N + 3])), order) tmp1831 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp1830), order) tmp1832 = Taylor1(constant_term(tmp1829) + constant_term(tmp1831), order) tmp1833 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp1910 = Taylor1(cos(constant_term(q[6N + 2])), order) + tmp1925 = Taylor1(cos(constant_term(q[6N + 2])), order) dq[6N + 1] = Taylor1(constant_term(tmp1832) / constant_term(tmp1833), order) tmp1835 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp1911 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp1926 = Taylor1(sin(constant_term(q[6N + 3])), order) tmp1836 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp1835), order) tmp1837 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp1912 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp1927 = Taylor1(cos(constant_term(q[6N + 3])), order) tmp1838 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp1837), order) dq[6N + 2] = Taylor1(constant_term(tmp1836) - constant_term(tmp1838), order) tmp1840 = Taylor1(cos(constant_term(q[6N + 2])), order) - tmp1913 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp1928 = Taylor1(sin(constant_term(q[6N + 2])), order) tmp1841 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp1840), order) dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp1841), order) tmp1843 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) @@ -1831,11 +1898,11 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr tmp1856 = Taylor1(constant_term(tmp1854) + constant_term(tmp1855), order) dq[6N + 6] = Taylor1(constant_term(tmp1853) + constant_term(tmp1856), order) tmp1858 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp1914 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp1929 = Taylor1(cos(constant_term(q[6N + 8])), order) tmp1859 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp1858), order) dq[6N + 9] = Taylor1(-(constant_term(tmp1859)), order) tmp1861 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp1915 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp1930 = Taylor1(sin(constant_term(q[6N + 8])), order) tmp1862 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp1861), order) dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp1862), order) dq[6N + 8] = Taylor1(identity(constant_term(ω_c_CE_1)), order) @@ -1843,7 +1910,7 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_thr dq[6N + 11] = Taylor1(constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2), order) dq[6N + 12] = Taylor1(constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3), order) dq[6N + 13] = Taylor1(identity(constant_term(zero_q_1)), order) - return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp1133, tmp1134, tmp1135, tmp1136, tmp1137, tmp1138, tmp1139, tmp1140, tmp1142, tmp1143, tmp1144, tmp1145, tmp1146, tmp1147, tmp1148, tmp1149, tmp1150, tmp1152, tmp1153, tmp1155, tmp1156, tmp1157, tmp1158, tmp1159, tmp1160, tmp1161, tmp1162, tmp1164, tmp1165, tmp1166, tmp1167, tmp1168, tmp1169, tmp1170, tmp1171, tmp1173, tmp1174, tmp1175, tmp1177, tmp1178, tmp1180, tmp1181, tmp1184, tmp1185, tmp1186, tmp1187, tmp1189, tmp1190, tmp1191, tmp1192, tmp1193, tmp1195, tmp1196, tmp1197, tmp1198, tmp1200, tmp1201, tmp1202, tmp1203, tmp1204, tmp1206, tmp1207, tmp1208, tmp1209, tmp1211, tmp1212, tmp1213, tmp1214, tmp1215, tmp1217, tmp1218, tmp1219, tmp1220, tmp1222, tmp1223, tmp1224, tmp1225, tmp1227, tmp1228, tmp1229, tmp1230, tmp1302, tmp1304, tmp1305, tmp1307, tmp1308, tmp1311, tmp1313, tmp1315, tmp1316, tmp1599, tmp1600, tmp1601, tmp1602, tmp1604, tmp1605, tmp1606, tmp1607, tmp1609, tmp1610, tmp1611, tmp1612, tmp1614, tmp1615, tmp1617, tmp1618, tmp1620, tmp1621, tmp1623, tmp1624, tmp1625, tmp1626, tmp1628, tmp1629, tmp1630, tmp1631, tmp1633, tmp1634, tmp1635, tmp1636, tmp1641, tmp1642, tmp1643, tmp1644, tmp1646, tmp1647, tmp1648, tmp1649, tmp1651, tmp1652, tmp1653, tmp1654, tmp1656, tmp1657, tmp1658, tmp1659, tmp1661, tmp1662, tmp1663, tmp1664, tmp1666, tmp1667, tmp1668, tmp1669, tmp1671, tmp1672, tmp1673, tmp1674, tmp1676, tmp1677, tmp1678, tmp1679, tmp1681, tmp1682, tmp1683, tmp1684, tmp1686, tmp1687, tmp1688, tmp1689, tmp1691, tmp1692, tmp1693, tmp1694, tmp1696, tmp1697, tmp1698, tmp1699, tmp1701, tmp1702, tmp1704, tmp1705, tmp1707, tmp1708, tmp1710, tmp1711, tmp1713, tmp1714, tmp1716, tmp1717, tmp1719, tmp1720, tmp1722, tmp1723, tmp1725, tmp1726, tmp1728, tmp1729, tmp1731, tmp1732, tmp1734, tmp1735, tmp1739, tmp1740, tmp1745, tmp1747, tmp1748, tmp1749, tmp1750, tmp1752, tmp1753, tmp1755, tmp1756, tmp1757, tmp1758, tmp1760, tmp1761, tmp1763, tmp1764, tmp1765, tmp1766, tmp1768, tmp1769, tmp1771, tmp1772, tmp1773, tmp1774, tmp1776, tmp1777, tmp1778, tmp1779, tmp1781, tmp1782, tmp1783, tmp1784, tmp1786, tmp1787, tmp1788, tmp1789, tmp1791, tmp1792, tmp1793, tmp1794, tmp1796, tmp1798, tmp1799, tmp1800, tmp1801, tmp1803, tmp1804, tmp1805, tmp1806, tmp1808, tmp1809, tmp1810, tmp1811, tmp1816, tmp1817, tmp1819, tmp1820, tmp1822, tmp1823, tmp1828, tmp1829, tmp1830, tmp1831, tmp1832, tmp1833, tmp1835, tmp1836, tmp1837, tmp1838, tmp1840, tmp1841, tmp1843, tmp1844, tmp1845, tmp1846, tmp1848, tmp1849, tmp1850, tmp1851, tmp1853, tmp1854, tmp1855, tmp1856, tmp1858, tmp1859, tmp1861, tmp1862, ϕ_m, θ_m, ψ_m, tmp1867, tmp1868, tmp1869, tmp1870, tmp1871, tmp1872, tmp1873, tmp1874, tmp1875, tmp1876, tmp1877, tmp1878, tmp1879, tmp1880, tmp1881, tmp1882, tmp1883, tmp1884, tmp1885, tmp1886, tmp1887, tmp1888, tmp1889, tmp1890, tmp1891, tmp1892, tmp1893, tmp1894, tmp1895, ϕ_c, tmp1896, tmp1897, tmp1898, tmp1899, tmp1900, tmp1901, tmp1902, tmp1903, tmp1904, tmp1905, tmp1906, tmp1907, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, one_minus_7sin2ϕEM, two_sinϕEM, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp1908, tmp1909, tmp1910, tmp1911, tmp1912, tmp1913, tmp1914, tmp1915], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp1239, tmp1241, tmp1244, tmp1246, tmp1249, tmp1251, tmp1295, tmp1297, tmp1298, tmp1300], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp1259, tmp1262, tmp1264, tmp1265, tmp1267, tmp1275, tmp1276, tmp1287, temp_001, tmp1289, temp_002, tmp1291, temp_003, temp_004, tmp1328, tmp1330, tmp1332, tmp1336, tmp1338, tmp1339, tmp1445, tmp1446, tmp1449, tmp1450, tmp1456, tmp1459, tmp1521, tmp1523, tmp1525, tmp1527, tmp1529, tmp1531, tmp1533, tmp1534, tmp1535, tmp1537, tmp1538, tmp1539, tmp1541, tmp1542, tmp1543, tmp1555, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp1561, Rij_dot_Vi, tmp1564, pn1t7, tmp1567, pn1t2_7, tmp1574, tmp1575, tmp1576, tmp1584, termpnx, sumpnx, tmp1587, termpny, sumpny, tmp1590, termpnz, sumpnz], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp1344, tmp1345, tmp1346, tmp1348, tmp1349, tmp1354, tmp1355, tmp1357, tmp1358, tmp1359, tmp1361, tmp1362, tmp1363, tmp1365, tmp1366, tmp1367, tmp1368, tmp1371, tmp1372, tmp1374, tmp1375, tmp1394, tmp1395, tmp1396, tmp1399, tmp1400, tmp1401, tmp1406, tmp1407, tmp1408, tmp1411, tmp1412, tmp1413, tmp1417, tmp1418, tmp1419, tmp1421, tmp1422, tmp1423], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp1377, tmp1380, tmp1382, tmp1384, tmp1385, tmp1386, tmp1389, tmp1390, tmp1391, tmp1393, tmp1397, tmp1398, tmp1402, tmp1403, tmp1405, tmp1409, tmp1410, tmp1414, tmp1415, tmp1420, tmp1424, tmp1425, tmp1431, tmp1432, tmp1433, tmp1434, tmp1436, tmp1437, tmp1438, tmp1439, tmp1441, tmp1442, tmp1443, tmp1461, tmp1462, tmp1463, tmp1464, tmp1466, tmp1467, tmp1468, tmp1469, tmp1471, tmp1472, tmp1473, tmp1474, tmp1476, tmp1477, tmp1478, tmp1479, tmp1481, tmp1482, tmp1483, tmp1484, tmp1486, tmp1487, tmp1488, tmp1489, tmp1491, tmp1492, tmp1493, tmp1494, tmp1496, tmp1497, tmp1498, tmp1499, tmp1501, tmp1502, tmp1503, tmp1504, tmp1506, tmp1507, tmp1508, tmp1509, tmp1511, tmp1512, tmp1513, tmp1514, tmp1516, tmp1517, tmp1518, tmp1519]) + return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp1133, tmp1134, tmp1135, tmp1136, tmp1137, tmp1138, tmp1139, tmp1140, tmp1142, tmp1143, tmp1144, tmp1145, tmp1146, tmp1147, tmp1148, tmp1149, tmp1150, tmp1152, tmp1153, tmp1155, tmp1156, tmp1157, tmp1158, tmp1159, tmp1160, tmp1161, tmp1162, tmp1164, tmp1165, tmp1166, tmp1167, tmp1168, tmp1169, tmp1170, tmp1171, tmp1173, tmp1174, tmp1175, tmp1177, tmp1178, tmp1180, tmp1181, tmp1184, tmp1185, tmp1186, tmp1187, tmp1189, tmp1190, tmp1191, tmp1192, tmp1193, tmp1195, tmp1196, tmp1197, tmp1198, tmp1200, tmp1201, tmp1202, tmp1203, tmp1204, tmp1206, tmp1207, tmp1208, tmp1209, tmp1211, tmp1212, tmp1213, tmp1214, tmp1215, tmp1217, tmp1218, tmp1219, tmp1220, tmp1222, tmp1223, tmp1224, tmp1225, tmp1227, tmp1228, tmp1229, tmp1230, tmp1302, tmp1304, tmp1305, tmp1307, tmp1308, tmp1311, tmp1313, tmp1315, tmp1316, tmp1599, tmp1600, tmp1601, tmp1602, tmp1604, tmp1605, tmp1606, tmp1607, tmp1609, tmp1610, tmp1611, tmp1612, tmp1614, tmp1615, tmp1617, tmp1618, tmp1620, tmp1621, tmp1623, tmp1624, tmp1625, tmp1626, tmp1628, tmp1629, tmp1630, tmp1631, tmp1633, tmp1634, tmp1635, tmp1636, tmp1641, tmp1642, tmp1643, tmp1644, tmp1646, tmp1647, tmp1648, tmp1649, tmp1651, tmp1652, tmp1653, tmp1654, tmp1656, tmp1657, tmp1658, tmp1659, tmp1661, tmp1662, tmp1663, tmp1664, tmp1666, tmp1667, tmp1668, tmp1669, tmp1671, tmp1672, tmp1673, tmp1674, tmp1676, tmp1677, tmp1678, tmp1679, tmp1681, tmp1682, tmp1683, tmp1684, tmp1686, tmp1687, tmp1688, tmp1689, tmp1691, tmp1692, tmp1693, tmp1694, tmp1696, tmp1697, tmp1698, tmp1699, tmp1701, tmp1702, tmp1704, tmp1705, tmp1707, tmp1708, tmp1710, tmp1711, tmp1713, tmp1714, tmp1716, tmp1717, tmp1719, tmp1720, tmp1722, tmp1723, tmp1725, tmp1726, tmp1728, tmp1729, tmp1731, tmp1732, tmp1734, tmp1735, tmp1739, tmp1740, tmp1745, tmp1747, tmp1748, tmp1749, tmp1750, tmp1752, tmp1753, tmp1755, tmp1756, tmp1757, tmp1758, tmp1760, tmp1761, tmp1763, tmp1764, tmp1765, tmp1766, tmp1768, tmp1769, tmp1771, tmp1772, tmp1773, tmp1774, tmp1776, tmp1777, tmp1778, tmp1779, tmp1781, tmp1782, tmp1783, tmp1784, tmp1786, tmp1787, tmp1788, tmp1789, tmp1791, tmp1792, tmp1793, tmp1794, tmp1796, tmp1798, tmp1799, tmp1800, tmp1801, tmp1803, tmp1804, tmp1805, tmp1806, tmp1808, tmp1809, tmp1810, tmp1811, tmp1816, tmp1817, tmp1819, tmp1820, tmp1822, tmp1823, tmp1828, tmp1829, tmp1830, tmp1831, tmp1832, tmp1833, tmp1835, tmp1836, tmp1837, tmp1838, tmp1840, tmp1841, tmp1843, tmp1844, tmp1845, tmp1846, tmp1848, tmp1849, tmp1850, tmp1851, tmp1853, tmp1854, tmp1855, tmp1856, tmp1858, tmp1859, tmp1861, tmp1862, ϕ_m, θ_m, ψ_m, tmp1867, tmp1868, tmp1869, tmp1870, tmp1871, tmp1872, tmp1873, tmp1874, tmp1875, tmp1876, tmp1877, tmp1878, tmp1879, tmp1880, tmp1881, tmp1882, tmp1883, tmp1884, tmp1885, tmp1886, tmp1887, tmp1888, tmp1889, tmp1890, tmp1891, tmp1892, tmp1893, tmp1894, tmp1895, ϕ_c, tmp1896, tmp1897, tmp1898, tmp1899, tmp1900, tmp1901, tmp1902, tmp1903, tmp1904, tmp1905, tmp1906, tmp1907, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, tmp1921, one_minus_7sin2ϕEM, two_sinϕEM, tmp1922, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp1923, tmp1924, tmp1925, tmp1926, tmp1927, tmp1928, tmp1929, tmp1930], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp1239, tmp1241, tmp1244, tmp1246, tmp1249, tmp1251, tmp1295, tmp1913, tmp1297, tmp1914, tmp1298, tmp1300, tmp1915], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp1259, tmp1262, tmp1908, tmp1264, tmp1909, tmp1265, tmp1267, tmp1910, tmp1911, tmp1912, tmp1275, tmp1276, tmp1287, temp_001, tmp1289, temp_002, tmp1291, temp_003, temp_004, tmp1328, tmp1330, tmp1332, tmp1336, tmp1916, tmp1338, tmp1917, tmp1339, tmp1918, tmp1919, tmp1445, tmp1446, tmp1449, tmp1450, tmp1456, tmp1459, tmp1521, tmp1523, tmp1525, tmp1527, tmp1529, tmp1531, tmp1533, tmp1534, tmp1535, tmp1537, tmp1538, tmp1539, tmp1541, tmp1542, tmp1543, tmp1555, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp1561, Rij_dot_Vi, tmp1564, tmp1920, pn1t7, tmp1567, pn1t2_7, tmp1574, tmp1575, tmp1576, tmp1584, termpnx, sumpnx, tmp1587, termpny, sumpny, tmp1590, termpnz, sumpnz], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp1344, tmp1345, tmp1346, tmp1348, tmp1349, tmp1354, tmp1355, tmp1357, tmp1358, tmp1359, tmp1361, tmp1362, tmp1363, tmp1365, tmp1366, tmp1367, tmp1368, tmp1371, tmp1372, tmp1374, tmp1375, tmp1394, tmp1395, tmp1396, tmp1399, tmp1400, tmp1401, tmp1406, tmp1407, tmp1408, tmp1411, tmp1412, tmp1413, tmp1417, tmp1418, tmp1419, tmp1421, tmp1422, tmp1423], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp1377, tmp1380, tmp1382, tmp1384, tmp1385, tmp1386, tmp1389, tmp1390, tmp1391, tmp1393, tmp1397, tmp1398, tmp1402, tmp1403, tmp1405, tmp1409, tmp1410, tmp1414, tmp1415, tmp1420, tmp1424, tmp1425, tmp1431, tmp1432, tmp1433, tmp1434, tmp1436, tmp1437, tmp1438, tmp1439, tmp1441, tmp1442, tmp1443, tmp1461, tmp1462, tmp1463, tmp1464, tmp1466, tmp1467, tmp1468, tmp1469, tmp1471, tmp1472, tmp1473, tmp1474, tmp1476, tmp1477, tmp1478, tmp1479, tmp1481, tmp1482, tmp1483, tmp1484, tmp1486, tmp1487, tmp1488, tmp1489, tmp1491, tmp1492, tmp1493, tmp1494, tmp1496, tmp1497, tmp1498, tmp1499, tmp1501, tmp1502, tmp1503, tmp1504, tmp1506, tmp1507, tmp1508, tmp1509, tmp1511, tmp1512, tmp1513, tmp1514, tmp1516, tmp1517, tmp1518, tmp1519]) end # TaylorIntegration.jetcoeffs! method for src/dynamical_model.jl: NBP_pN_A_J23E_J23M_J2S_threads! function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params, __ralloc::TaylorIntegration.RetAlloc{Taylor1{_S}}) where {_T <: Real, _S <: Number, _N} @@ -2220,38 +2287,40 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: p_E_cross_I_p_E_1 = __ralloc.v0[370] p_E_cross_I_p_E_2 = __ralloc.v0[371] p_E_cross_I_p_E_3 = __ralloc.v0[372] - one_minus_7sin2ϕEM = __ralloc.v0[373] - two_sinϕEM = __ralloc.v0[374] - N_MfigM_figE_factor_div_rEMp5 = __ralloc.v0[375] - N_MfigM_figE_1 = __ralloc.v0[376] - N_MfigM_figE_2 = __ralloc.v0[377] - N_MfigM_figE_3 = __ralloc.v0[378] - N_1_LMF = __ralloc.v0[379] - N_2_LMF = __ralloc.v0[380] - N_3_LMF = __ralloc.v0[381] - N_cmb_1 = __ralloc.v0[382] - N_cmb_2 = __ralloc.v0[383] - N_cmb_3 = __ralloc.v0[384] - I_dω_1 = __ralloc.v0[385] - I_dω_2 = __ralloc.v0[386] - I_dω_3 = __ralloc.v0[387] - Ic_ωc_1 = __ralloc.v0[388] - Ic_ωc_2 = __ralloc.v0[389] - Ic_ωc_3 = __ralloc.v0[390] - m_ωm_x_Icωc_1 = __ralloc.v0[391] - m_ωm_x_Icωc_2 = __ralloc.v0[392] - m_ωm_x_Icωc_3 = __ralloc.v0[393] - Ic_dωc_1 = __ralloc.v0[394] - Ic_dωc_2 = __ralloc.v0[395] - Ic_dωc_3 = __ralloc.v0[396] - tmp1908 = __ralloc.v0[397] - tmp1909 = __ralloc.v0[398] - tmp1910 = __ralloc.v0[399] - tmp1911 = __ralloc.v0[400] - tmp1912 = __ralloc.v0[401] - tmp1913 = __ralloc.v0[402] - tmp1914 = __ralloc.v0[403] - tmp1915 = __ralloc.v0[404] + tmp1921 = __ralloc.v0[373] + one_minus_7sin2ϕEM = __ralloc.v0[374] + two_sinϕEM = __ralloc.v0[375] + tmp1922 = __ralloc.v0[376] + N_MfigM_figE_factor_div_rEMp5 = __ralloc.v0[377] + N_MfigM_figE_1 = __ralloc.v0[378] + N_MfigM_figE_2 = __ralloc.v0[379] + N_MfigM_figE_3 = __ralloc.v0[380] + N_1_LMF = __ralloc.v0[381] + N_2_LMF = __ralloc.v0[382] + N_3_LMF = __ralloc.v0[383] + N_cmb_1 = __ralloc.v0[384] + N_cmb_2 = __ralloc.v0[385] + N_cmb_3 = __ralloc.v0[386] + I_dω_1 = __ralloc.v0[387] + I_dω_2 = __ralloc.v0[388] + I_dω_3 = __ralloc.v0[389] + Ic_ωc_1 = __ralloc.v0[390] + Ic_ωc_2 = __ralloc.v0[391] + Ic_ωc_3 = __ralloc.v0[392] + m_ωm_x_Icωc_1 = __ralloc.v0[393] + m_ωm_x_Icωc_2 = __ralloc.v0[394] + m_ωm_x_Icωc_3 = __ralloc.v0[395] + Ic_dωc_1 = __ralloc.v0[396] + Ic_dωc_2 = __ralloc.v0[397] + Ic_dωc_3 = __ralloc.v0[398] + tmp1923 = __ralloc.v0[399] + tmp1924 = __ralloc.v0[400] + tmp1925 = __ralloc.v0[401] + tmp1926 = __ralloc.v0[402] + tmp1927 = __ralloc.v0[403] + tmp1928 = __ralloc.v0[404] + tmp1929 = __ralloc.v0[405] + tmp1930 = __ralloc.v0[406] newtonX = __ralloc.v1[1] newtonY = __ralloc.v1[2] newtonZ = __ralloc.v1[3] @@ -2281,9 +2350,12 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: tmp1249 = __ralloc.v1[27] tmp1251 = __ralloc.v1[28] tmp1295 = __ralloc.v1[29] - tmp1297 = __ralloc.v1[30] - tmp1298 = __ralloc.v1[31] - tmp1300 = __ralloc.v1[32] + tmp1913 = __ralloc.v1[30] + tmp1297 = __ralloc.v1[31] + tmp1914 = __ralloc.v1[32] + tmp1298 = __ralloc.v1[33] + tmp1300 = __ralloc.v1[34] + tmp1915 = __ralloc.v1[35] X = __ralloc.v2[1] Y = __ralloc.v2[2] Z = __ralloc.v2[3] @@ -2374,67 +2446,77 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: pn2z = __ralloc.v2[88] tmp1259 = __ralloc.v2[89] tmp1262 = __ralloc.v2[90] - tmp1264 = __ralloc.v2[91] - tmp1265 = __ralloc.v2[92] - tmp1267 = __ralloc.v2[93] - tmp1275 = __ralloc.v2[94] - tmp1276 = __ralloc.v2[95] - tmp1287 = __ralloc.v2[96] - temp_001 = __ralloc.v2[97] - tmp1289 = __ralloc.v2[98] - temp_002 = __ralloc.v2[99] - tmp1291 = __ralloc.v2[100] - temp_003 = __ralloc.v2[101] - temp_004 = __ralloc.v2[102] - tmp1328 = __ralloc.v2[103] - tmp1330 = __ralloc.v2[104] - tmp1332 = __ralloc.v2[105] - tmp1336 = __ralloc.v2[106] - tmp1338 = __ralloc.v2[107] - tmp1339 = __ralloc.v2[108] - tmp1445 = __ralloc.v2[109] - tmp1446 = __ralloc.v2[110] - tmp1449 = __ralloc.v2[111] - tmp1450 = __ralloc.v2[112] - tmp1456 = __ralloc.v2[113] - tmp1459 = __ralloc.v2[114] - tmp1521 = __ralloc.v2[115] - tmp1523 = __ralloc.v2[116] - tmp1525 = __ralloc.v2[117] - tmp1527 = __ralloc.v2[118] - tmp1529 = __ralloc.v2[119] - tmp1531 = __ralloc.v2[120] - tmp1533 = __ralloc.v2[121] - tmp1534 = __ralloc.v2[122] - tmp1535 = __ralloc.v2[123] - tmp1537 = __ralloc.v2[124] - tmp1538 = __ralloc.v2[125] - tmp1539 = __ralloc.v2[126] - tmp1541 = __ralloc.v2[127] - tmp1542 = __ralloc.v2[128] - tmp1543 = __ralloc.v2[129] - tmp1555 = __ralloc.v2[130] - Xij_t_Ui = __ralloc.v2[131] - Yij_t_Vi = __ralloc.v2[132] - Zij_t_Wi = __ralloc.v2[133] - tmp1561 = __ralloc.v2[134] - Rij_dot_Vi = __ralloc.v2[135] - tmp1564 = __ralloc.v2[136] - pn1t7 = __ralloc.v2[137] - tmp1567 = __ralloc.v2[138] - pn1t2_7 = __ralloc.v2[139] - tmp1574 = __ralloc.v2[140] - tmp1575 = __ralloc.v2[141] - tmp1576 = __ralloc.v2[142] - tmp1584 = __ralloc.v2[143] - termpnx = __ralloc.v2[144] - sumpnx = __ralloc.v2[145] - tmp1587 = __ralloc.v2[146] - termpny = __ralloc.v2[147] - sumpny = __ralloc.v2[148] - tmp1590 = __ralloc.v2[149] - termpnz = __ralloc.v2[150] - sumpnz = __ralloc.v2[151] + tmp1908 = __ralloc.v2[91] + tmp1264 = __ralloc.v2[92] + tmp1909 = __ralloc.v2[93] + tmp1265 = __ralloc.v2[94] + tmp1267 = __ralloc.v2[95] + tmp1910 = __ralloc.v2[96] + tmp1911 = __ralloc.v2[97] + tmp1912 = __ralloc.v2[98] + tmp1275 = __ralloc.v2[99] + tmp1276 = __ralloc.v2[100] + tmp1287 = __ralloc.v2[101] + temp_001 = __ralloc.v2[102] + tmp1289 = __ralloc.v2[103] + temp_002 = __ralloc.v2[104] + tmp1291 = __ralloc.v2[105] + temp_003 = __ralloc.v2[106] + temp_004 = __ralloc.v2[107] + tmp1328 = __ralloc.v2[108] + tmp1330 = __ralloc.v2[109] + tmp1332 = __ralloc.v2[110] + tmp1336 = __ralloc.v2[111] + tmp1916 = __ralloc.v2[112] + tmp1338 = __ralloc.v2[113] + tmp1917 = __ralloc.v2[114] + tmp1339 = __ralloc.v2[115] + tmp1918 = __ralloc.v2[116] + tmp1919 = __ralloc.v2[117] + tmp1445 = __ralloc.v2[118] + tmp1446 = __ralloc.v2[119] + tmp1449 = __ralloc.v2[120] + tmp1450 = __ralloc.v2[121] + tmp1456 = __ralloc.v2[122] + tmp1459 = __ralloc.v2[123] + tmp1521 = __ralloc.v2[124] + tmp1523 = __ralloc.v2[125] + tmp1525 = __ralloc.v2[126] + tmp1527 = __ralloc.v2[127] + tmp1529 = __ralloc.v2[128] + tmp1531 = __ralloc.v2[129] + tmp1533 = __ralloc.v2[130] + tmp1534 = __ralloc.v2[131] + tmp1535 = __ralloc.v2[132] + tmp1537 = __ralloc.v2[133] + tmp1538 = __ralloc.v2[134] + tmp1539 = __ralloc.v2[135] + tmp1541 = __ralloc.v2[136] + tmp1542 = __ralloc.v2[137] + tmp1543 = __ralloc.v2[138] + tmp1555 = __ralloc.v2[139] + Xij_t_Ui = __ralloc.v2[140] + Yij_t_Vi = __ralloc.v2[141] + Zij_t_Wi = __ralloc.v2[142] + tmp1561 = __ralloc.v2[143] + Rij_dot_Vi = __ralloc.v2[144] + tmp1564 = __ralloc.v2[145] + tmp1920 = __ralloc.v2[146] + pn1t7 = __ralloc.v2[147] + tmp1567 = __ralloc.v2[148] + pn1t2_7 = __ralloc.v2[149] + tmp1574 = __ralloc.v2[150] + tmp1575 = __ralloc.v2[151] + tmp1576 = __ralloc.v2[152] + tmp1584 = __ralloc.v2[153] + termpnx = __ralloc.v2[154] + sumpnx = __ralloc.v2[155] + tmp1587 = __ralloc.v2[156] + termpny = __ralloc.v2[157] + sumpny = __ralloc.v2[158] + tmp1590 = __ralloc.v2[159] + termpnz = __ralloc.v2[160] + sumpnz = __ralloc.v2[161] P_n = __ralloc.v3[1] dP_n = __ralloc.v3[2] temp_fjξ = __ralloc.v3[3] @@ -2586,1736 +2668,14 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: local I_c_t = I_c .* one_t local inv_I_c_t = inv(I_c_t) local I_M_t = I_m_t + I_c_t - TaylorSeries.zero!(N_MfigM[1]) - (N_MfigM[1]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(N_MfigM[2]) - (N_MfigM[2]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(N_MfigM[3]) - (N_MfigM[3]).coeffs[1] = identity(constant_term(zero_q_1)) local αs = deg2rad(α_p_sun * one_t) local δs = deg2rad(δ_p_sun * one_t) local RotM[:, :, ea] = c2t_jpl_de430(dsj2k) local RotM[:, :, su] = pole_rotation(αs, δs) - TaylorSeries.zero!(ϕ_m) - ϕ_m.coeffs[1] = identity(constant_term(q[6N + 1])) - TaylorSeries.zero!(θ_m) - θ_m.coeffs[1] = identity(constant_term(q[6N + 2])) - TaylorSeries.zero!(ψ_m) - ψ_m.coeffs[1] = identity(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp1133) - tmp1133.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1867) - tmp1867.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1134) - tmp1134.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1868) - tmp1868.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1135) - tmp1135.coeffs[1] = constant_term(tmp1133) * constant_term(tmp1134) - TaylorSeries.zero!(tmp1136) - tmp1136.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp1869) - tmp1869.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp1137) - tmp1137.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1870) - tmp1870.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1138) - tmp1138.coeffs[1] = constant_term(tmp1136) * constant_term(tmp1137) - TaylorSeries.zero!(tmp1139) - tmp1139.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1871) - tmp1871.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1140) - tmp1140.coeffs[1] = constant_term(tmp1138) * constant_term(tmp1139) - TaylorSeries.zero!(RotM[1, 1, mo]) - (RotM[1, 1, mo]).coeffs[1] = constant_term(tmp1135) - constant_term(tmp1140) - TaylorSeries.zero!(tmp1142) - tmp1142.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp1872) - tmp1872.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp1143) - tmp1143.coeffs[1] = -(constant_term(tmp1142)) - TaylorSeries.zero!(tmp1144) - tmp1144.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1873) - tmp1873.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1145) - tmp1145.coeffs[1] = constant_term(tmp1143) * constant_term(tmp1144) - TaylorSeries.zero!(tmp1146) - tmp1146.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1874) - tmp1874.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1147) - tmp1147.coeffs[1] = constant_term(tmp1145) * constant_term(tmp1146) - TaylorSeries.zero!(tmp1148) - tmp1148.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1875) - tmp1875.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1149) - tmp1149.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1876) - tmp1876.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1150) - tmp1150.coeffs[1] = constant_term(tmp1148) * constant_term(tmp1149) - TaylorSeries.zero!(RotM[2, 1, mo]) - (RotM[2, 1, mo]).coeffs[1] = constant_term(tmp1147) - constant_term(tmp1150) - TaylorSeries.zero!(tmp1152) - tmp1152.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp1877) - tmp1877.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp1153) - tmp1153.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1878) - tmp1878.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(RotM[3, 1, mo]) - (RotM[3, 1, mo]).coeffs[1] = constant_term(tmp1152) * constant_term(tmp1153) - TaylorSeries.zero!(tmp1155) - tmp1155.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1879) - tmp1879.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1156) - tmp1156.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1880) - tmp1880.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1157) - tmp1157.coeffs[1] = constant_term(tmp1155) * constant_term(tmp1156) - TaylorSeries.zero!(tmp1158) - tmp1158.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp1881) - tmp1881.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp1159) - tmp1159.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1882) - tmp1882.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1160) - tmp1160.coeffs[1] = constant_term(tmp1158) * constant_term(tmp1159) - TaylorSeries.zero!(tmp1161) - tmp1161.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1883) - tmp1883.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1162) - tmp1162.coeffs[1] = constant_term(tmp1160) * constant_term(tmp1161) - TaylorSeries.zero!(RotM[1, 2, mo]) - (RotM[1, 2, mo]).coeffs[1] = constant_term(tmp1157) + constant_term(tmp1162) - TaylorSeries.zero!(tmp1164) - tmp1164.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp1884) - tmp1884.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp1165) - tmp1165.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1885) - tmp1885.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1166) - tmp1166.coeffs[1] = constant_term(tmp1164) * constant_term(tmp1165) - TaylorSeries.zero!(tmp1167) - tmp1167.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1886) - tmp1886.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1168) - tmp1168.coeffs[1] = constant_term(tmp1166) * constant_term(tmp1167) - TaylorSeries.zero!(tmp1169) - tmp1169.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1887) - tmp1887.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1170) - tmp1170.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1888) - tmp1888.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1171) - tmp1171.coeffs[1] = constant_term(tmp1169) * constant_term(tmp1170) - TaylorSeries.zero!(RotM[2, 2, mo]) - (RotM[2, 2, mo]).coeffs[1] = constant_term(tmp1168) - constant_term(tmp1171) - TaylorSeries.zero!(tmp1173) - tmp1173.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1889) - tmp1889.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp1174) - tmp1174.coeffs[1] = -(constant_term(tmp1173)) - TaylorSeries.zero!(tmp1175) - tmp1175.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp1890) - tmp1890.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(RotM[3, 2, mo]) - (RotM[3, 2, mo]).coeffs[1] = constant_term(tmp1174) * constant_term(tmp1175) - TaylorSeries.zero!(tmp1177) - tmp1177.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp1891) - tmp1891.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp1178) - tmp1178.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1892) - tmp1892.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(RotM[1, 3, mo]) - (RotM[1, 3, mo]).coeffs[1] = constant_term(tmp1177) * constant_term(tmp1178) - TaylorSeries.zero!(tmp1180) - tmp1180.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1893) - tmp1893.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp1181) - tmp1181.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp1894) - tmp1894.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(RotM[2, 3, mo]) - (RotM[2, 3, mo]).coeffs[1] = constant_term(tmp1180) * constant_term(tmp1181) - TaylorSeries.zero!(RotM[3, 3, mo]) - (RotM[3, 3, mo]).coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp1895) - tmp1895.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(ϕ_c) - ϕ_c.coeffs[1] = identity(constant_term(q[6N + 7])) - TaylorSeries.zero!(tmp1184) - tmp1184.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1896) - tmp1896.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1185) - tmp1185.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(tmp1184) - TaylorSeries.zero!(tmp1186) - tmp1186.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1897) - tmp1897.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1187) - tmp1187.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp1186) - TaylorSeries.zero!(mantlef2coref[1, 1]) - (mantlef2coref[1, 1]).coeffs[1] = constant_term(tmp1185) + constant_term(tmp1187) - TaylorSeries.zero!(tmp1189) - tmp1189.coeffs[1] = -(constant_term(RotM[1, 1, mo])) - TaylorSeries.zero!(tmp1190) - tmp1190.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1898) - tmp1898.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1191) - tmp1191.coeffs[1] = constant_term(tmp1189) * constant_term(tmp1190) - TaylorSeries.zero!(tmp1192) - tmp1192.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1899) - tmp1899.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1193) - tmp1193.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp1192) - TaylorSeries.zero!(mantlef2coref[2, 1]) - (mantlef2coref[2, 1]).coeffs[1] = constant_term(tmp1191) + constant_term(tmp1193) - TaylorSeries.zero!(mantlef2coref[3, 1]) - (mantlef2coref[3, 1]).coeffs[1] = identity(constant_term(RotM[1, 3, mo])) - TaylorSeries.zero!(tmp1195) - tmp1195.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1900) - tmp1900.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1196) - tmp1196.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(tmp1195) - TaylorSeries.zero!(tmp1197) - tmp1197.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1901) - tmp1901.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1198) - tmp1198.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp1197) - TaylorSeries.zero!(mantlef2coref[1, 2]) - (mantlef2coref[1, 2]).coeffs[1] = constant_term(tmp1196) + constant_term(tmp1198) - TaylorSeries.zero!(tmp1200) - tmp1200.coeffs[1] = -(constant_term(RotM[2, 1, mo])) - TaylorSeries.zero!(tmp1201) - tmp1201.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1902) - tmp1902.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1202) - tmp1202.coeffs[1] = constant_term(tmp1200) * constant_term(tmp1201) - TaylorSeries.zero!(tmp1203) - tmp1203.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1903) - tmp1903.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1204) - tmp1204.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp1203) - TaylorSeries.zero!(mantlef2coref[2, 2]) - (mantlef2coref[2, 2]).coeffs[1] = constant_term(tmp1202) + constant_term(tmp1204) - TaylorSeries.zero!(mantlef2coref[3, 2]) - (mantlef2coref[3, 2]).coeffs[1] = identity(constant_term(RotM[2, 3, mo])) - TaylorSeries.zero!(tmp1206) - tmp1206.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1904) - tmp1904.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1207) - tmp1207.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(tmp1206) - TaylorSeries.zero!(tmp1208) - tmp1208.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1905) - tmp1905.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1209) - tmp1209.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp1208) - TaylorSeries.zero!(mantlef2coref[1, 3]) - (mantlef2coref[1, 3]).coeffs[1] = constant_term(tmp1207) + constant_term(tmp1209) - TaylorSeries.zero!(tmp1211) - tmp1211.coeffs[1] = -(constant_term(RotM[3, 1, mo])) - TaylorSeries.zero!(tmp1212) - tmp1212.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1906) - tmp1906.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1213) - tmp1213.coeffs[1] = constant_term(tmp1211) * constant_term(tmp1212) - TaylorSeries.zero!(tmp1214) - tmp1214.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1907) - tmp1907.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp1215) - tmp1215.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp1214) - TaylorSeries.zero!(mantlef2coref[2, 3]) - (mantlef2coref[2, 3]).coeffs[1] = constant_term(tmp1213) + constant_term(tmp1215) - TaylorSeries.zero!(mantlef2coref[3, 3]) - (mantlef2coref[3, 3]).coeffs[1] = identity(constant_term(RotM[3, 3, mo])) - TaylorSeries.zero!(tmp1217) - tmp1217.coeffs[1] = constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]) - TaylorSeries.zero!(tmp1218) - tmp1218.coeffs[1] = constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]) - TaylorSeries.zero!(tmp1219) - tmp1219.coeffs[1] = constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp1220) - tmp1220.coeffs[1] = constant_term(tmp1218) + constant_term(tmp1219) - TaylorSeries.zero!(ω_c_CE_1) - ω_c_CE_1.coeffs[1] = constant_term(tmp1217) + constant_term(tmp1220) - TaylorSeries.zero!(tmp1222) - tmp1222.coeffs[1] = constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]) - TaylorSeries.zero!(tmp1223) - tmp1223.coeffs[1] = constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]) - TaylorSeries.zero!(tmp1224) - tmp1224.coeffs[1] = constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp1225) - tmp1225.coeffs[1] = constant_term(tmp1223) + constant_term(tmp1224) - TaylorSeries.zero!(ω_c_CE_2) - ω_c_CE_2.coeffs[1] = constant_term(tmp1222) + constant_term(tmp1225) - TaylorSeries.zero!(tmp1227) - tmp1227.coeffs[1] = constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]) - TaylorSeries.zero!(tmp1228) - tmp1228.coeffs[1] = constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]) - TaylorSeries.zero!(tmp1229) - tmp1229.coeffs[1] = constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp1230) - tmp1230.coeffs[1] = constant_term(tmp1228) + constant_term(tmp1229) - TaylorSeries.zero!(ω_c_CE_3) - ω_c_CE_3.coeffs[1] = constant_term(tmp1227) + constant_term(tmp1230) local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 local J2S_t = JSEM[su, 2] * one_t - TaylorSeries.zero!(J2_t[su]) - (J2_t[su]).coeffs[1] = identity(constant_term(J2S_t)) - TaylorSeries.zero!(J2_t[ea]) - (J2_t[ea]).coeffs[1] = identity(constant_term(J2E_t)) local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:309 =# Threads.@threads for j = 1:N - TaylorSeries.zero!(newtonX[j]) - (newtonX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(newtonY[j]) - (newtonY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(newtonZ[j]) - (newtonZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(newtonianNb_Potential[j]) - (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(dq[3j - 2]) - (dq[3j - 2]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 2])) - TaylorSeries.zero!(dq[3j - 1]) - (dq[3j - 1]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 1])) - TaylorSeries.zero!(dq[3j]) - (dq[3j]).coeffs[1] = identity(constant_term(q[3 * (N + j)])) - end - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:321 =# Threads.@threads for j = 1:N_ext - TaylorSeries.zero!(accX[j]) - (accX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(accY[j]) - (accY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(accZ[j]) - (accZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - end - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:327 =# Threads.@threads for j = 1:N - for i = 1:N - if i == j - continue - else - TaylorSeries.zero!(X[i, j]) - (X[i, j]).coeffs[1] = constant_term(q[3i - 2]) - constant_term(q[3j - 2]) - TaylorSeries.zero!(Y[i, j]) - (Y[i, j]).coeffs[1] = constant_term(q[3i - 1]) - constant_term(q[3j - 1]) - TaylorSeries.zero!(Z[i, j]) - (Z[i, j]).coeffs[1] = constant_term(q[3i]) - constant_term(q[3j]) - TaylorSeries.zero!(U[i, j]) - (U[i, j]).coeffs[1] = constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]) - TaylorSeries.zero!(V[i, j]) - (V[i, j]).coeffs[1] = constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]) - TaylorSeries.zero!(W[i, j]) - (W[i, j]).coeffs[1] = constant_term(dq[3i]) - constant_term(dq[3j]) - TaylorSeries.zero!(tmp1239[3j - 2]) - (tmp1239[3j - 2]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 2]) - TaylorSeries.zero!(tmp1241[3i - 2]) - (tmp1241[3i - 2]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 2]) - TaylorSeries.zero!(_4U_m_3X[i, j]) - (_4U_m_3X[i, j]).coeffs[1] = constant_term(tmp1239[3j - 2]) - constant_term(tmp1241[3i - 2]) - TaylorSeries.zero!(tmp1244[3j - 1]) - (tmp1244[3j - 1]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 1]) - TaylorSeries.zero!(tmp1246[3i - 1]) - (tmp1246[3i - 1]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 1]) - TaylorSeries.zero!(_4V_m_3Y[i, j]) - (_4V_m_3Y[i, j]).coeffs[1] = constant_term(tmp1244[3j - 1]) - constant_term(tmp1246[3i - 1]) - TaylorSeries.zero!(tmp1249[3j]) - (tmp1249[3j]).coeffs[1] = constant_term(4) * constant_term(dq[3j]) - TaylorSeries.zero!(tmp1251[3i]) - (tmp1251[3i]).coeffs[1] = constant_term(3) * constant_term(dq[3i]) - TaylorSeries.zero!(_4W_m_3Z[i, j]) - (_4W_m_3Z[i, j]).coeffs[1] = constant_term(tmp1249[3j]) - constant_term(tmp1251[3i]) - TaylorSeries.zero!(pn2x[i, j]) - (pn2x[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]) - TaylorSeries.zero!(pn2y[i, j]) - (pn2y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]) - TaylorSeries.zero!(pn2z[i, j]) - (pn2z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]) - TaylorSeries.zero!(UU[i, j]) - (UU[i, j]).coeffs[1] = constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]) - TaylorSeries.zero!(VV[i, j]) - (VV[i, j]).coeffs[1] = constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]) - TaylorSeries.zero!(WW[i, j]) - (WW[i, j]).coeffs[1] = constant_term(dq[3i]) * constant_term(dq[3j]) - TaylorSeries.zero!(tmp1259[i, j]) - (tmp1259[i, j]).coeffs[1] = constant_term(UU[i, j]) + constant_term(VV[i, j]) - TaylorSeries.zero!(vi_dot_vj[i, j]) - (vi_dot_vj[i, j]).coeffs[1] = constant_term(tmp1259[i, j]) + constant_term(WW[i, j]) - TaylorSeries.zero!(tmp1262[i, j]) - (tmp1262[i, j]).coeffs[1] = constant_term(X[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp1264[i, j]) - (tmp1264[i, j]).coeffs[1] = constant_term(Y[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp1265[i, j]) - (tmp1265[i, j]).coeffs[1] = constant_term(tmp1262[i, j]) + constant_term(tmp1264[i, j]) - TaylorSeries.zero!(tmp1267[i, j]) - (tmp1267[i, j]).coeffs[1] = constant_term(Z[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(r_p2[i, j]) - (r_p2[i, j]).coeffs[1] = constant_term(tmp1265[i, j]) + constant_term(tmp1267[i, j]) - TaylorSeries.zero!(r_p1d2[i, j]) - (r_p1d2[i, j]).coeffs[1] = sqrt(constant_term(r_p2[i, j])) - TaylorSeries.zero!(r_p3d2[i, j]) - (r_p3d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(1.5)) - TaylorSeries.zero!(r_p7d2[i, j]) - (r_p7d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(3.5)) - TaylorSeries.zero!(newtonianCoeff[i, j]) - (newtonianCoeff[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p3d2[i, j]) - TaylorSeries.zero!(tmp1275[i, j]) - (tmp1275[i, j]).coeffs[1] = constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]) - TaylorSeries.zero!(tmp1276[i, j]) - (tmp1276[i, j]).coeffs[1] = constant_term(tmp1275[i, j]) + constant_term(pn2z[i, j]) - TaylorSeries.zero!(pn2[i, j]) - (pn2[i, j]).coeffs[1] = constant_term(newtonianCoeff[i, j]) * constant_term(tmp1276[i, j]) - TaylorSeries.zero!(newton_acc_X[i, j]) - (newton_acc_X[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(newton_acc_Y[i, j]) - (newton_acc_Y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(newton_acc_Z[i, j]) - (newton_acc_Z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(newtonian1b_Potential[i, j]) - (newtonian1b_Potential[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p1d2[i, j]) - TaylorSeries.zero!(pn3[i, j]) - (pn3[i, j]).coeffs[1] = constant_term(3.5) * constant_term(newtonian1b_Potential[i, j]) - TaylorSeries.zero!(U_t_pn2[i, j]) - (U_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(U[i, j]) - TaylorSeries.zero!(V_t_pn2[i, j]) - (V_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(V[i, j]) - TaylorSeries.zero!(W_t_pn2[i, j]) - (W_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(W[i, j]) - TaylorSeries.zero!(tmp1287[i, j]) - (tmp1287[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(temp_001[i, j]) - (temp_001[i, j]).coeffs[1] = constant_term(newtonX[j]) + constant_term(tmp1287[i, j]) - TaylorSeries.zero!(newtonX[j]) - (newtonX[j]).coeffs[1] = identity(constant_term(temp_001[i, j])) - TaylorSeries.zero!(tmp1289[i, j]) - (tmp1289[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(temp_002[i, j]) - (temp_002[i, j]).coeffs[1] = constant_term(newtonY[j]) + constant_term(tmp1289[i, j]) - TaylorSeries.zero!(newtonY[j]) - (newtonY[j]).coeffs[1] = identity(constant_term(temp_002[i, j])) - TaylorSeries.zero!(tmp1291[i, j]) - (tmp1291[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(temp_003[i, j]) - (temp_003[i, j]).coeffs[1] = constant_term(newtonZ[j]) + constant_term(tmp1291[i, j]) - TaylorSeries.zero!(newtonZ[j]) - (newtonZ[j]).coeffs[1] = identity(constant_term(temp_003[i, j])) - TaylorSeries.zero!(temp_004[i, j]) - (temp_004[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]) - TaylorSeries.zero!(newtonianNb_Potential[j]) - (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(temp_004[i, j])) - end - end - TaylorSeries.zero!(tmp1295[3j - 2]) - (tmp1295[3j - 2]).coeffs[1] = constant_term(dq[3j - 2]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp1297[3j - 1]) - (tmp1297[3j - 1]).coeffs[1] = constant_term(dq[3j - 1]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp1298[3j - 2]) - (tmp1298[3j - 2]).coeffs[1] = constant_term(tmp1295[3j - 2]) + constant_term(tmp1297[3j - 1]) - TaylorSeries.zero!(tmp1300[3j]) - (tmp1300[3j]).coeffs[1] = constant_term(dq[3j]) ^ float(constant_term(2)) - TaylorSeries.zero!(v2[j]) - (v2[j]).coeffs[1] = constant_term(tmp1298[3j - 2]) + constant_term(tmp1300[3j]) - end - TaylorSeries.zero!(tmp1302) - tmp1302.coeffs[1] = constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]) - TaylorSeries.zero!(tmp1304) - tmp1304.coeffs[1] = constant_term(tmp1302) / constant_term(2) - TaylorSeries.zero!(tmp1305) - tmp1305.coeffs[1] = constant_term(I_M_t[3, 3]) - constant_term(tmp1304) - TaylorSeries.zero!(J2M_t) - J2M_t.coeffs[1] = constant_term(tmp1305) / constant_term(μ[mo]) - TaylorSeries.zero!(tmp1307) - tmp1307.coeffs[1] = constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]) - TaylorSeries.zero!(tmp1308) - tmp1308.coeffs[1] = constant_term(tmp1307) / constant_term(μ[mo]) - TaylorSeries.zero!(C22M_t) - C22M_t.coeffs[1] = constant_term(tmp1308) / constant_term(4) - TaylorSeries.zero!(tmp1311) - tmp1311.coeffs[1] = -(constant_term(I_M_t[1, 3])) - TaylorSeries.zero!(C21M_t) - C21M_t.coeffs[1] = constant_term(tmp1311) / constant_term(μ[mo]) - TaylorSeries.zero!(tmp1313) - tmp1313.coeffs[1] = -(constant_term(I_M_t[3, 2])) - TaylorSeries.zero!(S21M_t) - S21M_t.coeffs[1] = constant_term(tmp1313) / constant_term(μ[mo]) - TaylorSeries.zero!(tmp1315) - tmp1315.coeffs[1] = -(constant_term(I_M_t[2, 1])) - TaylorSeries.zero!(tmp1316) - tmp1316.coeffs[1] = constant_term(tmp1315) / constant_term(μ[mo]) - TaylorSeries.zero!(S22M_t) - S22M_t.coeffs[1] = constant_term(tmp1316) / constant_term(2) - TaylorSeries.zero!(J2_t[mo]) - (J2_t[mo]).coeffs[1] = identity(constant_term(J2M_t)) - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:418 =# Threads.@threads for j = 1:N_ext - for i = 1:N_ext - if i == j - continue - else - if UJ_interaction[i, j] - TaylorSeries.zero!(X_bf_1[i, j]) - (X_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[1, 1, j]) - TaylorSeries.zero!(X_bf_2[i, j]) - (X_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[1, 2, j]) - TaylorSeries.zero!(X_bf_3[i, j]) - (X_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[1, 3, j]) - TaylorSeries.zero!(Y_bf_1[i, j]) - (Y_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[2, 1, j]) - TaylorSeries.zero!(Y_bf_2[i, j]) - (Y_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[2, 2, j]) - TaylorSeries.zero!(Y_bf_3[i, j]) - (Y_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[2, 3, j]) - TaylorSeries.zero!(Z_bf_1[i, j]) - (Z_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[3, 1, j]) - TaylorSeries.zero!(Z_bf_2[i, j]) - (Z_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]) - TaylorSeries.zero!(Z_bf_3[i, j]) - (Z_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]) - TaylorSeries.zero!(tmp1328[i, j]) - (tmp1328[i, j]).coeffs[1] = constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]) - TaylorSeries.zero!(X_bf[i, j]) - (X_bf[i, j]).coeffs[1] = constant_term(tmp1328[i, j]) + constant_term(X_bf_3[i, j]) - TaylorSeries.zero!(tmp1330[i, j]) - (tmp1330[i, j]).coeffs[1] = constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]) - TaylorSeries.zero!(Y_bf[i, j]) - (Y_bf[i, j]).coeffs[1] = constant_term(tmp1330[i, j]) + constant_term(Y_bf_3[i, j]) - TaylorSeries.zero!(tmp1332[i, j]) - (tmp1332[i, j]).coeffs[1] = constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]) - TaylorSeries.zero!(Z_bf[i, j]) - (Z_bf[i, j]).coeffs[1] = constant_term(tmp1332[i, j]) + constant_term(Z_bf_3[i, j]) - TaylorSeries.zero!(sin_ϕ[i, j]) - (sin_ϕ[i, j]).coeffs[1] = constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]) - TaylorSeries.zero!(tmp1336[i, j]) - (tmp1336[i, j]).coeffs[1] = constant_term(X_bf[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp1338[i, j]) - (tmp1338[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp1339[i, j]) - (tmp1339[i, j]).coeffs[1] = constant_term(tmp1336[i, j]) + constant_term(tmp1338[i, j]) - TaylorSeries.zero!(r_xy[i, j]) - (r_xy[i, j]).coeffs[1] = sqrt(constant_term(tmp1339[i, j])) - TaylorSeries.zero!(cos_ϕ[i, j]) - (cos_ϕ[i, j]).coeffs[1] = constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]) - TaylorSeries.zero!(sin_λ[i, j]) - (sin_λ[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]) - TaylorSeries.zero!(cos_λ[i, j]) - (cos_λ[i, j]).coeffs[1] = constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]) - TaylorSeries.zero!(P_n[i, j, 1]) - (P_n[i, j, 1]).coeffs[1] = identity(constant_term(one_t)) - TaylorSeries.zero!(P_n[i, j, 2]) - (P_n[i, j, 2]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) - TaylorSeries.zero!(dP_n[i, j, 1]) - (dP_n[i, j, 1]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(dP_n[i, j, 2]) - (dP_n[i, j, 2]).coeffs[1] = identity(constant_term(one_t)) - for n = 2:n1SEM[j] - TaylorSeries.zero!(tmp1344[i, j, n]) - (tmp1344[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(tmp1345[i, j, n]) - (tmp1345[i, j, n]).coeffs[1] = constant_term(tmp1344[i, j, n]) * constant_term(fact1_jsem[n]) - TaylorSeries.zero!(tmp1346[i, j, n - 1]) - (tmp1346[i, j, n - 1]).coeffs[1] = constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]) - TaylorSeries.zero!(P_n[i, j, n + 1]) - (P_n[i, j, n + 1]).coeffs[1] = constant_term(tmp1345[i, j, n]) - constant_term(tmp1346[i, j, n - 1]) - TaylorSeries.zero!(tmp1348[i, j, n]) - (tmp1348[i, j, n]).coeffs[1] = constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(tmp1349[i, j, n]) - (tmp1349[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]) - TaylorSeries.zero!(dP_n[i, j, n + 1]) - (dP_n[i, j, n + 1]).coeffs[1] = constant_term(tmp1348[i, j, n]) + constant_term(tmp1349[i, j, n]) - TaylorSeries.zero!(temp_rn[i, j, n]) - (temp_rn[i, j, n]).coeffs[1] = constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])) - end - TaylorSeries.zero!(r_p4[i, j]) - (r_p4[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp1354[i, j, 3]) - (tmp1354[i, j, 3]).coeffs[1] = constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]) - TaylorSeries.zero!(tmp1355[i, j, 3]) - (tmp1355[i, j, 3]).coeffs[1] = constant_term(tmp1354[i, j, 3]) * constant_term(J2_t[j]) - TaylorSeries.zero!(F_J_ξ[i, j]) - (F_J_ξ[i, j]).coeffs[1] = constant_term(tmp1355[i, j, 3]) / constant_term(r_p4[i, j]) - TaylorSeries.zero!(tmp1357[i, j, 3]) - (tmp1357[i, j, 3]).coeffs[1] = -(constant_term(dP_n[i, j, 3])) - TaylorSeries.zero!(tmp1358[i, j, 3]) - (tmp1358[i, j, 3]).coeffs[1] = constant_term(tmp1357[i, j, 3]) * constant_term(cos_ϕ[i, j]) - TaylorSeries.zero!(tmp1359[i, j, 3]) - (tmp1359[i, j, 3]).coeffs[1] = constant_term(tmp1358[i, j, 3]) * constant_term(J2_t[j]) - TaylorSeries.zero!(F_J_ζ[i, j]) - (F_J_ζ[i, j]).coeffs[1] = constant_term(tmp1359[i, j, 3]) / constant_term(r_p4[i, j]) - TaylorSeries.zero!(F_J_ξ_36[i, j]) - (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(F_J_ζ_36[i, j]) - (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - for n = 3:n1SEM[j] - TaylorSeries.zero!(tmp1361[i, j, n + 1]) - (tmp1361[i, j, n + 1]).coeffs[1] = constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]) - TaylorSeries.zero!(tmp1362[i, j, n + 1]) - (tmp1362[i, j, n + 1]).coeffs[1] = constant_term(tmp1361[i, j, n + 1]) * constant_term(JSEM[j, n]) - TaylorSeries.zero!(tmp1363[i, j, n + 1]) - (tmp1363[i, j, n + 1]).coeffs[1] = constant_term(tmp1362[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) - TaylorSeries.zero!(temp_fjξ[i, j, n]) - (temp_fjξ[i, j, n]).coeffs[1] = constant_term(tmp1363[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]) - TaylorSeries.zero!(tmp1365[i, j, n + 1]) - (tmp1365[i, j, n + 1]).coeffs[1] = -(constant_term(dP_n[i, j, n + 1])) - TaylorSeries.zero!(tmp1366[i, j, n + 1]) - (tmp1366[i, j, n + 1]).coeffs[1] = constant_term(tmp1365[i, j, n + 1]) * constant_term(cos_ϕ[i, j]) - TaylorSeries.zero!(tmp1367[i, j, n + 1]) - (tmp1367[i, j, n + 1]).coeffs[1] = constant_term(tmp1366[i, j, n + 1]) * constant_term(JSEM[j, n]) - TaylorSeries.zero!(tmp1368[i, j, n + 1]) - (tmp1368[i, j, n + 1]).coeffs[1] = constant_term(tmp1367[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) - TaylorSeries.zero!(temp_fjζ[i, j, n]) - (temp_fjζ[i, j, n]).coeffs[1] = constant_term(tmp1368[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]) - TaylorSeries.zero!(F_J_ξ_36[i, j]) - (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjξ[i, j, n])) - TaylorSeries.zero!(F_J_ζ_36[i, j]) - (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjζ[i, j, n])) - end - if j == mo - for m = 1:n1SEM[mo] - if m == 1 - TaylorSeries.zero!(sin_mλ[i, j, 1]) - (sin_mλ[i, j, 1]).coeffs[1] = identity(constant_term(sin_λ[i, j])) - TaylorSeries.zero!(cos_mλ[i, j, 1]) - (cos_mλ[i, j, 1]).coeffs[1] = identity(constant_term(cos_λ[i, j])) - TaylorSeries.zero!(secϕ_P_nm[i, j, 1, 1]) - (secϕ_P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(one_t)) - TaylorSeries.zero!(P_nm[i, j, 1, 1]) - (P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) - TaylorSeries.zero!(cosϕ_dP_nm[i, j, 1, 1]) - (cosϕ_dP_nm[i, j, 1, 1]).coeffs[1] = constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]) - else - TaylorSeries.zero!(tmp1371[i, j, m - 1]) - (tmp1371[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) - TaylorSeries.zero!(tmp1372[i, j, m - 1]) - (tmp1372[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) - TaylorSeries.zero!(sin_mλ[i, j, m]) - (sin_mλ[i, j, m]).coeffs[1] = constant_term(tmp1371[i, j, m - 1]) + constant_term(tmp1372[i, j, m - 1]) - TaylorSeries.zero!(tmp1374[i, j, m - 1]) - (tmp1374[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) - TaylorSeries.zero!(tmp1375[i, j, m - 1]) - (tmp1375[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) - TaylorSeries.zero!(cos_mλ[i, j, m]) - (cos_mλ[i, j, m]).coeffs[1] = constant_term(tmp1374[i, j, m - 1]) - constant_term(tmp1375[i, j, m - 1]) - TaylorSeries.zero!(tmp1377[i, j, m - 1, m - 1]) - (tmp1377[i, j, m - 1, m - 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]) - TaylorSeries.zero!(secϕ_P_nm[i, j, m, m]) - (secϕ_P_nm[i, j, m, m]).coeffs[1] = constant_term(tmp1377[i, j, m - 1, m - 1]) * constant_term(lnm5[m]) - TaylorSeries.zero!(P_nm[i, j, m, m]) - (P_nm[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]) - TaylorSeries.zero!(tmp1380[i, j, m, m]) - (tmp1380[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(cosϕ_dP_nm[i, j, m, m]) - (cosϕ_dP_nm[i, j, m, m]).coeffs[1] = constant_term(tmp1380[i, j, m, m]) * constant_term(lnm3[m]) - end - for n = m + 1:n1SEM[mo] - if n == m + 1 - TaylorSeries.zero!(tmp1382[i, j, n - 1, m]) - (tmp1382[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(secϕ_P_nm[i, j, n, m]) - (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1382[i, j, n - 1, m]) * constant_term(lnm1[n, m]) - else - TaylorSeries.zero!(tmp1384[i, j, n - 1, m]) - (tmp1384[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(tmp1385[i, j, n - 1, m]) - (tmp1385[i, j, n - 1, m]).coeffs[1] = constant_term(tmp1384[i, j, n - 1, m]) * constant_term(lnm1[n, m]) - TaylorSeries.zero!(tmp1386[i, j, n - 2, m]) - (tmp1386[i, j, n - 2, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]) - TaylorSeries.zero!(secϕ_P_nm[i, j, n, m]) - (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1385[i, j, n - 1, m]) + constant_term(tmp1386[i, j, n - 2, m]) - end - TaylorSeries.zero!(P_nm[i, j, n, m]) - (P_nm[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]) - TaylorSeries.zero!(tmp1389[i, j, n, m]) - (tmp1389[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(tmp1390[i, j, n, m]) - (tmp1390[i, j, n, m]).coeffs[1] = constant_term(tmp1389[i, j, n, m]) * constant_term(lnm3[n]) - TaylorSeries.zero!(tmp1391[i, j, n - 1, m]) - (tmp1391[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]) - TaylorSeries.zero!(cosϕ_dP_nm[i, j, n, m]) - (cosϕ_dP_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1390[i, j, n, m]) + constant_term(tmp1391[i, j, n - 1, m]) - end - end - TaylorSeries.zero!(tmp1393[i, j, 2, 1]) - (tmp1393[i, j, 2, 1]).coeffs[1] = constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]) - TaylorSeries.zero!(tmp1394[i, j, 1]) - (tmp1394[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) - TaylorSeries.zero!(tmp1395[i, j, 1]) - (tmp1395[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) - TaylorSeries.zero!(tmp1396[i, j, 1]) - (tmp1396[i, j, 1]).coeffs[1] = constant_term(tmp1394[i, j, 1]) + constant_term(tmp1395[i, j, 1]) - TaylorSeries.zero!(tmp1397[i, j, 2, 1]) - (tmp1397[i, j, 2, 1]).coeffs[1] = constant_term(tmp1393[i, j, 2, 1]) * constant_term(tmp1396[i, j, 1]) - TaylorSeries.zero!(tmp1398[i, j, 2, 2]) - (tmp1398[i, j, 2, 2]).coeffs[1] = constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]) - TaylorSeries.zero!(tmp1399[i, j, 2]) - (tmp1399[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) - TaylorSeries.zero!(tmp1400[i, j, 2]) - (tmp1400[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) - TaylorSeries.zero!(tmp1401[i, j, 2]) - (tmp1401[i, j, 2]).coeffs[1] = constant_term(tmp1399[i, j, 2]) + constant_term(tmp1400[i, j, 2]) - TaylorSeries.zero!(tmp1402[i, j, 2, 2]) - (tmp1402[i, j, 2, 2]).coeffs[1] = constant_term(tmp1398[i, j, 2, 2]) * constant_term(tmp1401[i, j, 2]) - TaylorSeries.zero!(tmp1403[i, j, 2, 1]) - (tmp1403[i, j, 2, 1]).coeffs[1] = constant_term(tmp1397[i, j, 2, 1]) + constant_term(tmp1402[i, j, 2, 2]) - TaylorSeries.zero!(F_CS_ξ[i, j]) - (F_CS_ξ[i, j]).coeffs[1] = constant_term(tmp1403[i, j, 2, 1]) / constant_term(r_p4[i, j]) - TaylorSeries.zero!(tmp1405[i, j, 2, 1]) - (tmp1405[i, j, 2, 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]) - TaylorSeries.zero!(tmp1406[i, j, 1]) - (tmp1406[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]) - TaylorSeries.zero!(tmp1407[i, j, 1]) - (tmp1407[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]) - TaylorSeries.zero!(tmp1408[i, j, 1]) - (tmp1408[i, j, 1]).coeffs[1] = constant_term(tmp1406[i, j, 1]) - constant_term(tmp1407[i, j, 1]) - TaylorSeries.zero!(tmp1409[i, j, 2, 1]) - (tmp1409[i, j, 2, 1]).coeffs[1] = constant_term(tmp1405[i, j, 2, 1]) * constant_term(tmp1408[i, j, 1]) - TaylorSeries.zero!(tmp1410[i, j, 2, 2]) - (tmp1410[i, j, 2, 2]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]) - TaylorSeries.zero!(tmp1411[i, j, 2]) - (tmp1411[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]) - TaylorSeries.zero!(tmp1412[i, j, 2]) - (tmp1412[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]) - TaylorSeries.zero!(tmp1413[i, j, 2]) - (tmp1413[i, j, 2]).coeffs[1] = constant_term(tmp1411[i, j, 2]) - constant_term(tmp1412[i, j, 2]) - TaylorSeries.zero!(tmp1414[i, j, 2, 2]) - (tmp1414[i, j, 2, 2]).coeffs[1] = constant_term(tmp1410[i, j, 2, 2]) * constant_term(tmp1413[i, j, 2]) - TaylorSeries.zero!(tmp1415[i, j, 2, 1]) - (tmp1415[i, j, 2, 1]).coeffs[1] = constant_term(tmp1409[i, j, 2, 1]) + constant_term(tmp1414[i, j, 2, 2]) - TaylorSeries.zero!(F_CS_η[i, j]) - (F_CS_η[i, j]).coeffs[1] = constant_term(tmp1415[i, j, 2, 1]) / constant_term(r_p4[i, j]) - TaylorSeries.zero!(tmp1417[i, j, 1]) - (tmp1417[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) - TaylorSeries.zero!(tmp1418[i, j, 1]) - (tmp1418[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) - TaylorSeries.zero!(tmp1419[i, j, 1]) - (tmp1419[i, j, 1]).coeffs[1] = constant_term(tmp1417[i, j, 1]) + constant_term(tmp1418[i, j, 1]) - TaylorSeries.zero!(tmp1420[i, j, 2, 1]) - (tmp1420[i, j, 2, 1]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp1419[i, j, 1]) - TaylorSeries.zero!(tmp1421[i, j, 2]) - (tmp1421[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) - TaylorSeries.zero!(tmp1422[i, j, 2]) - (tmp1422[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) - TaylorSeries.zero!(tmp1423[i, j, 2]) - (tmp1423[i, j, 2]).coeffs[1] = constant_term(tmp1421[i, j, 2]) + constant_term(tmp1422[i, j, 2]) - TaylorSeries.zero!(tmp1424[i, j, 2, 2]) - (tmp1424[i, j, 2, 2]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp1423[i, j, 2]) - TaylorSeries.zero!(tmp1425[i, j, 2, 1]) - (tmp1425[i, j, 2, 1]).coeffs[1] = constant_term(tmp1420[i, j, 2, 1]) + constant_term(tmp1424[i, j, 2, 2]) - TaylorSeries.zero!(F_CS_ζ[i, j]) - (F_CS_ζ[i, j]).coeffs[1] = constant_term(tmp1425[i, j, 2, 1]) / constant_term(r_p4[i, j]) - TaylorSeries.zero!(F_CS_ξ_36[i, j]) - (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(F_CS_η_36[i, j]) - (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(F_CS_ζ_36[i, j]) - (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - for n = 3:n2M - for m = 1:n - TaylorSeries.zero!(Cnm_cosmλ[i, j, n, m]) - (Cnm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(cos_mλ[i, j, m]) - TaylorSeries.zero!(Cnm_sinmλ[i, j, n, m]) - (Cnm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]) - TaylorSeries.zero!(Snm_cosmλ[i, j, n, m]) - (Snm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]) - TaylorSeries.zero!(Snm_sinmλ[i, j, n, m]) - (Snm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]) - TaylorSeries.zero!(tmp1431[i, j, n, m]) - (tmp1431[i, j, n, m]).coeffs[1] = constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]) - TaylorSeries.zero!(tmp1432[i, j, n, m]) - (tmp1432[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) - TaylorSeries.zero!(tmp1433[i, j, n, m]) - (tmp1433[i, j, n, m]).coeffs[1] = constant_term(tmp1431[i, j, n, m]) * constant_term(tmp1432[i, j, n, m]) - TaylorSeries.zero!(tmp1434[i, j, n, m]) - (tmp1434[i, j, n, m]).coeffs[1] = constant_term(tmp1433[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - TaylorSeries.zero!(temp_CS_ξ[i, j, n, m]) - (temp_CS_ξ[i, j, n, m]).coeffs[1] = constant_term(tmp1434[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]) - TaylorSeries.zero!(tmp1436[i, j, n, m]) - (tmp1436[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]) - TaylorSeries.zero!(tmp1437[i, j, n, m]) - (tmp1437[i, j, n, m]).coeffs[1] = constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]) - TaylorSeries.zero!(tmp1438[i, j, n, m]) - (tmp1438[i, j, n, m]).coeffs[1] = constant_term(tmp1436[i, j, n, m]) * constant_term(tmp1437[i, j, n, m]) - TaylorSeries.zero!(tmp1439[i, j, n, m]) - (tmp1439[i, j, n, m]).coeffs[1] = constant_term(tmp1438[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - TaylorSeries.zero!(temp_CS_η[i, j, n, m]) - (temp_CS_η[i, j, n, m]).coeffs[1] = constant_term(tmp1439[i, j, n, m]) + constant_term(F_CS_η_36[i, j]) - TaylorSeries.zero!(tmp1441[i, j, n, m]) - (tmp1441[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) - TaylorSeries.zero!(tmp1442[i, j, n, m]) - (tmp1442[i, j, n, m]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp1441[i, j, n, m]) - TaylorSeries.zero!(tmp1443[i, j, n, m]) - (tmp1443[i, j, n, m]).coeffs[1] = constant_term(tmp1442[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - TaylorSeries.zero!(temp_CS_ζ[i, j, n, m]) - (temp_CS_ζ[i, j, n, m]).coeffs[1] = constant_term(tmp1443[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]) - TaylorSeries.zero!(F_CS_ξ_36[i, j]) - (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ξ[i, j, n, m])) - TaylorSeries.zero!(F_CS_η_36[i, j]) - (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_η[i, j, n, m])) - TaylorSeries.zero!(F_CS_ζ_36[i, j]) - (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ζ[i, j, n, m])) - end - end - TaylorSeries.zero!(tmp1445[i, j]) - (tmp1445[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) - TaylorSeries.zero!(tmp1446[i, j]) - (tmp1446[i, j]).coeffs[1] = constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]) - TaylorSeries.zero!(F_JCS_ξ[i, j]) - (F_JCS_ξ[i, j]).coeffs[1] = constant_term(tmp1445[i, j]) + constant_term(tmp1446[i, j]) - TaylorSeries.zero!(F_JCS_η[i, j]) - (F_JCS_η[i, j]).coeffs[1] = constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]) - TaylorSeries.zero!(tmp1449[i, j]) - (tmp1449[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) - TaylorSeries.zero!(tmp1450[i, j]) - (tmp1450[i, j]).coeffs[1] = constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]) - TaylorSeries.zero!(F_JCS_ζ[i, j]) - (F_JCS_ζ[i, j]).coeffs[1] = constant_term(tmp1449[i, j]) + constant_term(tmp1450[i, j]) - else - TaylorSeries.zero!(F_JCS_ξ[i, j]) - (F_JCS_ξ[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) - TaylorSeries.zero!(F_JCS_η[i, j]) - (F_JCS_η[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(F_JCS_ζ[i, j]) - (F_JCS_ζ[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) - end - TaylorSeries.zero!(Rb2p[i, j, 1, 1]) - (Rb2p[i, j, 1, 1]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]) - TaylorSeries.zero!(Rb2p[i, j, 2, 1]) - (Rb2p[i, j, 2, 1]).coeffs[1] = -(constant_term(sin_λ[i, j])) - TaylorSeries.zero!(tmp1456[i, j]) - (tmp1456[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) - TaylorSeries.zero!(Rb2p[i, j, 3, 1]) - (Rb2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp1456[i, j]) * constant_term(cos_λ[i, j]) - TaylorSeries.zero!(Rb2p[i, j, 1, 2]) - (Rb2p[i, j, 1, 2]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]) - TaylorSeries.zero!(Rb2p[i, j, 2, 2]) - (Rb2p[i, j, 2, 2]).coeffs[1] = identity(constant_term(cos_λ[i, j])) - TaylorSeries.zero!(tmp1459[i, j]) - (tmp1459[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) - TaylorSeries.zero!(Rb2p[i, j, 3, 2]) - (Rb2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp1459[i, j]) * constant_term(sin_λ[i, j]) - TaylorSeries.zero!(Rb2p[i, j, 1, 3]) - (Rb2p[i, j, 1, 3]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) - TaylorSeries.zero!(Rb2p[i, j, 2, 3]) - (Rb2p[i, j, 2, 3]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(Rb2p[i, j, 3, 3]) - (Rb2p[i, j, 3, 3]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) - TaylorSeries.zero!(tmp1461[i, j, 1, 1]) - (tmp1461[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]) - TaylorSeries.zero!(tmp1462[i, j, 1, 2]) - (tmp1462[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]) - TaylorSeries.zero!(tmp1463[i, j, 1, 1]) - (tmp1463[i, j, 1, 1]).coeffs[1] = constant_term(tmp1461[i, j, 1, 1]) + constant_term(tmp1462[i, j, 1, 2]) - TaylorSeries.zero!(tmp1464[i, j, 1, 3]) - (tmp1464[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]) - TaylorSeries.zero!(Gc2p[i, j, 1, 1]) - (Gc2p[i, j, 1, 1]).coeffs[1] = constant_term(tmp1463[i, j, 1, 1]) + constant_term(tmp1464[i, j, 1, 3]) - TaylorSeries.zero!(tmp1466[i, j, 2, 1]) - (tmp1466[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]) - TaylorSeries.zero!(tmp1467[i, j, 2, 2]) - (tmp1467[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]) - TaylorSeries.zero!(tmp1468[i, j, 2, 1]) - (tmp1468[i, j, 2, 1]).coeffs[1] = constant_term(tmp1466[i, j, 2, 1]) + constant_term(tmp1467[i, j, 2, 2]) - TaylorSeries.zero!(tmp1469[i, j, 2, 3]) - (tmp1469[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]) - TaylorSeries.zero!(Gc2p[i, j, 2, 1]) - (Gc2p[i, j, 2, 1]).coeffs[1] = constant_term(tmp1468[i, j, 2, 1]) + constant_term(tmp1469[i, j, 2, 3]) - TaylorSeries.zero!(tmp1471[i, j, 3, 1]) - (tmp1471[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]) - TaylorSeries.zero!(tmp1472[i, j, 3, 2]) - (tmp1472[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]) - TaylorSeries.zero!(tmp1473[i, j, 3, 1]) - (tmp1473[i, j, 3, 1]).coeffs[1] = constant_term(tmp1471[i, j, 3, 1]) + constant_term(tmp1472[i, j, 3, 2]) - TaylorSeries.zero!(tmp1474[i, j, 3, 3]) - (tmp1474[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]) - TaylorSeries.zero!(Gc2p[i, j, 3, 1]) - (Gc2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp1473[i, j, 3, 1]) + constant_term(tmp1474[i, j, 3, 3]) - TaylorSeries.zero!(tmp1476[i, j, 1, 1]) - (tmp1476[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]) - TaylorSeries.zero!(tmp1477[i, j, 1, 2]) - (tmp1477[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]) - TaylorSeries.zero!(tmp1478[i, j, 1, 1]) - (tmp1478[i, j, 1, 1]).coeffs[1] = constant_term(tmp1476[i, j, 1, 1]) + constant_term(tmp1477[i, j, 1, 2]) - TaylorSeries.zero!(tmp1479[i, j, 1, 3]) - (tmp1479[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]) - TaylorSeries.zero!(Gc2p[i, j, 1, 2]) - (Gc2p[i, j, 1, 2]).coeffs[1] = constant_term(tmp1478[i, j, 1, 1]) + constant_term(tmp1479[i, j, 1, 3]) - TaylorSeries.zero!(tmp1481[i, j, 2, 1]) - (tmp1481[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]) - TaylorSeries.zero!(tmp1482[i, j, 2, 2]) - (tmp1482[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]) - TaylorSeries.zero!(tmp1483[i, j, 2, 1]) - (tmp1483[i, j, 2, 1]).coeffs[1] = constant_term(tmp1481[i, j, 2, 1]) + constant_term(tmp1482[i, j, 2, 2]) - TaylorSeries.zero!(tmp1484[i, j, 2, 3]) - (tmp1484[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]) - TaylorSeries.zero!(Gc2p[i, j, 2, 2]) - (Gc2p[i, j, 2, 2]).coeffs[1] = constant_term(tmp1483[i, j, 2, 1]) + constant_term(tmp1484[i, j, 2, 3]) - TaylorSeries.zero!(tmp1486[i, j, 3, 1]) - (tmp1486[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]) - TaylorSeries.zero!(tmp1487[i, j, 3, 2]) - (tmp1487[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]) - TaylorSeries.zero!(tmp1488[i, j, 3, 1]) - (tmp1488[i, j, 3, 1]).coeffs[1] = constant_term(tmp1486[i, j, 3, 1]) + constant_term(tmp1487[i, j, 3, 2]) - TaylorSeries.zero!(tmp1489[i, j, 3, 3]) - (tmp1489[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]) - TaylorSeries.zero!(Gc2p[i, j, 3, 2]) - (Gc2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp1488[i, j, 3, 1]) + constant_term(tmp1489[i, j, 3, 3]) - TaylorSeries.zero!(tmp1491[i, j, 1, 1]) - (tmp1491[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]) - TaylorSeries.zero!(tmp1492[i, j, 1, 2]) - (tmp1492[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]) - TaylorSeries.zero!(tmp1493[i, j, 1, 1]) - (tmp1493[i, j, 1, 1]).coeffs[1] = constant_term(tmp1491[i, j, 1, 1]) + constant_term(tmp1492[i, j, 1, 2]) - TaylorSeries.zero!(tmp1494[i, j, 1, 3]) - (tmp1494[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]) - TaylorSeries.zero!(Gc2p[i, j, 1, 3]) - (Gc2p[i, j, 1, 3]).coeffs[1] = constant_term(tmp1493[i, j, 1, 1]) + constant_term(tmp1494[i, j, 1, 3]) - TaylorSeries.zero!(tmp1496[i, j, 2, 1]) - (tmp1496[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]) - TaylorSeries.zero!(tmp1497[i, j, 2, 2]) - (tmp1497[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]) - TaylorSeries.zero!(tmp1498[i, j, 2, 1]) - (tmp1498[i, j, 2, 1]).coeffs[1] = constant_term(tmp1496[i, j, 2, 1]) + constant_term(tmp1497[i, j, 2, 2]) - TaylorSeries.zero!(tmp1499[i, j, 2, 3]) - (tmp1499[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]) - TaylorSeries.zero!(Gc2p[i, j, 2, 3]) - (Gc2p[i, j, 2, 3]).coeffs[1] = constant_term(tmp1498[i, j, 2, 1]) + constant_term(tmp1499[i, j, 2, 3]) - TaylorSeries.zero!(tmp1501[i, j, 3, 1]) - (tmp1501[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]) - TaylorSeries.zero!(tmp1502[i, j, 3, 2]) - (tmp1502[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]) - TaylorSeries.zero!(tmp1503[i, j, 3, 1]) - (tmp1503[i, j, 3, 1]).coeffs[1] = constant_term(tmp1501[i, j, 3, 1]) + constant_term(tmp1502[i, j, 3, 2]) - TaylorSeries.zero!(tmp1504[i, j, 3, 3]) - (tmp1504[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]) - TaylorSeries.zero!(Gc2p[i, j, 3, 3]) - (Gc2p[i, j, 3, 3]).coeffs[1] = constant_term(tmp1503[i, j, 3, 1]) + constant_term(tmp1504[i, j, 3, 3]) - TaylorSeries.zero!(tmp1506[i, j, 1, 1]) - (tmp1506[i, j, 1, 1]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]) - TaylorSeries.zero!(tmp1507[i, j, 2, 1]) - (tmp1507[i, j, 2, 1]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]) - TaylorSeries.zero!(tmp1508[i, j, 1, 1]) - (tmp1508[i, j, 1, 1]).coeffs[1] = constant_term(tmp1506[i, j, 1, 1]) + constant_term(tmp1507[i, j, 2, 1]) - TaylorSeries.zero!(tmp1509[i, j, 3, 1]) - (tmp1509[i, j, 3, 1]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]) - TaylorSeries.zero!(F_JCS_x[i, j]) - (F_JCS_x[i, j]).coeffs[1] = constant_term(tmp1508[i, j, 1, 1]) + constant_term(tmp1509[i, j, 3, 1]) - TaylorSeries.zero!(tmp1511[i, j, 1, 2]) - (tmp1511[i, j, 1, 2]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]) - TaylorSeries.zero!(tmp1512[i, j, 2, 2]) - (tmp1512[i, j, 2, 2]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]) - TaylorSeries.zero!(tmp1513[i, j, 1, 2]) - (tmp1513[i, j, 1, 2]).coeffs[1] = constant_term(tmp1511[i, j, 1, 2]) + constant_term(tmp1512[i, j, 2, 2]) - TaylorSeries.zero!(tmp1514[i, j, 3, 2]) - (tmp1514[i, j, 3, 2]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]) - TaylorSeries.zero!(F_JCS_y[i, j]) - (F_JCS_y[i, j]).coeffs[1] = constant_term(tmp1513[i, j, 1, 2]) + constant_term(tmp1514[i, j, 3, 2]) - TaylorSeries.zero!(tmp1516[i, j, 1, 3]) - (tmp1516[i, j, 1, 3]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]) - TaylorSeries.zero!(tmp1517[i, j, 2, 3]) - (tmp1517[i, j, 2, 3]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]) - TaylorSeries.zero!(tmp1518[i, j, 1, 3]) - (tmp1518[i, j, 1, 3]).coeffs[1] = constant_term(tmp1516[i, j, 1, 3]) + constant_term(tmp1517[i, j, 2, 3]) - TaylorSeries.zero!(tmp1519[i, j, 3, 3]) - (tmp1519[i, j, 3, 3]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]) - TaylorSeries.zero!(F_JCS_z[i, j]) - (F_JCS_z[i, j]).coeffs[1] = constant_term(tmp1518[i, j, 1, 3]) + constant_term(tmp1519[i, j, 3, 3]) - end - end - end - end - for j = 1:N_ext - for i = 1:N_ext - if i == j - continue - else - if UJ_interaction[i, j] - TaylorSeries.zero!(tmp1521[i, j]) - (tmp1521[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_x[i, j]) - TaylorSeries.zero!(temp_accX_j[i, j]) - (temp_accX_j[i, j]).coeffs[1] = constant_term(accX[j]) - constant_term(tmp1521[i, j]) - TaylorSeries.zero!(accX[j]) - (accX[j]).coeffs[1] = identity(constant_term(temp_accX_j[i, j])) - TaylorSeries.zero!(tmp1523[i, j]) - (tmp1523[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_y[i, j]) - TaylorSeries.zero!(temp_accY_j[i, j]) - (temp_accY_j[i, j]).coeffs[1] = constant_term(accY[j]) - constant_term(tmp1523[i, j]) - TaylorSeries.zero!(accY[j]) - (accY[j]).coeffs[1] = identity(constant_term(temp_accY_j[i, j])) - TaylorSeries.zero!(tmp1525[i, j]) - (tmp1525[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_z[i, j]) - TaylorSeries.zero!(temp_accZ_j[i, j]) - (temp_accZ_j[i, j]).coeffs[1] = constant_term(accZ[j]) - constant_term(tmp1525[i, j]) - TaylorSeries.zero!(accZ[j]) - (accZ[j]).coeffs[1] = identity(constant_term(temp_accZ_j[i, j])) - TaylorSeries.zero!(tmp1527[i, j]) - (tmp1527[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_x[i, j]) - TaylorSeries.zero!(temp_accX_i[i, j]) - (temp_accX_i[i, j]).coeffs[1] = constant_term(accX[i]) + constant_term(tmp1527[i, j]) - TaylorSeries.zero!(accX[i]) - (accX[i]).coeffs[1] = identity(constant_term(temp_accX_i[i, j])) - TaylorSeries.zero!(tmp1529[i, j]) - (tmp1529[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_y[i, j]) - TaylorSeries.zero!(temp_accY_i[i, j]) - (temp_accY_i[i, j]).coeffs[1] = constant_term(accY[i]) + constant_term(tmp1529[i, j]) - TaylorSeries.zero!(accY[i]) - (accY[i]).coeffs[1] = identity(constant_term(temp_accY_i[i, j])) - TaylorSeries.zero!(tmp1531[i, j]) - (tmp1531[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_z[i, j]) - TaylorSeries.zero!(temp_accZ_i[i, j]) - (temp_accZ_i[i, j]).coeffs[1] = constant_term(accZ[i]) + constant_term(tmp1531[i, j]) - TaylorSeries.zero!(accZ[i]) - (accZ[i]).coeffs[1] = identity(constant_term(temp_accZ_i[i, j])) - if j == mo - TaylorSeries.zero!(tmp1533[i, j]) - (tmp1533[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]) - TaylorSeries.zero!(tmp1534[i, j]) - (tmp1534[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]) - TaylorSeries.zero!(tmp1535[i, j]) - (tmp1535[i, j]).coeffs[1] = constant_term(tmp1533[i, j]) - constant_term(tmp1534[i, j]) - TaylorSeries.zero!(N_MfigM_pmA_x[i]) - (N_MfigM_pmA_x[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1535[i, j]) - TaylorSeries.zero!(tmp1537[i, j]) - (tmp1537[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]) - TaylorSeries.zero!(tmp1538[i, j]) - (tmp1538[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]) - TaylorSeries.zero!(tmp1539[i, j]) - (tmp1539[i, j]).coeffs[1] = constant_term(tmp1537[i, j]) - constant_term(tmp1538[i, j]) - TaylorSeries.zero!(N_MfigM_pmA_y[i]) - (N_MfigM_pmA_y[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1539[i, j]) - TaylorSeries.zero!(tmp1541[i, j]) - (tmp1541[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]) - TaylorSeries.zero!(tmp1542[i, j]) - (tmp1542[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]) - TaylorSeries.zero!(tmp1543[i, j]) - (tmp1543[i, j]).coeffs[1] = constant_term(tmp1541[i, j]) - constant_term(tmp1542[i, j]) - TaylorSeries.zero!(N_MfigM_pmA_z[i]) - (N_MfigM_pmA_z[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1543[i, j]) - TaylorSeries.zero!(temp_N_M_x[i]) - (temp_N_M_x[i]).coeffs[1] = constant_term(N_MfigM[1]) - constant_term(N_MfigM_pmA_x[i]) - TaylorSeries.zero!(N_MfigM[1]) - (N_MfigM[1]).coeffs[1] = identity(constant_term(temp_N_M_x[i])) - TaylorSeries.zero!(temp_N_M_y[i]) - (temp_N_M_y[i]).coeffs[1] = constant_term(N_MfigM[2]) - constant_term(N_MfigM_pmA_y[i]) - TaylorSeries.zero!(N_MfigM[2]) - (N_MfigM[2]).coeffs[1] = identity(constant_term(temp_N_M_y[i])) - TaylorSeries.zero!(temp_N_M_z[i]) - (temp_N_M_z[i]).coeffs[1] = constant_term(N_MfigM[3]) - constant_term(N_MfigM_pmA_z[i]) - TaylorSeries.zero!(N_MfigM[3]) - (N_MfigM[3]).coeffs[1] = identity(constant_term(temp_N_M_z[i])) - end - end - end - end - end - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:658 =# Threads.@threads for j = 1:N - for i = 1:N - if i == j - continue - else - TaylorSeries.zero!(_4ϕj[i, j]) - (_4ϕj[i, j]).coeffs[1] = constant_term(4) * constant_term(newtonianNb_Potential[j]) - TaylorSeries.zero!(ϕi_plus_4ϕj[i, j]) - (ϕi_plus_4ϕj[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]) - TaylorSeries.zero!(_2v2[i, j]) - (_2v2[i, j]).coeffs[1] = constant_term(2) * constant_term(v2[i]) - TaylorSeries.zero!(sj2_plus_2si2[i, j]) - (sj2_plus_2si2[i, j]).coeffs[1] = constant_term(v2[j]) + constant_term(_2v2[i, j]) - TaylorSeries.zero!(tmp1555[i, j]) - (tmp1555[i, j]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, j]) - TaylorSeries.zero!(sj2_plus_2si2_minus_4vivj[i, j]) - (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1] = constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp1555[i, j]) - TaylorSeries.zero!(ϕs_and_vs[i, j]) - (ϕs_and_vs[i, j]).coeffs[1] = constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]) - TaylorSeries.zero!(Xij_t_Ui[i, j]) - (Xij_t_Ui[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(dq[3i - 2]) - TaylorSeries.zero!(Yij_t_Vi[i, j]) - (Yij_t_Vi[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(dq[3i - 1]) - TaylorSeries.zero!(Zij_t_Wi[i, j]) - (Zij_t_Wi[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(dq[3i]) - TaylorSeries.zero!(tmp1561[i, j]) - (tmp1561[i, j]).coeffs[1] = constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]) - TaylorSeries.zero!(Rij_dot_Vi[i, j]) - (Rij_dot_Vi[i, j]).coeffs[1] = constant_term(tmp1561[i, j]) + constant_term(Zij_t_Wi[i, j]) - TaylorSeries.zero!(tmp1564[i, j]) - (tmp1564[i, j]).coeffs[1] = constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(pn1t7[i, j]) - (pn1t7[i, j]).coeffs[1] = constant_term(tmp1564[i, j]) / constant_term(r_p2[i, j]) - TaylorSeries.zero!(tmp1567[i, j]) - (tmp1567[i, j]).coeffs[1] = constant_term(1.5) * constant_term(pn1t7[i, j]) - TaylorSeries.zero!(pn1t2_7[i, j]) - (pn1t2_7[i, j]).coeffs[1] = constant_term(ϕs_and_vs[i, j]) - constant_term(tmp1567[i, j]) - TaylorSeries.zero!(pn1t1_7[i, j]) - (pn1t1_7[i, j]).coeffs[1] = constant_term(c_p2) + constant_term(pn1t2_7[i, j]) - end - end - TaylorSeries.zero!(pntempX[j]) - (pntempX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(pntempY[j]) - (pntempY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(pntempZ[j]) - (pntempZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - end - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:697 =# Threads.@threads for j = 1:N - for i = 1:N - if i == j - continue - else - TaylorSeries.zero!(pNX_t_X[i, j]) - (pNX_t_X[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(X[i, j]) - TaylorSeries.zero!(pNY_t_Y[i, j]) - (pNY_t_Y[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(Y[i, j]) - TaylorSeries.zero!(pNZ_t_Z[i, j]) - (pNZ_t_Z[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(Z[i, j]) - TaylorSeries.zero!(tmp1574[i, j]) - (tmp1574[i, j]).coeffs[1] = constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]) - TaylorSeries.zero!(tmp1575[i, j]) - (tmp1575[i, j]).coeffs[1] = constant_term(tmp1574[i, j]) + constant_term(pNZ_t_Z[i, j]) - TaylorSeries.zero!(tmp1576[i, j]) - (tmp1576[i, j]).coeffs[1] = constant_term(0.5) * constant_term(tmp1575[i, j]) - TaylorSeries.zero!(pn1[i, j]) - (pn1[i, j]).coeffs[1] = constant_term(pn1t1_7[i, j]) + constant_term(tmp1576[i, j]) - TaylorSeries.zero!(X_t_pn1[i, j]) - (X_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]) - TaylorSeries.zero!(Y_t_pn1[i, j]) - (Y_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]) - TaylorSeries.zero!(Z_t_pn1[i, j]) - (Z_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]) - TaylorSeries.zero!(pNX_t_pn3[i, j]) - (pNX_t_pn3[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(pn3[i, j]) - TaylorSeries.zero!(pNY_t_pn3[i, j]) - (pNY_t_pn3[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(pn3[i, j]) - TaylorSeries.zero!(pNZ_t_pn3[i, j]) - (pNZ_t_pn3[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(pn3[i, j]) - TaylorSeries.zero!(tmp1584[i, j]) - (tmp1584[i, j]).coeffs[1] = constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]) - TaylorSeries.zero!(termpnx[i, j]) - (termpnx[i, j]).coeffs[1] = constant_term(X_t_pn1[i, j]) + constant_term(tmp1584[i, j]) - TaylorSeries.zero!(sumpnx[i, j]) - (sumpnx[i, j]).coeffs[1] = constant_term(pntempX[j]) + constant_term(termpnx[i, j]) - TaylorSeries.zero!(pntempX[j]) - (pntempX[j]).coeffs[1] = identity(constant_term(sumpnx[i, j])) - TaylorSeries.zero!(tmp1587[i, j]) - (tmp1587[i, j]).coeffs[1] = constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]) - TaylorSeries.zero!(termpny[i, j]) - (termpny[i, j]).coeffs[1] = constant_term(Y_t_pn1[i, j]) + constant_term(tmp1587[i, j]) - TaylorSeries.zero!(sumpny[i, j]) - (sumpny[i, j]).coeffs[1] = constant_term(pntempY[j]) + constant_term(termpny[i, j]) - TaylorSeries.zero!(pntempY[j]) - (pntempY[j]).coeffs[1] = identity(constant_term(sumpny[i, j])) - TaylorSeries.zero!(tmp1590[i, j]) - (tmp1590[i, j]).coeffs[1] = constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]) - TaylorSeries.zero!(termpnz[i, j]) - (termpnz[i, j]).coeffs[1] = constant_term(Z_t_pn1[i, j]) + constant_term(tmp1590[i, j]) - TaylorSeries.zero!(sumpnz[i, j]) - (sumpnz[i, j]).coeffs[1] = constant_term(pntempZ[j]) + constant_term(termpnz[i, j]) - TaylorSeries.zero!(pntempZ[j]) - (pntempZ[j]).coeffs[1] = identity(constant_term(sumpnz[i, j])) - end - end - TaylorSeries.zero!(postNewtonX[j]) - (postNewtonX[j]).coeffs[1] = constant_term(pntempX[j]) * constant_term(c_m2) - TaylorSeries.zero!(postNewtonY[j]) - (postNewtonY[j]).coeffs[1] = constant_term(pntempY[j]) * constant_term(c_m2) - TaylorSeries.zero!(postNewtonZ[j]) - (postNewtonZ[j]).coeffs[1] = constant_term(pntempZ[j]) * constant_term(c_m2) - end - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:743 =# Threads.@threads for i = 1:N_ext - TaylorSeries.zero!(dq[3 * (N + i) - 2]) - (dq[3 * (N + i) - 2]).coeffs[1] = constant_term(postNewtonX[i]) + constant_term(accX[i]) - TaylorSeries.zero!(dq[3 * (N + i) - 1]) - (dq[3 * (N + i) - 1]).coeffs[1] = constant_term(postNewtonY[i]) + constant_term(accY[i]) - TaylorSeries.zero!(dq[3 * (N + i)]) - (dq[3 * (N + i)]).coeffs[1] = constant_term(postNewtonZ[i]) + constant_term(accZ[i]) - end - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:748 =# Threads.@threads for i = N_ext + 1:N - TaylorSeries.zero!(dq[3 * (N + i) - 2]) - (dq[3 * (N + i) - 2]).coeffs[1] = identity(constant_term(postNewtonX[i])) - TaylorSeries.zero!(dq[3 * (N + i) - 1]) - (dq[3 * (N + i) - 1]).coeffs[1] = identity(constant_term(postNewtonY[i])) - TaylorSeries.zero!(dq[3 * (N + i)]) - (dq[3 * (N + i)]).coeffs[1] = identity(constant_term(postNewtonZ[i])) - end - TaylorSeries.zero!(tmp1599) - tmp1599.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp1600) - tmp1600.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp1601) - tmp1601.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp1602) - tmp1602.coeffs[1] = constant_term(tmp1600) + constant_term(tmp1601) - TaylorSeries.zero!(Iω_x) - Iω_x.coeffs[1] = constant_term(tmp1599) + constant_term(tmp1602) - TaylorSeries.zero!(tmp1604) - tmp1604.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp1605) - tmp1605.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp1606) - tmp1606.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp1607) - tmp1607.coeffs[1] = constant_term(tmp1605) + constant_term(tmp1606) - TaylorSeries.zero!(Iω_y) - Iω_y.coeffs[1] = constant_term(tmp1604) + constant_term(tmp1607) - TaylorSeries.zero!(tmp1609) - tmp1609.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp1610) - tmp1610.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp1611) - tmp1611.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp1612) - tmp1612.coeffs[1] = constant_term(tmp1610) + constant_term(tmp1611) - TaylorSeries.zero!(Iω_z) - Iω_z.coeffs[1] = constant_term(tmp1609) + constant_term(tmp1612) - TaylorSeries.zero!(tmp1614) - tmp1614.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_z) - TaylorSeries.zero!(tmp1615) - tmp1615.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_y) - TaylorSeries.zero!(ωxIω_x) - ωxIω_x.coeffs[1] = constant_term(tmp1614) - constant_term(tmp1615) - TaylorSeries.zero!(tmp1617) - tmp1617.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_x) - TaylorSeries.zero!(tmp1618) - tmp1618.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_z) - TaylorSeries.zero!(ωxIω_y) - ωxIω_y.coeffs[1] = constant_term(tmp1617) - constant_term(tmp1618) - TaylorSeries.zero!(tmp1620) - tmp1620.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_y) - TaylorSeries.zero!(tmp1621) - tmp1621.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_x) - TaylorSeries.zero!(ωxIω_z) - ωxIω_z.coeffs[1] = constant_term(tmp1620) - constant_term(tmp1621) - TaylorSeries.zero!(tmp1623) - tmp1623.coeffs[1] = constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp1624) - tmp1624.coeffs[1] = constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp1625) - tmp1625.coeffs[1] = constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp1626) - tmp1626.coeffs[1] = constant_term(tmp1624) + constant_term(tmp1625) - TaylorSeries.zero!(dIω_x) - dIω_x.coeffs[1] = constant_term(tmp1623) + constant_term(tmp1626) - TaylorSeries.zero!(tmp1628) - tmp1628.coeffs[1] = constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp1629) - tmp1629.coeffs[1] = constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp1630) - tmp1630.coeffs[1] = constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp1631) - tmp1631.coeffs[1] = constant_term(tmp1629) + constant_term(tmp1630) - TaylorSeries.zero!(dIω_y) - dIω_y.coeffs[1] = constant_term(tmp1628) + constant_term(tmp1631) - TaylorSeries.zero!(tmp1633) - tmp1633.coeffs[1] = constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp1634) - tmp1634.coeffs[1] = constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp1635) - tmp1635.coeffs[1] = constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp1636) - tmp1636.coeffs[1] = constant_term(tmp1634) + constant_term(tmp1635) - TaylorSeries.zero!(dIω_z) - dIω_z.coeffs[1] = constant_term(tmp1633) + constant_term(tmp1636) - TaylorSeries.zero!(er_EM_I_1) - er_EM_I_1.coeffs[1] = constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]) - TaylorSeries.zero!(er_EM_I_2) - er_EM_I_2.coeffs[1] = constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]) - TaylorSeries.zero!(er_EM_I_3) - er_EM_I_3.coeffs[1] = constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]) - TaylorSeries.zero!(p_E_I_1) - p_E_I_1.coeffs[1] = identity(constant_term(RotM[3, 1, ea])) - TaylorSeries.zero!(p_E_I_2) - p_E_I_2.coeffs[1] = identity(constant_term(RotM[3, 2, ea])) - TaylorSeries.zero!(p_E_I_3) - p_E_I_3.coeffs[1] = identity(constant_term(RotM[3, 3, ea])) - TaylorSeries.zero!(tmp1641) - tmp1641.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1) - TaylorSeries.zero!(tmp1642) - tmp1642.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2) - TaylorSeries.zero!(tmp1643) - tmp1643.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3) - TaylorSeries.zero!(tmp1644) - tmp1644.coeffs[1] = constant_term(tmp1642) + constant_term(tmp1643) - TaylorSeries.zero!(er_EM_1) - er_EM_1.coeffs[1] = constant_term(tmp1641) + constant_term(tmp1644) - TaylorSeries.zero!(tmp1646) - tmp1646.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1) - TaylorSeries.zero!(tmp1647) - tmp1647.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2) - TaylorSeries.zero!(tmp1648) - tmp1648.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3) - TaylorSeries.zero!(tmp1649) - tmp1649.coeffs[1] = constant_term(tmp1647) + constant_term(tmp1648) - TaylorSeries.zero!(er_EM_2) - er_EM_2.coeffs[1] = constant_term(tmp1646) + constant_term(tmp1649) - TaylorSeries.zero!(tmp1651) - tmp1651.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1) - TaylorSeries.zero!(tmp1652) - tmp1652.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2) - TaylorSeries.zero!(tmp1653) - tmp1653.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3) - TaylorSeries.zero!(tmp1654) - tmp1654.coeffs[1] = constant_term(tmp1652) + constant_term(tmp1653) - TaylorSeries.zero!(er_EM_3) - er_EM_3.coeffs[1] = constant_term(tmp1651) + constant_term(tmp1654) - TaylorSeries.zero!(tmp1656) - tmp1656.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1) - TaylorSeries.zero!(tmp1657) - tmp1657.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2) - TaylorSeries.zero!(tmp1658) - tmp1658.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3) - TaylorSeries.zero!(tmp1659) - tmp1659.coeffs[1] = constant_term(tmp1657) + constant_term(tmp1658) - TaylorSeries.zero!(p_E_1) - p_E_1.coeffs[1] = constant_term(tmp1656) + constant_term(tmp1659) - TaylorSeries.zero!(tmp1661) - tmp1661.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1) - TaylorSeries.zero!(tmp1662) - tmp1662.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2) - TaylorSeries.zero!(tmp1663) - tmp1663.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3) - TaylorSeries.zero!(tmp1664) - tmp1664.coeffs[1] = constant_term(tmp1662) + constant_term(tmp1663) - TaylorSeries.zero!(p_E_2) - p_E_2.coeffs[1] = constant_term(tmp1661) + constant_term(tmp1664) - TaylorSeries.zero!(tmp1666) - tmp1666.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1) - TaylorSeries.zero!(tmp1667) - tmp1667.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2) - TaylorSeries.zero!(tmp1668) - tmp1668.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3) - TaylorSeries.zero!(tmp1669) - tmp1669.coeffs[1] = constant_term(tmp1667) + constant_term(tmp1668) - TaylorSeries.zero!(p_E_3) - p_E_3.coeffs[1] = constant_term(tmp1666) + constant_term(tmp1669) - TaylorSeries.zero!(tmp1671) - tmp1671.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(er_EM_1) - TaylorSeries.zero!(tmp1672) - tmp1672.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(er_EM_2) - TaylorSeries.zero!(tmp1673) - tmp1673.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(er_EM_3) - TaylorSeries.zero!(tmp1674) - tmp1674.coeffs[1] = constant_term(tmp1672) + constant_term(tmp1673) - TaylorSeries.zero!(I_er_EM_1) - I_er_EM_1.coeffs[1] = constant_term(tmp1671) + constant_term(tmp1674) - TaylorSeries.zero!(tmp1676) - tmp1676.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(er_EM_1) - TaylorSeries.zero!(tmp1677) - tmp1677.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(er_EM_2) - TaylorSeries.zero!(tmp1678) - tmp1678.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(er_EM_3) - TaylorSeries.zero!(tmp1679) - tmp1679.coeffs[1] = constant_term(tmp1677) + constant_term(tmp1678) - TaylorSeries.zero!(I_er_EM_2) - I_er_EM_2.coeffs[1] = constant_term(tmp1676) + constant_term(tmp1679) - TaylorSeries.zero!(tmp1681) - tmp1681.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(er_EM_1) - TaylorSeries.zero!(tmp1682) - tmp1682.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(er_EM_2) - TaylorSeries.zero!(tmp1683) - tmp1683.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(er_EM_3) - TaylorSeries.zero!(tmp1684) - tmp1684.coeffs[1] = constant_term(tmp1682) + constant_term(tmp1683) - TaylorSeries.zero!(I_er_EM_3) - I_er_EM_3.coeffs[1] = constant_term(tmp1681) + constant_term(tmp1684) - TaylorSeries.zero!(tmp1686) - tmp1686.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(p_E_1) - TaylorSeries.zero!(tmp1687) - tmp1687.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(p_E_2) - TaylorSeries.zero!(tmp1688) - tmp1688.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(p_E_3) - TaylorSeries.zero!(tmp1689) - tmp1689.coeffs[1] = constant_term(tmp1687) + constant_term(tmp1688) - TaylorSeries.zero!(I_p_E_1) - I_p_E_1.coeffs[1] = constant_term(tmp1686) + constant_term(tmp1689) - TaylorSeries.zero!(tmp1691) - tmp1691.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(p_E_1) - TaylorSeries.zero!(tmp1692) - tmp1692.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(p_E_2) - TaylorSeries.zero!(tmp1693) - tmp1693.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(p_E_3) - TaylorSeries.zero!(tmp1694) - tmp1694.coeffs[1] = constant_term(tmp1692) + constant_term(tmp1693) - TaylorSeries.zero!(I_p_E_2) - I_p_E_2.coeffs[1] = constant_term(tmp1691) + constant_term(tmp1694) - TaylorSeries.zero!(tmp1696) - tmp1696.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(p_E_1) - TaylorSeries.zero!(tmp1697) - tmp1697.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(p_E_2) - TaylorSeries.zero!(tmp1698) - tmp1698.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(p_E_3) - TaylorSeries.zero!(tmp1699) - tmp1699.coeffs[1] = constant_term(tmp1697) + constant_term(tmp1698) - TaylorSeries.zero!(I_p_E_3) - I_p_E_3.coeffs[1] = constant_term(tmp1696) + constant_term(tmp1699) - TaylorSeries.zero!(tmp1701) - tmp1701.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_3) - TaylorSeries.zero!(tmp1702) - tmp1702.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_2) - TaylorSeries.zero!(er_EM_cross_I_er_EM_1) - er_EM_cross_I_er_EM_1.coeffs[1] = constant_term(tmp1701) - constant_term(tmp1702) - TaylorSeries.zero!(tmp1704) - tmp1704.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_1) - TaylorSeries.zero!(tmp1705) - tmp1705.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_3) - TaylorSeries.zero!(er_EM_cross_I_er_EM_2) - er_EM_cross_I_er_EM_2.coeffs[1] = constant_term(tmp1704) - constant_term(tmp1705) - TaylorSeries.zero!(tmp1707) - tmp1707.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_2) - TaylorSeries.zero!(tmp1708) - tmp1708.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_1) - TaylorSeries.zero!(er_EM_cross_I_er_EM_3) - er_EM_cross_I_er_EM_3.coeffs[1] = constant_term(tmp1707) - constant_term(tmp1708) - TaylorSeries.zero!(tmp1710) - tmp1710.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_3) - TaylorSeries.zero!(tmp1711) - tmp1711.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_2) - TaylorSeries.zero!(er_EM_cross_I_p_E_1) - er_EM_cross_I_p_E_1.coeffs[1] = constant_term(tmp1710) - constant_term(tmp1711) - TaylorSeries.zero!(tmp1713) - tmp1713.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_1) - TaylorSeries.zero!(tmp1714) - tmp1714.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_3) - TaylorSeries.zero!(er_EM_cross_I_p_E_2) - er_EM_cross_I_p_E_2.coeffs[1] = constant_term(tmp1713) - constant_term(tmp1714) - TaylorSeries.zero!(tmp1716) - tmp1716.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_2) - TaylorSeries.zero!(tmp1717) - tmp1717.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_1) - TaylorSeries.zero!(er_EM_cross_I_p_E_3) - er_EM_cross_I_p_E_3.coeffs[1] = constant_term(tmp1716) - constant_term(tmp1717) - TaylorSeries.zero!(tmp1719) - tmp1719.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_3) - TaylorSeries.zero!(tmp1720) - tmp1720.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_2) - TaylorSeries.zero!(p_E_cross_I_er_EM_1) - p_E_cross_I_er_EM_1.coeffs[1] = constant_term(tmp1719) - constant_term(tmp1720) - TaylorSeries.zero!(tmp1722) - tmp1722.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_1) - TaylorSeries.zero!(tmp1723) - tmp1723.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_3) - TaylorSeries.zero!(p_E_cross_I_er_EM_2) - p_E_cross_I_er_EM_2.coeffs[1] = constant_term(tmp1722) - constant_term(tmp1723) - TaylorSeries.zero!(tmp1725) - tmp1725.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_2) - TaylorSeries.zero!(tmp1726) - tmp1726.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_1) - TaylorSeries.zero!(p_E_cross_I_er_EM_3) - p_E_cross_I_er_EM_3.coeffs[1] = constant_term(tmp1725) - constant_term(tmp1726) - TaylorSeries.zero!(tmp1728) - tmp1728.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_3) - TaylorSeries.zero!(tmp1729) - tmp1729.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_2) - TaylorSeries.zero!(p_E_cross_I_p_E_1) - p_E_cross_I_p_E_1.coeffs[1] = constant_term(tmp1728) - constant_term(tmp1729) - TaylorSeries.zero!(tmp1731) - tmp1731.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_1) - TaylorSeries.zero!(tmp1732) - tmp1732.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_3) - TaylorSeries.zero!(p_E_cross_I_p_E_2) - p_E_cross_I_p_E_2.coeffs[1] = constant_term(tmp1731) - constant_term(tmp1732) - TaylorSeries.zero!(tmp1734) - tmp1734.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_2) - TaylorSeries.zero!(tmp1735) - tmp1735.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_1) - TaylorSeries.zero!(p_E_cross_I_p_E_3) - p_E_cross_I_p_E_3.coeffs[1] = constant_term(tmp1734) - constant_term(tmp1735) - TaylorSeries.zero!(tmp1739) - tmp1739.coeffs[1] = constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp1740) - tmp1740.coeffs[1] = constant_term(7) * constant_term(tmp1739) - TaylorSeries.zero!(one_minus_7sin2ϕEM) - one_minus_7sin2ϕEM.coeffs[1] = constant_term(one_t) - constant_term(tmp1740) - TaylorSeries.zero!(two_sinϕEM) - two_sinϕEM.coeffs[1] = constant_term(2) * constant_term(sin_ϕ[ea, mo]) - TaylorSeries.zero!(tmp1745) - tmp1745.coeffs[1] = constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)) - TaylorSeries.zero!(N_MfigM_figE_factor_div_rEMp5) - N_MfigM_figE_factor_div_rEMp5.coeffs[1] = constant_term(N_MfigM_figE_factor) / constant_term(tmp1745) - TaylorSeries.zero!(tmp1747) - tmp1747.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1) - TaylorSeries.zero!(tmp1748) - tmp1748.coeffs[1] = constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1) - TaylorSeries.zero!(tmp1749) - tmp1749.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1748) - TaylorSeries.zero!(tmp1750) - tmp1750.coeffs[1] = constant_term(tmp1747) + constant_term(tmp1749) - TaylorSeries.zero!(tmp1752) - tmp1752.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_1) - TaylorSeries.zero!(tmp1753) - tmp1753.coeffs[1] = constant_term(tmp1750) - constant_term(tmp1752) - TaylorSeries.zero!(N_MfigM_figE_1) - N_MfigM_figE_1.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1753) - TaylorSeries.zero!(tmp1755) - tmp1755.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2) - TaylorSeries.zero!(tmp1756) - tmp1756.coeffs[1] = constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2) - TaylorSeries.zero!(tmp1757) - tmp1757.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1756) - TaylorSeries.zero!(tmp1758) - tmp1758.coeffs[1] = constant_term(tmp1755) + constant_term(tmp1757) - TaylorSeries.zero!(tmp1760) - tmp1760.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_2) - TaylorSeries.zero!(tmp1761) - tmp1761.coeffs[1] = constant_term(tmp1758) - constant_term(tmp1760) - TaylorSeries.zero!(N_MfigM_figE_2) - N_MfigM_figE_2.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1761) - TaylorSeries.zero!(tmp1763) - tmp1763.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3) - TaylorSeries.zero!(tmp1764) - tmp1764.coeffs[1] = constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3) - TaylorSeries.zero!(tmp1765) - tmp1765.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1764) - TaylorSeries.zero!(tmp1766) - tmp1766.coeffs[1] = constant_term(tmp1763) + constant_term(tmp1765) - TaylorSeries.zero!(tmp1768) - tmp1768.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_3) - TaylorSeries.zero!(tmp1769) - tmp1769.coeffs[1] = constant_term(tmp1766) - constant_term(tmp1768) - TaylorSeries.zero!(N_MfigM_figE_3) - N_MfigM_figE_3.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1769) - TaylorSeries.zero!(tmp1771) - tmp1771.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]) - TaylorSeries.zero!(tmp1772) - tmp1772.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]) - TaylorSeries.zero!(tmp1773) - tmp1773.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]) - TaylorSeries.zero!(tmp1774) - tmp1774.coeffs[1] = constant_term(tmp1772) + constant_term(tmp1773) - TaylorSeries.zero!(N_1_LMF) - N_1_LMF.coeffs[1] = constant_term(tmp1771) + constant_term(tmp1774) - TaylorSeries.zero!(tmp1776) - tmp1776.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]) - TaylorSeries.zero!(tmp1777) - tmp1777.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]) - TaylorSeries.zero!(tmp1778) - tmp1778.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]) - TaylorSeries.zero!(tmp1779) - tmp1779.coeffs[1] = constant_term(tmp1777) + constant_term(tmp1778) - TaylorSeries.zero!(N_2_LMF) - N_2_LMF.coeffs[1] = constant_term(tmp1776) + constant_term(tmp1779) - TaylorSeries.zero!(tmp1781) - tmp1781.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]) - TaylorSeries.zero!(tmp1782) - tmp1782.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]) - TaylorSeries.zero!(tmp1783) - tmp1783.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]) - TaylorSeries.zero!(tmp1784) - tmp1784.coeffs[1] = constant_term(tmp1782) + constant_term(tmp1783) - TaylorSeries.zero!(N_3_LMF) - N_3_LMF.coeffs[1] = constant_term(tmp1781) + constant_term(tmp1784) - TaylorSeries.zero!(tmp1786) - tmp1786.coeffs[1] = constant_term(q[6N + 10]) - constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp1787) - tmp1787.coeffs[1] = constant_term(k_ν) * constant_term(tmp1786) - TaylorSeries.zero!(tmp1788) - tmp1788.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp1789) - tmp1789.coeffs[1] = constant_term(tmp1788) * constant_term(q[6N + 11]) - TaylorSeries.zero!(N_cmb_1) - N_cmb_1.coeffs[1] = constant_term(tmp1787) - constant_term(tmp1789) - TaylorSeries.zero!(tmp1791) - tmp1791.coeffs[1] = constant_term(q[6N + 11]) - constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp1792) - tmp1792.coeffs[1] = constant_term(k_ν) * constant_term(tmp1791) - TaylorSeries.zero!(tmp1793) - tmp1793.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp1794) - tmp1794.coeffs[1] = constant_term(tmp1793) * constant_term(q[6N + 10]) - TaylorSeries.zero!(N_cmb_2) - N_cmb_2.coeffs[1] = constant_term(tmp1792) + constant_term(tmp1794) - TaylorSeries.zero!(tmp1796) - tmp1796.coeffs[1] = constant_term(q[6N + 12]) - constant_term(q[6N + 6]) - TaylorSeries.zero!(N_cmb_3) - N_cmb_3.coeffs[1] = constant_term(k_ν) * constant_term(tmp1796) - TaylorSeries.zero!(tmp1798) - tmp1798.coeffs[1] = constant_term(μ[mo]) * constant_term(N_1_LMF) - TaylorSeries.zero!(tmp1799) - tmp1799.coeffs[1] = constant_term(N_MfigM_figE_1) + constant_term(tmp1798) - TaylorSeries.zero!(tmp1800) - tmp1800.coeffs[1] = constant_term(tmp1799) + constant_term(N_cmb_1) - TaylorSeries.zero!(tmp1801) - tmp1801.coeffs[1] = constant_term(dIω_x) + constant_term(ωxIω_x) - TaylorSeries.zero!(I_dω_1) - I_dω_1.coeffs[1] = constant_term(tmp1800) - constant_term(tmp1801) - TaylorSeries.zero!(tmp1803) - tmp1803.coeffs[1] = constant_term(μ[mo]) * constant_term(N_2_LMF) - TaylorSeries.zero!(tmp1804) - tmp1804.coeffs[1] = constant_term(N_MfigM_figE_2) + constant_term(tmp1803) - TaylorSeries.zero!(tmp1805) - tmp1805.coeffs[1] = constant_term(tmp1804) + constant_term(N_cmb_2) - TaylorSeries.zero!(tmp1806) - tmp1806.coeffs[1] = constant_term(dIω_y) + constant_term(ωxIω_y) - TaylorSeries.zero!(I_dω_2) - I_dω_2.coeffs[1] = constant_term(tmp1805) - constant_term(tmp1806) - TaylorSeries.zero!(tmp1808) - tmp1808.coeffs[1] = constant_term(μ[mo]) * constant_term(N_3_LMF) - TaylorSeries.zero!(tmp1809) - tmp1809.coeffs[1] = constant_term(N_MfigM_figE_3) + constant_term(tmp1808) - TaylorSeries.zero!(tmp1810) - tmp1810.coeffs[1] = constant_term(tmp1809) + constant_term(N_cmb_3) - TaylorSeries.zero!(tmp1811) - tmp1811.coeffs[1] = constant_term(dIω_z) + constant_term(ωxIω_z) - TaylorSeries.zero!(I_dω_3) - I_dω_3.coeffs[1] = constant_term(tmp1810) - constant_term(tmp1811) - TaylorSeries.zero!(Ic_ωc_1) - Ic_ωc_1.coeffs[1] = constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]) - TaylorSeries.zero!(Ic_ωc_2) - Ic_ωc_2.coeffs[1] = constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]) - TaylorSeries.zero!(Ic_ωc_3) - Ic_ωc_3.coeffs[1] = constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp1816) - tmp1816.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_2) - TaylorSeries.zero!(tmp1817) - tmp1817.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_3) - TaylorSeries.zero!(m_ωm_x_Icωc_1) - m_ωm_x_Icωc_1.coeffs[1] = constant_term(tmp1816) - constant_term(tmp1817) - TaylorSeries.zero!(tmp1819) - tmp1819.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_3) - TaylorSeries.zero!(tmp1820) - tmp1820.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_1) - TaylorSeries.zero!(m_ωm_x_Icωc_2) - m_ωm_x_Icωc_2.coeffs[1] = constant_term(tmp1819) - constant_term(tmp1820) - TaylorSeries.zero!(tmp1822) - tmp1822.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_1) - TaylorSeries.zero!(tmp1823) - tmp1823.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_2) - TaylorSeries.zero!(m_ωm_x_Icωc_3) - m_ωm_x_Icωc_3.coeffs[1] = constant_term(tmp1822) - constant_term(tmp1823) - TaylorSeries.zero!(Ic_dωc_1) - Ic_dωc_1.coeffs[1] = constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1) - TaylorSeries.zero!(Ic_dωc_2) - Ic_dωc_2.coeffs[1] = constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2) - TaylorSeries.zero!(Ic_dωc_3) - Ic_dωc_3.coeffs[1] = constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3) - TaylorSeries.zero!(tmp1828) - tmp1828.coeffs[1] = sin(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp1908) - tmp1908.coeffs[1] = cos(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp1829) - tmp1829.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp1828) - TaylorSeries.zero!(tmp1830) - tmp1830.coeffs[1] = cos(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp1909) - tmp1909.coeffs[1] = sin(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp1831) - tmp1831.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp1830) - TaylorSeries.zero!(tmp1832) - tmp1832.coeffs[1] = constant_term(tmp1829) + constant_term(tmp1831) - TaylorSeries.zero!(tmp1833) - tmp1833.coeffs[1] = sin(constant_term(q[6N + 2])) - TaylorSeries.zero!(tmp1910) - tmp1910.coeffs[1] = cos(constant_term(q[6N + 2])) - TaylorSeries.zero!(dq[6N + 1]) - (dq[6N + 1]).coeffs[1] = constant_term(tmp1832) / constant_term(tmp1833) - TaylorSeries.zero!(tmp1835) - tmp1835.coeffs[1] = cos(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp1911) - tmp1911.coeffs[1] = sin(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp1836) - tmp1836.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp1835) - TaylorSeries.zero!(tmp1837) - tmp1837.coeffs[1] = sin(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp1912) - tmp1912.coeffs[1] = cos(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp1838) - tmp1838.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp1837) - TaylorSeries.zero!(dq[6N + 2]) - (dq[6N + 2]).coeffs[1] = constant_term(tmp1836) - constant_term(tmp1838) - TaylorSeries.zero!(tmp1840) - tmp1840.coeffs[1] = cos(constant_term(q[6N + 2])) - TaylorSeries.zero!(tmp1913) - tmp1913.coeffs[1] = sin(constant_term(q[6N + 2])) - TaylorSeries.zero!(tmp1841) - tmp1841.coeffs[1] = constant_term(dq[6N + 1]) * constant_term(tmp1840) - TaylorSeries.zero!(dq[6N + 3]) - (dq[6N + 3]).coeffs[1] = constant_term(q[6N + 6]) - constant_term(tmp1841) - TaylorSeries.zero!(tmp1843) - tmp1843.coeffs[1] = constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1) - TaylorSeries.zero!(tmp1844) - tmp1844.coeffs[1] = constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2) - TaylorSeries.zero!(tmp1845) - tmp1845.coeffs[1] = constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3) - TaylorSeries.zero!(tmp1846) - tmp1846.coeffs[1] = constant_term(tmp1844) + constant_term(tmp1845) - TaylorSeries.zero!(dq[6N + 4]) - (dq[6N + 4]).coeffs[1] = constant_term(tmp1843) + constant_term(tmp1846) - TaylorSeries.zero!(tmp1848) - tmp1848.coeffs[1] = constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1) - TaylorSeries.zero!(tmp1849) - tmp1849.coeffs[1] = constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2) - TaylorSeries.zero!(tmp1850) - tmp1850.coeffs[1] = constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3) - TaylorSeries.zero!(tmp1851) - tmp1851.coeffs[1] = constant_term(tmp1849) + constant_term(tmp1850) - TaylorSeries.zero!(dq[6N + 5]) - (dq[6N + 5]).coeffs[1] = constant_term(tmp1848) + constant_term(tmp1851) - TaylorSeries.zero!(tmp1853) - tmp1853.coeffs[1] = constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1) - TaylorSeries.zero!(tmp1854) - tmp1854.coeffs[1] = constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2) - TaylorSeries.zero!(tmp1855) - tmp1855.coeffs[1] = constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3) - TaylorSeries.zero!(tmp1856) - tmp1856.coeffs[1] = constant_term(tmp1854) + constant_term(tmp1855) - TaylorSeries.zero!(dq[6N + 6]) - (dq[6N + 6]).coeffs[1] = constant_term(tmp1853) + constant_term(tmp1856) - TaylorSeries.zero!(tmp1858) - tmp1858.coeffs[1] = sin(constant_term(q[6N + 8])) - TaylorSeries.zero!(tmp1914) - tmp1914.coeffs[1] = cos(constant_term(q[6N + 8])) - TaylorSeries.zero!(tmp1859) - tmp1859.coeffs[1] = constant_term(ω_c_CE_2) / constant_term(tmp1858) - TaylorSeries.zero!(dq[6N + 9]) - (dq[6N + 9]).coeffs[1] = -(constant_term(tmp1859)) - TaylorSeries.zero!(tmp1861) - tmp1861.coeffs[1] = cos(constant_term(q[6N + 8])) - TaylorSeries.zero!(tmp1915) - tmp1915.coeffs[1] = sin(constant_term(q[6N + 8])) - TaylorSeries.zero!(tmp1862) - tmp1862.coeffs[1] = constant_term(dq[6N + 9]) * constant_term(tmp1861) - TaylorSeries.zero!(dq[6N + 7]) - (dq[6N + 7]).coeffs[1] = constant_term(ω_c_CE_3) - constant_term(tmp1862) - TaylorSeries.zero!(dq[6N + 8]) - (dq[6N + 8]).coeffs[1] = identity(constant_term(ω_c_CE_1)) - TaylorSeries.zero!(dq[6N + 10]) - (dq[6N + 10]).coeffs[1] = constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1) - TaylorSeries.zero!(dq[6N + 11]) - (dq[6N + 11]).coeffs[1] = constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2) - TaylorSeries.zero!(dq[6N + 12]) - (dq[6N + 12]).coeffs[1] = constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3) - TaylorSeries.zero!(dq[6N + 13]) - (dq[6N + 13]).coeffs[1] = identity(constant_term(zero_q_1)) - for __idx = eachindex(q) - (q[__idx]).coeffs[2] = (dq[__idx]).coeffs[1] - end - for ord = 1:order - 1 + for ord = 0:order - 1 ordnext = ord + 1 TaylorSeries.identity!(N_MfigM[1], zero_q_1, ord) TaylorSeries.identity!(N_MfigM[2], zero_q_1, ord) @@ -4470,14 +2830,14 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(WW[i, j], dq[3i], dq[3j], ord) TaylorSeries.add!(tmp1259[i, j], UU[i, j], VV[i, j], ord) TaylorSeries.add!(vi_dot_vj[i, j], tmp1259[i, j], WW[i, j], ord) - TaylorSeries.pow!(tmp1262[i, j], X[i, j], 2, ord) - TaylorSeries.pow!(tmp1264[i, j], Y[i, j], 2, ord) + TaylorSeries.pow!(tmp1262[i, j], X[i, j], tmp1908[i, j], 2, ord) + TaylorSeries.pow!(tmp1264[i, j], Y[i, j], tmp1909[i, j], 2, ord) TaylorSeries.add!(tmp1265[i, j], tmp1262[i, j], tmp1264[i, j], ord) - TaylorSeries.pow!(tmp1267[i, j], Z[i, j], 2, ord) + TaylorSeries.pow!(tmp1267[i, j], Z[i, j], tmp1910[i, j], 2, ord) TaylorSeries.add!(r_p2[i, j], tmp1265[i, j], tmp1267[i, j], ord) TaylorSeries.sqrt!(r_p1d2[i, j], r_p2[i, j], ord) - TaylorSeries.pow!(r_p3d2[i, j], r_p2[i, j], 1.5, ord) - TaylorSeries.pow!(r_p7d2[i, j], r_p2[i, j], 3.5, ord) + TaylorSeries.pow!(r_p3d2[i, j], r_p2[i, j], tmp1911[i, j], 1.5, ord) + TaylorSeries.pow!(r_p7d2[i, j], r_p2[i, j], tmp1912[i, j], 3.5, ord) TaylorSeries.div!(newtonianCoeff[i, j], μ[i], r_p3d2[i, j], ord) TaylorSeries.add!(tmp1275[i, j], pn2x[i, j], pn2y[i, j], ord) TaylorSeries.add!(tmp1276[i, j], tmp1275[i, j], pn2z[i, j], ord) @@ -4503,10 +2863,10 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.identity!(newtonianNb_Potential[j], temp_004[i, j], ord) end end - TaylorSeries.pow!(tmp1295[3j - 2], dq[3j - 2], 2, ord) - TaylorSeries.pow!(tmp1297[3j - 1], dq[3j - 1], 2, ord) + TaylorSeries.pow!(tmp1295[3j - 2], dq[3j - 2], tmp1913[3j - 2], 2, ord) + TaylorSeries.pow!(tmp1297[3j - 1], dq[3j - 1], tmp1914[3j - 1], 2, ord) TaylorSeries.add!(tmp1298[3j - 2], tmp1295[3j - 2], tmp1297[3j - 1], ord) - TaylorSeries.pow!(tmp1300[3j], dq[3j], 2, ord) + TaylorSeries.pow!(tmp1300[3j], dq[3j], tmp1915[3j], 2, ord) TaylorSeries.add!(v2[j], tmp1298[3j - 2], tmp1300[3j], ord) end TaylorSeries.add!(tmp1302, I_M_t[1, 1], I_M_t[2, 2], ord) @@ -4546,8 +2906,8 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.add!(tmp1332[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) TaylorSeries.add!(Z_bf[i, j], tmp1332[i, j], Z_bf_3[i, j], ord) TaylorSeries.div!(sin_ϕ[i, j], Z_bf[i, j], r_p1d2[i, j], ord) - TaylorSeries.pow!(tmp1336[i, j], X_bf[i, j], 2, ord) - TaylorSeries.pow!(tmp1338[i, j], Y_bf[i, j], 2, ord) + TaylorSeries.pow!(tmp1336[i, j], X_bf[i, j], tmp1916[i, j], 2, ord) + TaylorSeries.pow!(tmp1338[i, j], Y_bf[i, j], tmp1917[i, j], 2, ord) TaylorSeries.add!(tmp1339[i, j], tmp1336[i, j], tmp1338[i, j], ord) TaylorSeries.sqrt!(r_xy[i, j], tmp1339[i, j], ord) TaylorSeries.div!(cos_ϕ[i, j], r_xy[i, j], r_p1d2[i, j], ord) @@ -4565,9 +2925,9 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(tmp1348[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) TaylorSeries.mul!(tmp1349[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) TaylorSeries.add!(dP_n[i, j, n + 1], tmp1348[i, j, n], tmp1349[i, j, n], ord) - TaylorSeries.pow!(temp_rn[i, j, n], r_p1d2[i, j], fact5_jsem[n], ord) + TaylorSeries.pow!(temp_rn[i, j, n], r_p1d2[i, j], tmp1918[i, j], fact5_jsem[n], ord) end - TaylorSeries.pow!(r_p4[i, j], r_p2[i, j], 2, ord) + TaylorSeries.pow!(r_p4[i, j], r_p2[i, j], tmp1919[i, j], 2, ord) TaylorSeries.mul!(tmp1354[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) TaylorSeries.mul!(tmp1355[i, j, 3], tmp1354[i, j, 3], J2_t[j], ord) TaylorSeries.div!(F_J_ξ[i, j], tmp1355[i, j, 3], r_p4[i, j], ord) @@ -4842,7 +3202,7 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(Zij_t_Wi[i, j], Z[i, j], dq[3i], ord) TaylorSeries.add!(tmp1561[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) TaylorSeries.add!(Rij_dot_Vi[i, j], tmp1561[i, j], Zij_t_Wi[i, j], ord) - TaylorSeries.pow!(tmp1564[i, j], Rij_dot_Vi[i, j], 2, ord) + TaylorSeries.pow!(tmp1564[i, j], Rij_dot_Vi[i, j], tmp1920[i, j], 2, ord) TaylorSeries.div!(pn1t7[i, j], tmp1564[i, j], r_p2[i, j], ord) TaylorSeries.mul!(tmp1567[i, j], 1.5, pn1t7[i, j], ord) TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp1567[i, j], ord) @@ -5040,11 +3400,11 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(tmp1734, p_E_1, I_p_E_2, ord) TaylorSeries.mul!(tmp1735, p_E_2, I_p_E_1, ord) TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp1734, tmp1735, ord) - TaylorSeries.pow!(tmp1739, sin_ϕ[ea, mo], 2, ord) + TaylorSeries.pow!(tmp1739, sin_ϕ[ea, mo], tmp1921, 2, ord) TaylorSeries.mul!(tmp1740, 7, tmp1739, ord) TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp1740, ord) TaylorSeries.mul!(two_sinϕEM, 2, sin_ϕ[ea, mo], ord) - TaylorSeries.pow!(tmp1745, r_p1d2[mo, ea], 5, ord) + TaylorSeries.pow!(tmp1745, r_p1d2[mo, ea], tmp1922, 5, ord) TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp1745, ord) TaylorSeries.mul!(tmp1747, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) TaylorSeries.add!(tmp1748, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) @@ -5124,19 +3484,19 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.subst!(Ic_dωc_1, m_ωm_x_Icωc_1, N_cmb_1, ord) TaylorSeries.subst!(Ic_dωc_2, m_ωm_x_Icωc_2, N_cmb_2, ord) TaylorSeries.subst!(Ic_dωc_3, m_ωm_x_Icωc_3, N_cmb_3, ord) - TaylorSeries.sincos!(tmp1828, tmp1908, q[6N + 3], ord) + TaylorSeries.sincos!(tmp1828, tmp1923, q[6N + 3], ord) TaylorSeries.mul!(tmp1829, q[6N + 4], tmp1828, ord) - TaylorSeries.sincos!(tmp1909, tmp1830, q[6N + 3], ord) + TaylorSeries.sincos!(tmp1924, tmp1830, q[6N + 3], ord) TaylorSeries.mul!(tmp1831, q[6N + 5], tmp1830, ord) TaylorSeries.add!(tmp1832, tmp1829, tmp1831, ord) - TaylorSeries.sincos!(tmp1833, tmp1910, q[6N + 2], ord) + TaylorSeries.sincos!(tmp1833, tmp1925, q[6N + 2], ord) TaylorSeries.div!(dq[6N + 1], tmp1832, tmp1833, ord) - TaylorSeries.sincos!(tmp1911, tmp1835, q[6N + 3], ord) + TaylorSeries.sincos!(tmp1926, tmp1835, q[6N + 3], ord) TaylorSeries.mul!(tmp1836, q[6N + 4], tmp1835, ord) - TaylorSeries.sincos!(tmp1837, tmp1912, q[6N + 3], ord) + TaylorSeries.sincos!(tmp1837, tmp1927, q[6N + 3], ord) TaylorSeries.mul!(tmp1838, q[6N + 5], tmp1837, ord) TaylorSeries.subst!(dq[6N + 2], tmp1836, tmp1838, ord) - TaylorSeries.sincos!(tmp1913, tmp1840, q[6N + 2], ord) + TaylorSeries.sincos!(tmp1928, tmp1840, q[6N + 2], ord) TaylorSeries.mul!(tmp1841, dq[6N + 1], tmp1840, ord) TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp1841, ord) TaylorSeries.mul!(tmp1843, inv_I_m_t[1, 1], I_dω_1, ord) @@ -5154,10 +3514,10 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(tmp1855, inv_I_m_t[3, 3], I_dω_3, ord) TaylorSeries.add!(tmp1856, tmp1854, tmp1855, ord) TaylorSeries.add!(dq[6N + 6], tmp1853, tmp1856, ord) - TaylorSeries.sincos!(tmp1858, tmp1914, q[6N + 8], ord) + TaylorSeries.sincos!(tmp1858, tmp1929, q[6N + 8], ord) TaylorSeries.div!(tmp1859, ω_c_CE_2, tmp1858, ord) TaylorSeries.subst!(dq[6N + 9], tmp1859, ord) - TaylorSeries.sincos!(tmp1915, tmp1861, q[6N + 8], ord) + TaylorSeries.sincos!(tmp1930, tmp1861, q[6N + 8], ord) TaylorSeries.mul!(tmp1862, dq[6N + 9], tmp1861, ord) TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp1862, ord) TaylorSeries.identity!(dq[6N + 8], ω_c_CE_1, ord) @@ -5166,7 +3526,7 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(dq[6N + 12], inv_I_c_t[3, 3], Ic_dωc_3, ord) TaylorSeries.identity!(dq[6N + 13], zero_q_1, ord) for __idx = eachindex(q) - (q[__idx]).coeffs[ordnext + 1] = (dq[__idx]).coeffs[ordnext] / ordnext + TaylorIntegration.ode!(q[__idx], dq[__idx], ordnext) end end return nothing @@ -5335,151 +3695,151 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q ϕ_m = Taylor1(identity(constant_term(q[6N + 1])), order) θ_m = Taylor1(identity(constant_term(q[6N + 2])), order) ψ_m = Taylor1(identity(constant_term(q[6N + 3])), order) - tmp2961 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4031 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2962 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4032 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2963 = Taylor1(constant_term(tmp2961) * constant_term(tmp2962), order) - tmp2964 = Taylor1(cos(constant_term(θ_m)), order) - tmp4033 = Taylor1(sin(constant_term(θ_m)), order) - tmp2965 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4034 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2966 = Taylor1(constant_term(tmp2964) * constant_term(tmp2965), order) - tmp2967 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4035 = Taylor1(cos(constant_term(ψ_m)), order) - tmp2968 = Taylor1(constant_term(tmp2966) * constant_term(tmp2967), order) - RotM[1, 1, mo] = Taylor1(constant_term(tmp2963) - constant_term(tmp2968), order) - tmp2970 = Taylor1(cos(constant_term(θ_m)), order) - tmp4036 = Taylor1(sin(constant_term(θ_m)), order) - tmp2971 = Taylor1(-(constant_term(tmp2970)), order) - tmp2972 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4037 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2973 = Taylor1(constant_term(tmp2971) * constant_term(tmp2972), order) - tmp2974 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4038 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2975 = Taylor1(constant_term(tmp2973) * constant_term(tmp2974), order) tmp2976 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4039 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2977 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4040 = Taylor1(cos(constant_term(ψ_m)), order) - tmp2978 = Taylor1(constant_term(tmp2976) * constant_term(tmp2977), order) - RotM[2, 1, mo] = Taylor1(constant_term(tmp2975) - constant_term(tmp2978), order) - tmp2980 = Taylor1(sin(constant_term(θ_m)), order) - tmp4041 = Taylor1(cos(constant_term(θ_m)), order) - tmp2981 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4042 = Taylor1(cos(constant_term(ϕ_m)), order) - RotM[3, 1, mo] = Taylor1(constant_term(tmp2980) * constant_term(tmp2981), order) - tmp2983 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4043 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2984 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4044 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2985 = Taylor1(constant_term(tmp2983) * constant_term(tmp2984), order) - tmp2986 = Taylor1(cos(constant_term(θ_m)), order) - tmp4045 = Taylor1(sin(constant_term(θ_m)), order) - tmp2987 = Taylor1(cos(constant_term(ϕ_m)), order) tmp4046 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp2977 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4047 = Taylor1(sin(constant_term(ψ_m)), order) + tmp2978 = Taylor1(constant_term(tmp2976) * constant_term(tmp2977), order) + tmp2979 = Taylor1(cos(constant_term(θ_m)), order) + tmp4048 = Taylor1(sin(constant_term(θ_m)), order) + tmp2980 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4049 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp2981 = Taylor1(constant_term(tmp2979) * constant_term(tmp2980), order) + tmp2982 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4050 = Taylor1(cos(constant_term(ψ_m)), order) + tmp2983 = Taylor1(constant_term(tmp2981) * constant_term(tmp2982), order) + RotM[1, 1, mo] = Taylor1(constant_term(tmp2978) - constant_term(tmp2983), order) + tmp2985 = Taylor1(cos(constant_term(θ_m)), order) + tmp4051 = Taylor1(sin(constant_term(θ_m)), order) + tmp2986 = Taylor1(-(constant_term(tmp2985)), order) + tmp2987 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4052 = Taylor1(sin(constant_term(ψ_m)), order) tmp2988 = Taylor1(constant_term(tmp2986) * constant_term(tmp2987), order) - tmp2989 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4047 = Taylor1(cos(constant_term(ψ_m)), order) + tmp2989 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4053 = Taylor1(cos(constant_term(ϕ_m)), order) tmp2990 = Taylor1(constant_term(tmp2988) * constant_term(tmp2989), order) - RotM[1, 2, mo] = Taylor1(constant_term(tmp2985) + constant_term(tmp2990), order) - tmp2992 = Taylor1(cos(constant_term(θ_m)), order) - tmp4048 = Taylor1(sin(constant_term(θ_m)), order) - tmp2993 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4049 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2994 = Taylor1(constant_term(tmp2992) * constant_term(tmp2993), order) - tmp2995 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4050 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2996 = Taylor1(constant_term(tmp2994) * constant_term(tmp2995), order) - tmp2997 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4051 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2998 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4052 = Taylor1(cos(constant_term(ψ_m)), order) - tmp2999 = Taylor1(constant_term(tmp2997) * constant_term(tmp2998), order) - RotM[2, 2, mo] = Taylor1(constant_term(tmp2996) - constant_term(tmp2999), order) - tmp3001 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4053 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3002 = Taylor1(-(constant_term(tmp3001)), order) - tmp3003 = Taylor1(sin(constant_term(θ_m)), order) - tmp4054 = Taylor1(cos(constant_term(θ_m)), order) - RotM[3, 2, mo] = Taylor1(constant_term(tmp3002) * constant_term(tmp3003), order) - tmp3005 = Taylor1(sin(constant_term(θ_m)), order) - tmp4055 = Taylor1(cos(constant_term(θ_m)), order) - tmp3006 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4056 = Taylor1(cos(constant_term(ψ_m)), order) - RotM[1, 3, mo] = Taylor1(constant_term(tmp3005) * constant_term(tmp3006), order) - tmp3008 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4057 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3009 = Taylor1(sin(constant_term(θ_m)), order) - tmp4058 = Taylor1(cos(constant_term(θ_m)), order) - RotM[2, 3, mo] = Taylor1(constant_term(tmp3008) * constant_term(tmp3009), order) + tmp2991 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4054 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp2992 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4055 = Taylor1(cos(constant_term(ψ_m)), order) + tmp2993 = Taylor1(constant_term(tmp2991) * constant_term(tmp2992), order) + RotM[2, 1, mo] = Taylor1(constant_term(tmp2990) - constant_term(tmp2993), order) + tmp2995 = Taylor1(sin(constant_term(θ_m)), order) + tmp4056 = Taylor1(cos(constant_term(θ_m)), order) + tmp2996 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4057 = Taylor1(cos(constant_term(ϕ_m)), order) + RotM[3, 1, mo] = Taylor1(constant_term(tmp2995) * constant_term(tmp2996), order) + tmp2998 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4058 = Taylor1(sin(constant_term(ψ_m)), order) + tmp2999 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4059 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp3000 = Taylor1(constant_term(tmp2998) * constant_term(tmp2999), order) + tmp3001 = Taylor1(cos(constant_term(θ_m)), order) + tmp4060 = Taylor1(sin(constant_term(θ_m)), order) + tmp3002 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4061 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp3003 = Taylor1(constant_term(tmp3001) * constant_term(tmp3002), order) + tmp3004 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4062 = Taylor1(cos(constant_term(ψ_m)), order) + tmp3005 = Taylor1(constant_term(tmp3003) * constant_term(tmp3004), order) + RotM[1, 2, mo] = Taylor1(constant_term(tmp3000) + constant_term(tmp3005), order) + tmp3007 = Taylor1(cos(constant_term(θ_m)), order) + tmp4063 = Taylor1(sin(constant_term(θ_m)), order) + tmp3008 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4064 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp3009 = Taylor1(constant_term(tmp3007) * constant_term(tmp3008), order) + tmp3010 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4065 = Taylor1(sin(constant_term(ψ_m)), order) + tmp3011 = Taylor1(constant_term(tmp3009) * constant_term(tmp3010), order) + tmp3012 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4066 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp3013 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4067 = Taylor1(cos(constant_term(ψ_m)), order) + tmp3014 = Taylor1(constant_term(tmp3012) * constant_term(tmp3013), order) + RotM[2, 2, mo] = Taylor1(constant_term(tmp3011) - constant_term(tmp3014), order) + tmp3016 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4068 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp3017 = Taylor1(-(constant_term(tmp3016)), order) + tmp3018 = Taylor1(sin(constant_term(θ_m)), order) + tmp4069 = Taylor1(cos(constant_term(θ_m)), order) + RotM[3, 2, mo] = Taylor1(constant_term(tmp3017) * constant_term(tmp3018), order) + tmp3020 = Taylor1(sin(constant_term(θ_m)), order) + tmp4070 = Taylor1(cos(constant_term(θ_m)), order) + tmp3021 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4071 = Taylor1(cos(constant_term(ψ_m)), order) + RotM[1, 3, mo] = Taylor1(constant_term(tmp3020) * constant_term(tmp3021), order) + tmp3023 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4072 = Taylor1(sin(constant_term(ψ_m)), order) + tmp3024 = Taylor1(sin(constant_term(θ_m)), order) + tmp4073 = Taylor1(cos(constant_term(θ_m)), order) + RotM[2, 3, mo] = Taylor1(constant_term(tmp3023) * constant_term(tmp3024), order) RotM[3, 3, mo] = Taylor1(cos(constant_term(θ_m)), order) - tmp4059 = Taylor1(sin(constant_term(θ_m)), order) + tmp4074 = Taylor1(sin(constant_term(θ_m)), order) mantlef2coref = Array{S}(undef, 3, 3) ϕ_c = Taylor1(identity(constant_term(q[6N + 7])), order) - tmp3012 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4060 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3013 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp3012), order) - tmp3014 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4061 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3015 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp3014), order) - mantlef2coref[1, 1] = Taylor1(constant_term(tmp3013) + constant_term(tmp3015), order) - tmp3017 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) - tmp3018 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4062 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3019 = Taylor1(constant_term(tmp3017) * constant_term(tmp3018), order) - tmp3020 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4063 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3021 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp3020), order) - mantlef2coref[2, 1] = Taylor1(constant_term(tmp3019) + constant_term(tmp3021), order) - mantlef2coref[3, 1] = Taylor1(identity(constant_term(RotM[1, 3, mo])), order) - tmp3023 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4064 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3024 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp3023), order) - tmp3025 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4065 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3026 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp3025), order) - mantlef2coref[1, 2] = Taylor1(constant_term(tmp3024) + constant_term(tmp3026), order) - tmp3028 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) + tmp3027 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4075 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3028 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp3027), order) tmp3029 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4066 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3030 = Taylor1(constant_term(tmp3028) * constant_term(tmp3029), order) - tmp3031 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4067 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3032 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp3031), order) - mantlef2coref[2, 2] = Taylor1(constant_term(tmp3030) + constant_term(tmp3032), order) - mantlef2coref[3, 2] = Taylor1(identity(constant_term(RotM[2, 3, mo])), order) - tmp3034 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4068 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3035 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp3034), order) - tmp3036 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4069 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3037 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp3036), order) - mantlef2coref[1, 3] = Taylor1(constant_term(tmp3035) + constant_term(tmp3037), order) - tmp3039 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) + tmp4076 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3030 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp3029), order) + mantlef2coref[1, 1] = Taylor1(constant_term(tmp3028) + constant_term(tmp3030), order) + tmp3032 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) + tmp3033 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4077 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3034 = Taylor1(constant_term(tmp3032) * constant_term(tmp3033), order) + tmp3035 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4078 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3036 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp3035), order) + mantlef2coref[2, 1] = Taylor1(constant_term(tmp3034) + constant_term(tmp3036), order) + mantlef2coref[3, 1] = Taylor1(identity(constant_term(RotM[1, 3, mo])), order) + tmp3038 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4079 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3039 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp3038), order) tmp3040 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4070 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3041 = Taylor1(constant_term(tmp3039) * constant_term(tmp3040), order) - tmp3042 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4071 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3043 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp3042), order) - mantlef2coref[2, 3] = Taylor1(constant_term(tmp3041) + constant_term(tmp3043), order) + tmp4080 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3041 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp3040), order) + mantlef2coref[1, 2] = Taylor1(constant_term(tmp3039) + constant_term(tmp3041), order) + tmp3043 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) + tmp3044 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4081 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3045 = Taylor1(constant_term(tmp3043) * constant_term(tmp3044), order) + tmp3046 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4082 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3047 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp3046), order) + mantlef2coref[2, 2] = Taylor1(constant_term(tmp3045) + constant_term(tmp3047), order) + mantlef2coref[3, 2] = Taylor1(identity(constant_term(RotM[2, 3, mo])), order) + tmp3049 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4083 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3050 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp3049), order) + tmp3051 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4084 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3052 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp3051), order) + mantlef2coref[1, 3] = Taylor1(constant_term(tmp3050) + constant_term(tmp3052), order) + tmp3054 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) + tmp3055 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4085 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3056 = Taylor1(constant_term(tmp3054) * constant_term(tmp3055), order) + tmp3057 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4086 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3058 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp3057), order) + mantlef2coref[2, 3] = Taylor1(constant_term(tmp3056) + constant_term(tmp3058), order) mantlef2coref[3, 3] = Taylor1(identity(constant_term(RotM[3, 3, mo])), order) - tmp3045 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) - tmp3046 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) - tmp3047 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) - tmp3048 = Taylor1(constant_term(tmp3046) + constant_term(tmp3047), order) - ω_c_CE_1 = Taylor1(constant_term(tmp3045) + constant_term(tmp3048), order) - tmp3050 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) - tmp3051 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) - tmp3052 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) - tmp3053 = Taylor1(constant_term(tmp3051) + constant_term(tmp3052), order) - ω_c_CE_2 = Taylor1(constant_term(tmp3050) + constant_term(tmp3053), order) - tmp3055 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) - tmp3056 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) - tmp3057 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) - tmp3058 = Taylor1(constant_term(tmp3056) + constant_term(tmp3057), order) - ω_c_CE_3 = Taylor1(constant_term(tmp3055) + constant_term(tmp3058), order) + tmp3060 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) + tmp3061 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) + tmp3062 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) + tmp3063 = Taylor1(constant_term(tmp3061) + constant_term(tmp3062), order) + ω_c_CE_1 = Taylor1(constant_term(tmp3060) + constant_term(tmp3063), order) + tmp3065 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) + tmp3066 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) + tmp3067 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) + tmp3068 = Taylor1(constant_term(tmp3066) + constant_term(tmp3067), order) + ω_c_CE_2 = Taylor1(constant_term(tmp3065) + constant_term(tmp3068), order) + tmp3070 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) + tmp3071 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) + tmp3072 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) + tmp3073 = Taylor1(constant_term(tmp3071) + constant_term(tmp3072), order) + ω_c_CE_3 = Taylor1(constant_term(tmp3070) + constant_term(tmp3073), order) local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 local J2S_t = JSEM[su, 2] * one_t J2_t = Array{S}(undef, 5) @@ -5515,112 +3875,144 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q accY[j] = Taylor1(identity(constant_term(zero_q_1)), order) accZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp3123 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp3123) - tmp3123[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3138 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp3138) + tmp3138[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3125 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp3125) - tmp3125[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4092 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp4092) + tmp4092[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3126 = Array{Taylor1{_S}}(undef, size(tmp3123)) - for i = CartesianIndices(tmp3126) - tmp3126[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3140 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp3140) + tmp3140[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3128 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp3128) - tmp3128[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4093 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp4093) + tmp4093[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3067 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp3067) - tmp3067[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3141 = Array{Taylor1{_S}}(undef, size(tmp3138)) + for i = eachindex(tmp3141) + tmp3141[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3069 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp3069) - tmp3069[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3143 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp3143) + tmp3143[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3072 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp3072) - tmp3072[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4094 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp4094) + tmp4094[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3074 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp3074) - tmp3074[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3082 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp3082) + tmp3082[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3077 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp3077) - tmp3077[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3084 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp3084) + tmp3084[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3079 = Array{Taylor1{_S}}(undef, size(dq)) - for i = CartesianIndices(tmp3079) - tmp3079[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3087 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp3087) + tmp3087[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3089 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp3089) + tmp3089[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3092 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp3092) + tmp3092[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3094 = Array{Taylor1{_S}}(undef, size(dq)) + for i = eachindex(tmp3094) + tmp3094[i] = Taylor1(zero(constant_term(q[1])), order) end pn2x = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(pn2x) + for i = eachindex(pn2x) pn2x[i] = Taylor1(zero(constant_term(q[1])), order) end pn2y = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(pn2y) + for i = eachindex(pn2y) pn2y[i] = Taylor1(zero(constant_term(q[1])), order) end pn2z = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(pn2z) + for i = eachindex(pn2z) pn2z[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3087 = Array{Taylor1{_S}}(undef, size(UU)) - for i = CartesianIndices(tmp3087) - tmp3087[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3102 = Array{Taylor1{_S}}(undef, size(UU)) + for i = eachindex(tmp3102) + tmp3102[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3090 = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(tmp3090) - tmp3090[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3105 = Array{Taylor1{_S}}(undef, size(X)) + for i = eachindex(tmp3105) + tmp3105[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3092 = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(tmp3092) - tmp3092[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4087 = Array{Taylor1{_S}}(undef, size(X)) + for i = eachindex(tmp4087) + tmp4087[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3107 = Array{Taylor1{_S}}(undef, size(Y)) + for i = eachindex(tmp3107) + tmp3107[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4088 = Array{Taylor1{_S}}(undef, size(Y)) + for i = eachindex(tmp4088) + tmp4088[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3093 = Array{Taylor1{_S}}(undef, size(tmp3090)) - for i = CartesianIndices(tmp3093) - tmp3093[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3108 = Array{Taylor1{_S}}(undef, size(tmp3105)) + for i = eachindex(tmp3108) + tmp3108[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3095 = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(tmp3095) - tmp3095[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3110 = Array{Taylor1{_S}}(undef, size(Z)) + for i = eachindex(tmp3110) + tmp3110[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3103 = Array{Taylor1{_S}}(undef, size(pn2x)) - for i = CartesianIndices(tmp3103) - tmp3103[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4089 = Array{Taylor1{_S}}(undef, size(Z)) + for i = eachindex(tmp4089) + tmp4089[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3104 = Array{Taylor1{_S}}(undef, size(tmp3103)) - for i = CartesianIndices(tmp3104) - tmp3104[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4090 = Array{Taylor1{_S}}(undef, size(r_p2)) + for i = eachindex(tmp4090) + tmp4090[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3115 = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(tmp3115) - tmp3115[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4091 = Array{Taylor1{_S}}(undef, size(r_p2)) + for i = eachindex(tmp4091) + tmp4091[i] = Taylor1(zero(constant_term(q[1])), order) end - temp_001 = Array{Taylor1{_S}}(undef, size(tmp3115)) - for i = CartesianIndices(temp_001) + tmp3118 = Array{Taylor1{_S}}(undef, size(pn2x)) + for i = eachindex(tmp3118) + tmp3118[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3119 = Array{Taylor1{_S}}(undef, size(tmp3118)) + for i = eachindex(tmp3119) + tmp3119[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3130 = Array{Taylor1{_S}}(undef, size(X)) + for i = eachindex(tmp3130) + tmp3130[i] = Taylor1(zero(constant_term(q[1])), order) + end + temp_001 = Array{Taylor1{_S}}(undef, size(tmp3130)) + for i = eachindex(temp_001) temp_001[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3117 = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(tmp3117) - tmp3117[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3132 = Array{Taylor1{_S}}(undef, size(Y)) + for i = eachindex(tmp3132) + tmp3132[i] = Taylor1(zero(constant_term(q[1])), order) end - temp_002 = Array{Taylor1{_S}}(undef, size(tmp3117)) - for i = CartesianIndices(temp_002) + temp_002 = Array{Taylor1{_S}}(undef, size(tmp3132)) + for i = eachindex(temp_002) temp_002[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3119 = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(tmp3119) - tmp3119[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3134 = Array{Taylor1{_S}}(undef, size(Z)) + for i = eachindex(tmp3134) + tmp3134[i] = Taylor1(zero(constant_term(q[1])), order) end - temp_003 = Array{Taylor1{_S}}(undef, size(tmp3119)) - for i = CartesianIndices(temp_003) + temp_003 = Array{Taylor1{_S}}(undef, size(tmp3134)) + for i = eachindex(temp_003) temp_003[i] = Taylor1(zero(constant_term(q[1])), order) end temp_004 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) - for i = CartesianIndices(temp_004) + for i = eachindex(temp_004) temp_004[i] = Taylor1(zero(constant_term(q[1])), order) end #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1286 =# Threads.@threads for j = 1:N @@ -5634,35 +4026,40 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q U[i, j] = Taylor1(constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]), order) V[i, j] = Taylor1(constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]), order) W[i, j] = Taylor1(constant_term(dq[3i]) - constant_term(dq[3j]), order) - tmp3067[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) - tmp3069[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) - _4U_m_3X[i, j] = Taylor1(constant_term(tmp3067[3j - 2]) - constant_term(tmp3069[3i - 2]), order) - tmp3072[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) - tmp3074[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) - _4V_m_3Y[i, j] = Taylor1(constant_term(tmp3072[3j - 1]) - constant_term(tmp3074[3i - 1]), order) - tmp3077[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) - tmp3079[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) - _4W_m_3Z[i, j] = Taylor1(constant_term(tmp3077[3j]) - constant_term(tmp3079[3i]), order) + tmp3082[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) + tmp3084[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) + _4U_m_3X[i, j] = Taylor1(constant_term(tmp3082[3j - 2]) - constant_term(tmp3084[3i - 2]), order) + tmp3087[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) + tmp3089[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) + _4V_m_3Y[i, j] = Taylor1(constant_term(tmp3087[3j - 1]) - constant_term(tmp3089[3i - 1]), order) + tmp3092[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) + tmp3094[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) + _4W_m_3Z[i, j] = Taylor1(constant_term(tmp3092[3j]) - constant_term(tmp3094[3i]), order) pn2x[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]), order) pn2y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]), order) pn2z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]), order) UU[i, j] = Taylor1(constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]), order) VV[i, j] = Taylor1(constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]), order) WW[i, j] = Taylor1(constant_term(dq[3i]) * constant_term(dq[3j]), order) - tmp3087[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) - vi_dot_vj[i, j] = Taylor1(constant_term(tmp3087[i, j]) + constant_term(WW[i, j]), order) - tmp3090[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) - tmp3092[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) - tmp3093[i, j] = Taylor1(constant_term(tmp3090[i, j]) + constant_term(tmp3092[i, j]), order) - tmp3095[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) - r_p2[i, j] = Taylor1(constant_term(tmp3093[i, j]) + constant_term(tmp3095[i, j]), order) + tmp3102[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) + vi_dot_vj[i, j] = Taylor1(constant_term(tmp3102[i, j]) + constant_term(WW[i, j]), order) + tmp3105[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) + tmp4087[i, j] = Taylor1(zero(constant_term(X[i, j])), order) + tmp3107[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) + tmp4088[i, j] = Taylor1(zero(constant_term(Y[i, j])), order) + tmp3108[i, j] = Taylor1(constant_term(tmp3105[i, j]) + constant_term(tmp3107[i, j]), order) + tmp3110[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) + tmp4089[i, j] = Taylor1(zero(constant_term(Z[i, j])), order) + r_p2[i, j] = Taylor1(constant_term(tmp3108[i, j]) + constant_term(tmp3110[i, j]), order) r_p1d2[i, j] = Taylor1(sqrt(constant_term(r_p2[i, j])), order) r_p3d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(1.5)), order) + tmp4090[i, j] = Taylor1(zero(constant_term(r_p2[i, j])), order) r_p7d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(3.5)), order) + tmp4091[i, j] = Taylor1(zero(constant_term(r_p2[i, j])), order) newtonianCoeff[i, j] = Taylor1(constant_term(μ[i]) / constant_term(r_p3d2[i, j]), order) - tmp3103[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) - tmp3104[i, j] = Taylor1(constant_term(tmp3103[i, j]) + constant_term(pn2z[i, j]), order) - pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp3104[i, j]), order) + tmp3118[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) + tmp3119[i, j] = Taylor1(constant_term(tmp3118[i, j]) + constant_term(pn2z[i, j]), order) + pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp3119[i, j]), order) newton_acc_X[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) @@ -5671,567 +4068,586 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q U_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(U[i, j]), order) V_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(V[i, j]), order) W_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(W[i, j]), order) - tmp3115[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp3115[i, j]), order) + tmp3130[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp3130[i, j]), order) newtonX[j] = Taylor1(identity(constant_term(temp_001[i, j])), order) - tmp3117[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp3117[i, j]), order) + tmp3132[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp3132[i, j]), order) newtonY[j] = Taylor1(identity(constant_term(temp_002[i, j])), order) - tmp3119[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp3119[i, j]), order) + tmp3134[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp3134[i, j]), order) newtonZ[j] = Taylor1(identity(constant_term(temp_003[i, j])), order) temp_004[i, j] = Taylor1(constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]), order) newtonianNb_Potential[j] = Taylor1(identity(constant_term(temp_004[i, j])), order) end end - tmp3123[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) - tmp3125[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) - tmp3126[3j - 2] = Taylor1(constant_term(tmp3123[3j - 2]) + constant_term(tmp3125[3j - 1]), order) - tmp3128[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) - v2[j] = Taylor1(constant_term(tmp3126[3j - 2]) + constant_term(tmp3128[3j]), order) + tmp3138[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) + tmp4092[3j - 2] = Taylor1(zero(constant_term(dq[3j - 2])), order) + tmp3140[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) + tmp4093[3j - 1] = Taylor1(zero(constant_term(dq[3j - 1])), order) + tmp3141[3j - 2] = Taylor1(constant_term(tmp3138[3j - 2]) + constant_term(tmp3140[3j - 1]), order) + tmp3143[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) + tmp4094[3j] = Taylor1(zero(constant_term(dq[3j])), order) + v2[j] = Taylor1(constant_term(tmp3141[3j - 2]) + constant_term(tmp3143[3j]), order) end - tmp3130 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) - tmp3132 = Taylor1(constant_term(tmp3130) / constant_term(2), order) - tmp3133 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp3132), order) - J2M_t = Taylor1(constant_term(tmp3133) / constant_term(μ[mo]), order) - tmp3135 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) - tmp3136 = Taylor1(constant_term(tmp3135) / constant_term(μ[mo]), order) - C22M_t = Taylor1(constant_term(tmp3136) / constant_term(4), order) - tmp3139 = Taylor1(-(constant_term(I_M_t[1, 3])), order) - C21M_t = Taylor1(constant_term(tmp3139) / constant_term(μ[mo]), order) - tmp3141 = Taylor1(-(constant_term(I_M_t[3, 2])), order) - S21M_t = Taylor1(constant_term(tmp3141) / constant_term(μ[mo]), order) - tmp3143 = Taylor1(-(constant_term(I_M_t[2, 1])), order) - tmp3144 = Taylor1(constant_term(tmp3143) / constant_term(μ[mo]), order) - S22M_t = Taylor1(constant_term(tmp3144) / constant_term(2), order) + tmp3145 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) + tmp3147 = Taylor1(constant_term(tmp3145) / constant_term(2), order) + tmp3148 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp3147), order) + J2M_t = Taylor1(constant_term(tmp3148) / constant_term(μ[mo]), order) + tmp3150 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) + tmp3151 = Taylor1(constant_term(tmp3150) / constant_term(μ[mo]), order) + C22M_t = Taylor1(constant_term(tmp3151) / constant_term(4), order) + tmp3154 = Taylor1(-(constant_term(I_M_t[1, 3])), order) + C21M_t = Taylor1(constant_term(tmp3154) / constant_term(μ[mo]), order) + tmp3156 = Taylor1(-(constant_term(I_M_t[3, 2])), order) + S21M_t = Taylor1(constant_term(tmp3156) / constant_term(μ[mo]), order) + tmp3158 = Taylor1(-(constant_term(I_M_t[2, 1])), order) + tmp3159 = Taylor1(constant_term(tmp3158) / constant_term(μ[mo]), order) + S22M_t = Taylor1(constant_term(tmp3159) / constant_term(2), order) J2_t[mo] = Taylor1(identity(constant_term(J2M_t)), order) - tmp3156 = Array{Taylor1{_S}}(undef, size(X_bf_1)) - for i = CartesianIndices(tmp3156) - tmp3156[i] = Taylor1(zero(constant_term(q[1])), order) - end - tmp3158 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) - for i = CartesianIndices(tmp3158) - tmp3158[i] = Taylor1(zero(constant_term(q[1])), order) - end - tmp3160 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) - for i = CartesianIndices(tmp3160) - tmp3160[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3171 = Array{Taylor1{_S}}(undef, size(X_bf_1)) + for i = eachindex(tmp3171) + tmp3171[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3164 = Array{Taylor1{_S}}(undef, size(X_bf)) - for i = CartesianIndices(tmp3164) - tmp3164[i] = Taylor1(zero(constant_term(q[1])), order) - end - tmp3166 = Array{Taylor1{_S}}(undef, size(Y_bf)) - for i = CartesianIndices(tmp3166) - tmp3166[i] = Taylor1(zero(constant_term(q[1])), order) - end - tmp3167 = Array{Taylor1{_S}}(undef, size(tmp3164)) - for i = CartesianIndices(tmp3167) - tmp3167[i] = Taylor1(zero(constant_term(q[1])), order) - end - tmp3182 = Array{Taylor1{_S}}(undef, size(P_n)) - for i = CartesianIndices(tmp3182) - tmp3182[i] = Taylor1(zero(constant_term(q[1])), order) - end - tmp3183 = Array{Taylor1{_S}}(undef, size(tmp3182)) - for i = CartesianIndices(tmp3183) - tmp3183[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3173 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) + for i = eachindex(tmp3173) + tmp3173[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3185 = Array{Taylor1{_S}}(undef, size(dP_n)) - for i = CartesianIndices(tmp3185) - tmp3185[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3175 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) + for i = eachindex(tmp3175) + tmp3175[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3186 = Array{Taylor1{_S}}(undef, size(tmp3185)) - for i = CartesianIndices(tmp3186) - tmp3186[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3179 = Array{Taylor1{_S}}(undef, size(X_bf)) + for i = eachindex(tmp3179) + tmp3179[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3187 = Array{Taylor1{_S}}(undef, size(tmp3186)) - for i = CartesianIndices(tmp3187) - tmp3187[i] = Taylor1(zero(constant_term(q[1])), order) - end - tmp3284 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - for i = CartesianIndices(tmp3284) - tmp3284[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4095 = Array{Taylor1{_S}}(undef, size(X_bf)) + for i = eachindex(tmp4095) + tmp4095[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3287 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - for i = CartesianIndices(tmp3287) - tmp3287[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3181 = Array{Taylor1{_S}}(undef, size(Y_bf)) + for i = eachindex(tmp3181) + tmp3181[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3289 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3289) - tmp3289[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4096 = Array{Taylor1{_S}}(undef, size(Y_bf)) + for i = eachindex(tmp4096) + tmp4096[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3290 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3290) - tmp3290[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3182 = Array{Taylor1{_S}}(undef, size(tmp3179)) + for i = eachindex(tmp3182) + tmp3182[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3291 = Array{Taylor1{_S}}(undef, size(tmp3289)) - for i = CartesianIndices(tmp3291) - tmp3291[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4098 = Array{Taylor1{_S}}(undef, size(r_p2)) + for i = eachindex(tmp4098) + tmp4098[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3292 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3292) - tmp3292[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3197 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = eachindex(tmp3197) + tmp3197[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3294 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3294) - tmp3294[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3198 = Array{Taylor1{_S}}(undef, size(tmp3197)) + for i = eachindex(tmp3198) + tmp3198[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3295 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3295) - tmp3295[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3200 = Array{Taylor1{_S}}(undef, size(dP_n)) + for i = eachindex(tmp3200) + tmp3200[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3296 = Array{Taylor1{_S}}(undef, size(tmp3294)) - for i = CartesianIndices(tmp3296) - tmp3296[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3201 = Array{Taylor1{_S}}(undef, size(tmp3200)) + for i = eachindex(tmp3201) + tmp3201[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3297 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3297) - tmp3297[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3202 = Array{Taylor1{_S}}(undef, size(tmp3201)) + for i = eachindex(tmp3202) + tmp3202[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3299 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3299) + tmp3299 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + for i = eachindex(tmp3299) tmp3299[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3300 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3300) - tmp3300[i] = Taylor1(zero(constant_term(q[1])), order) - end - tmp3301 = Array{Taylor1{_S}}(undef, size(tmp3299)) - for i = CartesianIndices(tmp3301) - tmp3301[i] = Taylor1(zero(constant_term(q[1])), order) - end - tmp3302 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3302) + tmp3302 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + for i = eachindex(tmp3302) tmp3302[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3304 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3304) + for i = eachindex(tmp3304) tmp3304[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3305 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3305) + for i = eachindex(tmp3305) tmp3305[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3306 = Array{Taylor1{_S}}(undef, size(tmp3304)) - for i = CartesianIndices(tmp3306) + for i = eachindex(tmp3306) tmp3306[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3307 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3307) + for i = eachindex(tmp3307) tmp3307[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3309 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3309) + for i = eachindex(tmp3309) tmp3309[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3310 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3310) + for i = eachindex(tmp3310) tmp3310[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3311 = Array{Taylor1{_S}}(undef, size(tmp3309)) - for i = CartesianIndices(tmp3311) + for i = eachindex(tmp3311) tmp3311[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3312 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3312) + for i = eachindex(tmp3312) tmp3312[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3314 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3314) + for i = eachindex(tmp3314) tmp3314[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3315 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3315) + for i = eachindex(tmp3315) tmp3315[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3316 = Array{Taylor1{_S}}(undef, size(tmp3314)) - for i = CartesianIndices(tmp3316) + for i = eachindex(tmp3316) tmp3316[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3317 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3317) + for i = eachindex(tmp3317) tmp3317[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3319 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3319) + for i = eachindex(tmp3319) tmp3319[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3320 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3320) + for i = eachindex(tmp3320) tmp3320[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3321 = Array{Taylor1{_S}}(undef, size(tmp3319)) - for i = CartesianIndices(tmp3321) + for i = eachindex(tmp3321) tmp3321[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3322 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3322) + for i = eachindex(tmp3322) tmp3322[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3324 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3324) + for i = eachindex(tmp3324) tmp3324[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3325 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3325) + for i = eachindex(tmp3325) tmp3325[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3326 = Array{Taylor1{_S}}(undef, size(tmp3324)) - for i = CartesianIndices(tmp3326) + for i = eachindex(tmp3326) tmp3326[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3327 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3327) + for i = eachindex(tmp3327) tmp3327[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3329 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3329) + for i = eachindex(tmp3329) tmp3329[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3330 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3330) + for i = eachindex(tmp3330) tmp3330[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3331 = Array{Taylor1{_S}}(undef, size(tmp3329)) - for i = CartesianIndices(tmp3331) + for i = eachindex(tmp3331) tmp3331[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3332 = Array{Taylor1{_S}}(undef, size(Rb2p)) - for i = CartesianIndices(tmp3332) + for i = eachindex(tmp3332) tmp3332[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3334 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp3334) + tmp3334 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = eachindex(tmp3334) tmp3334[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3335 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp3335) + tmp3335 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = eachindex(tmp3335) tmp3335[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3336 = Array{Taylor1{_S}}(undef, size(tmp3334)) - for i = CartesianIndices(tmp3336) + for i = eachindex(tmp3336) tmp3336[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3337 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp3337) + tmp3337 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = eachindex(tmp3337) tmp3337[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3339 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp3339) + tmp3339 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = eachindex(tmp3339) tmp3339[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3340 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp3340) + tmp3340 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = eachindex(tmp3340) tmp3340[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3341 = Array{Taylor1{_S}}(undef, size(tmp3339)) - for i = CartesianIndices(tmp3341) + for i = eachindex(tmp3341) tmp3341[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3342 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp3342) + tmp3342 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = eachindex(tmp3342) tmp3342[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3344 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp3344) + tmp3344 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = eachindex(tmp3344) tmp3344[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3345 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp3345) + tmp3345 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = eachindex(tmp3345) tmp3345[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3346 = Array{Taylor1{_S}}(undef, size(tmp3344)) - for i = CartesianIndices(tmp3346) + for i = eachindex(tmp3346) tmp3346[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3347 = Array{Taylor1{_S}}(undef, size(Gc2p)) - for i = CartesianIndices(tmp3347) + tmp3347 = Array{Taylor1{_S}}(undef, size(Rb2p)) + for i = eachindex(tmp3347) tmp3347[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3172 = Array{Taylor1{_S}}(undef, size(P_n)) - for i = CartesianIndices(tmp3172) - tmp3172[i] = Taylor1(zero(constant_term(q[1])), order) - end - tmp3173 = Array{Taylor1{_S}}(undef, size(tmp3172)) - for i = CartesianIndices(tmp3173) - tmp3173[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3349 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = eachindex(tmp3349) + tmp3349[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3174 = Array{Taylor1{_S}}(undef, size(P_n)) - for i = CartesianIndices(tmp3174) - tmp3174[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3350 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = eachindex(tmp3350) + tmp3350[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3176 = Array{Taylor1{_S}}(undef, size(dP_n)) - for i = CartesianIndices(tmp3176) - tmp3176[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3351 = Array{Taylor1{_S}}(undef, size(tmp3349)) + for i = eachindex(tmp3351) + tmp3351[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3177 = Array{Taylor1{_S}}(undef, size(P_n)) - for i = CartesianIndices(tmp3177) - tmp3177[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3352 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = eachindex(tmp3352) + tmp3352[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3189 = Array{Taylor1{_S}}(undef, size(P_n)) - for i = CartesianIndices(tmp3189) - tmp3189[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3354 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = eachindex(tmp3354) + tmp3354[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3190 = Array{Taylor1{_S}}(undef, size(tmp3189)) - for i = CartesianIndices(tmp3190) - tmp3190[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3355 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = eachindex(tmp3355) + tmp3355[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3191 = Array{Taylor1{_S}}(undef, size(tmp3190)) - for i = CartesianIndices(tmp3191) - tmp3191[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3356 = Array{Taylor1{_S}}(undef, size(tmp3354)) + for i = eachindex(tmp3356) + tmp3356[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3193 = Array{Taylor1{_S}}(undef, size(dP_n)) - for i = CartesianIndices(tmp3193) - tmp3193[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3357 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = eachindex(tmp3357) + tmp3357[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3194 = Array{Taylor1{_S}}(undef, size(tmp3193)) - for i = CartesianIndices(tmp3194) - tmp3194[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3359 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = eachindex(tmp3359) + tmp3359[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3195 = Array{Taylor1{_S}}(undef, size(tmp3194)) - for i = CartesianIndices(tmp3195) - tmp3195[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3360 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = eachindex(tmp3360) + tmp3360[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3196 = Array{Taylor1{_S}}(undef, size(tmp3195)) - for i = CartesianIndices(tmp3196) - tmp3196[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3361 = Array{Taylor1{_S}}(undef, size(tmp3359)) + for i = eachindex(tmp3361) + tmp3361[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3221 = Array{Taylor1{_S}}(undef, size(P_nm)) - for i = CartesianIndices(tmp3221) - tmp3221[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3362 = Array{Taylor1{_S}}(undef, size(Gc2p)) + for i = eachindex(tmp3362) + tmp3362[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3222 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp3222) - tmp3222[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3187 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = eachindex(tmp3187) + tmp3187[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3223 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp3223) - tmp3223[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3188 = Array{Taylor1{_S}}(undef, size(tmp3187)) + for i = eachindex(tmp3188) + tmp3188[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3224 = Array{Taylor1{_S}}(undef, size(tmp3222)) - for i = CartesianIndices(tmp3224) - tmp3224[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3189 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = eachindex(tmp3189) + tmp3189[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3225 = Array{Taylor1{_S}}(undef, size(tmp3221)) - for i = CartesianIndices(tmp3225) - tmp3225[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3191 = Array{Taylor1{_S}}(undef, size(dP_n)) + for i = eachindex(tmp3191) + tmp3191[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3226 = Array{Taylor1{_S}}(undef, size(P_nm)) - for i = CartesianIndices(tmp3226) - tmp3226[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3192 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = eachindex(tmp3192) + tmp3192[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3227 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp3227) - tmp3227[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4097 = Array{Taylor1{_S}}(undef, size(r_p1d2)) + for i = eachindex(tmp4097) + tmp4097[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3228 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp3228) - tmp3228[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3204 = Array{Taylor1{_S}}(undef, size(P_n)) + for i = eachindex(tmp3204) + tmp3204[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3229 = Array{Taylor1{_S}}(undef, size(tmp3227)) - for i = CartesianIndices(tmp3229) - tmp3229[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3205 = Array{Taylor1{_S}}(undef, size(tmp3204)) + for i = eachindex(tmp3205) + tmp3205[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3230 = Array{Taylor1{_S}}(undef, size(tmp3226)) - for i = CartesianIndices(tmp3230) - tmp3230[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3206 = Array{Taylor1{_S}}(undef, size(tmp3205)) + for i = eachindex(tmp3206) + tmp3206[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3231 = Array{Taylor1{_S}}(undef, size(tmp3225)) - for i = CartesianIndices(tmp3231) - tmp3231[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3208 = Array{Taylor1{_S}}(undef, size(dP_n)) + for i = eachindex(tmp3208) + tmp3208[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3233 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp3233) - tmp3233[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3209 = Array{Taylor1{_S}}(undef, size(tmp3208)) + for i = eachindex(tmp3209) + tmp3209[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3234 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp3234) - tmp3234[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3210 = Array{Taylor1{_S}}(undef, size(tmp3209)) + for i = eachindex(tmp3210) + tmp3210[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3235 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp3235) - tmp3235[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3211 = Array{Taylor1{_S}}(undef, size(tmp3210)) + for i = eachindex(tmp3211) + tmp3211[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3236 = Array{Taylor1{_S}}(undef, size(tmp3234)) - for i = CartesianIndices(tmp3236) + tmp3236 = Array{Taylor1{_S}}(undef, size(P_nm)) + for i = eachindex(tmp3236) tmp3236[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3237 = Array{Taylor1{_S}}(undef, size(tmp3233)) - for i = CartesianIndices(tmp3237) + tmp3237 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = eachindex(tmp3237) tmp3237[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3238 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp3238) + tmp3238 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = eachindex(tmp3238) tmp3238[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3239 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp3239) + tmp3239 = Array{Taylor1{_S}}(undef, size(tmp3237)) + for i = eachindex(tmp3239) tmp3239[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3240 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp3240) + tmp3240 = Array{Taylor1{_S}}(undef, size(tmp3236)) + for i = eachindex(tmp3240) tmp3240[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3241 = Array{Taylor1{_S}}(undef, size(tmp3239)) - for i = CartesianIndices(tmp3241) + tmp3241 = Array{Taylor1{_S}}(undef, size(P_nm)) + for i = eachindex(tmp3241) tmp3241[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3242 = Array{Taylor1{_S}}(undef, size(tmp3238)) - for i = CartesianIndices(tmp3242) + tmp3242 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = eachindex(tmp3242) tmp3242[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3243 = Array{Taylor1{_S}}(undef, size(tmp3237)) - for i = CartesianIndices(tmp3243) + tmp3243 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = eachindex(tmp3243) tmp3243[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3245 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp3245) + tmp3244 = Array{Taylor1{_S}}(undef, size(tmp3242)) + for i = eachindex(tmp3244) + tmp3244[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3245 = Array{Taylor1{_S}}(undef, size(tmp3241)) + for i = eachindex(tmp3245) tmp3245[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3246 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp3246) + tmp3246 = Array{Taylor1{_S}}(undef, size(tmp3240)) + for i = eachindex(tmp3246) tmp3246[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3247 = Array{Taylor1{_S}}(undef, size(tmp3245)) - for i = CartesianIndices(tmp3247) - tmp3247[i] = Taylor1(zero(constant_term(q[1])), order) - end - tmp3248 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - for i = CartesianIndices(tmp3248) + tmp3248 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = eachindex(tmp3248) tmp3248[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3249 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp3249) + for i = eachindex(tmp3249) tmp3249[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3250 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp3250) + for i = eachindex(tmp3250) tmp3250[i] = Taylor1(zero(constant_term(q[1])), order) end tmp3251 = Array{Taylor1{_S}}(undef, size(tmp3249)) - for i = CartesianIndices(tmp3251) + for i = eachindex(tmp3251) tmp3251[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3252 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - for i = CartesianIndices(tmp3252) + tmp3252 = Array{Taylor1{_S}}(undef, size(tmp3248)) + for i = eachindex(tmp3252) tmp3252[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3253 = Array{Taylor1{_S}}(undef, size(tmp3248)) - for i = CartesianIndices(tmp3253) + tmp3253 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = eachindex(tmp3253) tmp3253[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3273 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) - for i = CartesianIndices(tmp3273) - tmp3273[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3254 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = eachindex(tmp3254) + tmp3254[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3274 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) - for i = CartesianIndices(tmp3274) - tmp3274[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3255 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = eachindex(tmp3255) + tmp3255[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3277 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) - for i = CartesianIndices(tmp3277) - tmp3277[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3256 = Array{Taylor1{_S}}(undef, size(tmp3254)) + for i = eachindex(tmp3256) + tmp3256[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3278 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) - for i = CartesianIndices(tmp3278) - tmp3278[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3257 = Array{Taylor1{_S}}(undef, size(tmp3253)) + for i = eachindex(tmp3257) + tmp3257[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3199 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp3199) - tmp3199[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3258 = Array{Taylor1{_S}}(undef, size(tmp3252)) + for i = eachindex(tmp3258) + tmp3258[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3200 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp3200) - tmp3200[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3260 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = eachindex(tmp3260) + tmp3260[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3202 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - for i = CartesianIndices(tmp3202) - tmp3202[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3261 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = eachindex(tmp3261) + tmp3261[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3203 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - for i = CartesianIndices(tmp3203) - tmp3203[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3262 = Array{Taylor1{_S}}(undef, size(tmp3260)) + for i = eachindex(tmp3262) + tmp3262[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3205 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp3205) - tmp3205[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3263 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + for i = eachindex(tmp3263) + tmp3263[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3208 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp3208) - tmp3208[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3264 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = eachindex(tmp3264) + tmp3264[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3265 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = eachindex(tmp3265) + tmp3265[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3266 = Array{Taylor1{_S}}(undef, size(tmp3264)) + for i = eachindex(tmp3266) + tmp3266[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3267 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + for i = eachindex(tmp3267) + tmp3267[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3268 = Array{Taylor1{_S}}(undef, size(tmp3263)) + for i = eachindex(tmp3268) + tmp3268[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3217 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp3217) + tmp3288 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) + for i = eachindex(tmp3288) + tmp3288[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3289 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) + for i = eachindex(tmp3289) + tmp3289[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3292 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) + for i = eachindex(tmp3292) + tmp3292[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3293 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) + for i = eachindex(tmp3293) + tmp3293[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3214 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = eachindex(tmp3214) + tmp3214[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3215 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = eachindex(tmp3215) + tmp3215[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3217 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + for i = eachindex(tmp3217) tmp3217[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3218 = Array{Taylor1{_S}}(undef, size(tmp3217)) - for i = CartesianIndices(tmp3218) + tmp3218 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + for i = eachindex(tmp3218) tmp3218[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3219 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp3219) - tmp3219[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3220 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = eachindex(tmp3220) + tmp3220[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3210 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp3210) - tmp3210[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3223 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = eachindex(tmp3223) + tmp3223[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3212 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp3212) - tmp3212[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3232 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = eachindex(tmp3232) + tmp3232[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3213 = Array{Taylor1{_S}}(undef, size(tmp3212)) - for i = CartesianIndices(tmp3213) - tmp3213[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3233 = Array{Taylor1{_S}}(undef, size(tmp3232)) + for i = eachindex(tmp3233) + tmp3233[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3214 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp3214) - tmp3214[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3234 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = eachindex(tmp3234) + tmp3234[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3259 = Array{Taylor1{_S}}(undef, size(P_nm)) - for i = CartesianIndices(tmp3259) - tmp3259[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3225 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = eachindex(tmp3225) + tmp3225[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3260 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - for i = CartesianIndices(tmp3260) - tmp3260[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3227 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = eachindex(tmp3227) + tmp3227[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3261 = Array{Taylor1{_S}}(undef, size(tmp3259)) - for i = CartesianIndices(tmp3261) - tmp3261[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3228 = Array{Taylor1{_S}}(undef, size(tmp3227)) + for i = eachindex(tmp3228) + tmp3228[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3262 = Array{Taylor1{_S}}(undef, size(tmp3261)) - for i = CartesianIndices(tmp3262) - tmp3262[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3229 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = eachindex(tmp3229) + tmp3229[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3264 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - for i = CartesianIndices(tmp3264) - tmp3264[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3274 = Array{Taylor1{_S}}(undef, size(P_nm)) + for i = eachindex(tmp3274) + tmp3274[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3265 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) - for i = CartesianIndices(tmp3265) - tmp3265[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3275 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) + for i = eachindex(tmp3275) + tmp3275[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3266 = Array{Taylor1{_S}}(undef, size(tmp3264)) - for i = CartesianIndices(tmp3266) - tmp3266[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3276 = Array{Taylor1{_S}}(undef, size(tmp3274)) + for i = eachindex(tmp3276) + tmp3276[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3267 = Array{Taylor1{_S}}(undef, size(tmp3266)) - for i = CartesianIndices(tmp3267) - tmp3267[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3277 = Array{Taylor1{_S}}(undef, size(tmp3276)) + for i = eachindex(tmp3277) + tmp3277[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3279 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + for i = eachindex(tmp3279) + tmp3279[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3269 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - for i = CartesianIndices(tmp3269) - tmp3269[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3280 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) + for i = eachindex(tmp3280) + tmp3280[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3270 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - for i = CartesianIndices(tmp3270) - tmp3270[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3281 = Array{Taylor1{_S}}(undef, size(tmp3279)) + for i = eachindex(tmp3281) + tmp3281[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3271 = Array{Taylor1{_S}}(undef, size(tmp3270)) - for i = CartesianIndices(tmp3271) - tmp3271[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3282 = Array{Taylor1{_S}}(undef, size(tmp3281)) + for i = eachindex(tmp3282) + tmp3282[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3284 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) + for i = eachindex(tmp3284) + tmp3284[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3285 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + for i = eachindex(tmp3285) + tmp3285[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp3286 = Array{Taylor1{_S}}(undef, size(tmp3285)) + for i = eachindex(tmp3286) + tmp3286[i] = Taylor1(zero(constant_term(q[1])), order) end #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1380 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext @@ -6248,17 +4664,19 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q Z_bf_1[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(RotM[3, 1, j]), order) Z_bf_2[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]), order) Z_bf_3[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]), order) - tmp3156[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) - X_bf[i, j] = Taylor1(constant_term(tmp3156[i, j]) + constant_term(X_bf_3[i, j]), order) - tmp3158[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) - Y_bf[i, j] = Taylor1(constant_term(tmp3158[i, j]) + constant_term(Y_bf_3[i, j]), order) - tmp3160[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) - Z_bf[i, j] = Taylor1(constant_term(tmp3160[i, j]) + constant_term(Z_bf_3[i, j]), order) + tmp3171[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) + X_bf[i, j] = Taylor1(constant_term(tmp3171[i, j]) + constant_term(X_bf_3[i, j]), order) + tmp3173[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) + Y_bf[i, j] = Taylor1(constant_term(tmp3173[i, j]) + constant_term(Y_bf_3[i, j]), order) + tmp3175[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) + Z_bf[i, j] = Taylor1(constant_term(tmp3175[i, j]) + constant_term(Z_bf_3[i, j]), order) sin_ϕ[i, j] = Taylor1(constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]), order) - tmp3164[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) - tmp3166[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) - tmp3167[i, j] = Taylor1(constant_term(tmp3164[i, j]) + constant_term(tmp3166[i, j]), order) - r_xy[i, j] = Taylor1(sqrt(constant_term(tmp3167[i, j])), order) + tmp3179[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) + tmp4095[i, j] = Taylor1(zero(constant_term(X_bf[i, j])), order) + tmp3181[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) + tmp4096[i, j] = Taylor1(zero(constant_term(Y_bf[i, j])), order) + tmp3182[i, j] = Taylor1(constant_term(tmp3179[i, j]) + constant_term(tmp3181[i, j]), order) + r_xy[i, j] = Taylor1(sqrt(constant_term(tmp3182[i, j])), order) cos_ϕ[i, j] = Taylor1(constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]), order) sin_λ[i, j] = Taylor1(constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]), order) cos_λ[i, j] = Taylor1(constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]), order) @@ -6267,35 +4685,37 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q dP_n[i, j, 1] = Taylor1(identity(constant_term(zero_q_1)), order) dP_n[i, j, 2] = Taylor1(identity(constant_term(one_t)), order) for n = 2:n1SEM[j] - tmp3172[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp3173[i, j, n] = Taylor1(constant_term(tmp3172[i, j, n]) * constant_term(fact1_jsem[n]), order) - tmp3174[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) - P_n[i, j, n + 1] = Taylor1(constant_term(tmp3173[i, j, n]) - constant_term(tmp3174[i, j, n - 1]), order) - tmp3176[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp3177[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) - dP_n[i, j, n + 1] = Taylor1(constant_term(tmp3176[i, j, n]) + constant_term(tmp3177[i, j, n]), order) + tmp3187[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp3188[i, j, n] = Taylor1(constant_term(tmp3187[i, j, n]) * constant_term(fact1_jsem[n]), order) + tmp3189[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) + P_n[i, j, n + 1] = Taylor1(constant_term(tmp3188[i, j, n]) - constant_term(tmp3189[i, j, n - 1]), order) + tmp3191[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp3192[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) + dP_n[i, j, n + 1] = Taylor1(constant_term(tmp3191[i, j, n]) + constant_term(tmp3192[i, j, n]), order) temp_rn[i, j, n] = Taylor1(constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])), order) + tmp4097[i, j] = Taylor1(zero(constant_term(r_p1d2[i, j])), order) end r_p4[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(2)), order) - tmp3182[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) - tmp3183[i, j, 3] = Taylor1(constant_term(tmp3182[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ξ[i, j] = Taylor1(constant_term(tmp3183[i, j, 3]) / constant_term(r_p4[i, j]), order) - tmp3185[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) - tmp3186[i, j, 3] = Taylor1(constant_term(tmp3185[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) - tmp3187[i, j, 3] = Taylor1(constant_term(tmp3186[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ζ[i, j] = Taylor1(constant_term(tmp3187[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp4098[i, j] = Taylor1(zero(constant_term(r_p2[i, j])), order) + tmp3197[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) + tmp3198[i, j, 3] = Taylor1(constant_term(tmp3197[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ξ[i, j] = Taylor1(constant_term(tmp3198[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp3200[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) + tmp3201[i, j, 3] = Taylor1(constant_term(tmp3200[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) + tmp3202[i, j, 3] = Taylor1(constant_term(tmp3201[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ζ[i, j] = Taylor1(constant_term(tmp3202[i, j, 3]) / constant_term(r_p4[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) for n = 3:n1SEM[j] - tmp3189[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) - tmp3190[i, j, n + 1] = Taylor1(constant_term(tmp3189[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp3191[i, j, n + 1] = Taylor1(constant_term(tmp3190[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjξ[i, j, n] = Taylor1(constant_term(tmp3191[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) - tmp3193[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) - tmp3194[i, j, n + 1] = Taylor1(constant_term(tmp3193[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) - tmp3195[i, j, n + 1] = Taylor1(constant_term(tmp3194[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp3196[i, j, n + 1] = Taylor1(constant_term(tmp3195[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjζ[i, j, n] = Taylor1(constant_term(tmp3196[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) + tmp3204[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) + tmp3205[i, j, n + 1] = Taylor1(constant_term(tmp3204[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp3206[i, j, n + 1] = Taylor1(constant_term(tmp3205[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjξ[i, j, n] = Taylor1(constant_term(tmp3206[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) + tmp3208[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) + tmp3209[i, j, n + 1] = Taylor1(constant_term(tmp3208[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) + tmp3210[i, j, n + 1] = Taylor1(constant_term(tmp3209[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp3211[i, j, n + 1] = Taylor1(constant_term(tmp3210[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjζ[i, j, n] = Taylor1(constant_term(tmp3211[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(temp_fjξ[i, j, n])), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(temp_fjζ[i, j, n])), order) end @@ -6308,69 +4728,69 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q P_nm[i, j, 1, 1] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) cosϕ_dP_nm[i, j, 1, 1] = Taylor1(constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]), order) else - tmp3199[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - tmp3200[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - sin_mλ[i, j, m] = Taylor1(constant_term(tmp3199[i, j, m - 1]) + constant_term(tmp3200[i, j, m - 1]), order) - tmp3202[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - tmp3203[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - cos_mλ[i, j, m] = Taylor1(constant_term(tmp3202[i, j, m - 1]) - constant_term(tmp3203[i, j, m - 1]), order) - tmp3205[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) - secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp3205[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) + tmp3214[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + tmp3215[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + sin_mλ[i, j, m] = Taylor1(constant_term(tmp3214[i, j, m - 1]) + constant_term(tmp3215[i, j, m - 1]), order) + tmp3217[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + tmp3218[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + cos_mλ[i, j, m] = Taylor1(constant_term(tmp3217[i, j, m - 1]) - constant_term(tmp3218[i, j, m - 1]), order) + tmp3220[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) + secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp3220[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) P_nm[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]), order) - tmp3208[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) - cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp3208[i, j, m, m]) * constant_term(lnm3[m]), order) + tmp3223[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) + cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp3223[i, j, m, m]) * constant_term(lnm3[m]), order) end for n = m + 1:n1SEM[mo] if n == m + 1 - tmp3210[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3210[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp3225[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3225[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) else - tmp3212[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - tmp3213[i, j, n - 1, m] = Taylor1(constant_term(tmp3212[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) - tmp3214[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3213[i, j, n - 1, m]) + constant_term(tmp3214[i, j, n - 2, m]), order) + tmp3227[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + tmp3228[i, j, n - 1, m] = Taylor1(constant_term(tmp3227[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp3229[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3228[i, j, n - 1, m]) + constant_term(tmp3229[i, j, n - 2, m]), order) end P_nm[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]), order) - tmp3217[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) - tmp3218[i, j, n, m] = Taylor1(constant_term(tmp3217[i, j, n, m]) * constant_term(lnm3[n]), order) - tmp3219[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) - cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp3218[i, j, n, m]) + constant_term(tmp3219[i, j, n - 1, m]), order) + tmp3232[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) + tmp3233[i, j, n, m] = Taylor1(constant_term(tmp3232[i, j, n, m]) * constant_term(lnm3[n]), order) + tmp3234[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) + cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp3233[i, j, n, m]) + constant_term(tmp3234[i, j, n - 1, m]), order) end end - tmp3221[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) - tmp3222[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3223[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3224[i, j, 1] = Taylor1(constant_term(tmp3222[i, j, 1]) + constant_term(tmp3223[i, j, 1]), order) - tmp3225[i, j, 2, 1] = Taylor1(constant_term(tmp3221[i, j, 2, 1]) * constant_term(tmp3224[i, j, 1]), order) - tmp3226[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) - tmp3227[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3228[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3229[i, j, 2] = Taylor1(constant_term(tmp3227[i, j, 2]) + constant_term(tmp3228[i, j, 2]), order) - tmp3230[i, j, 2, 2] = Taylor1(constant_term(tmp3226[i, j, 2, 2]) * constant_term(tmp3229[i, j, 2]), order) - tmp3231[i, j, 2, 1] = Taylor1(constant_term(tmp3225[i, j, 2, 1]) + constant_term(tmp3230[i, j, 2, 2]), order) - F_CS_ξ[i, j] = Taylor1(constant_term(tmp3231[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp3233[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) - tmp3234[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3235[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3236[i, j, 1] = Taylor1(constant_term(tmp3234[i, j, 1]) - constant_term(tmp3235[i, j, 1]), order) - tmp3237[i, j, 2, 1] = Taylor1(constant_term(tmp3233[i, j, 2, 1]) * constant_term(tmp3236[i, j, 1]), order) - tmp3238[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) - tmp3239[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3240[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3241[i, j, 2] = Taylor1(constant_term(tmp3239[i, j, 2]) - constant_term(tmp3240[i, j, 2]), order) - tmp3242[i, j, 2, 2] = Taylor1(constant_term(tmp3238[i, j, 2, 2]) * constant_term(tmp3241[i, j, 2]), order) - tmp3243[i, j, 2, 1] = Taylor1(constant_term(tmp3237[i, j, 2, 1]) + constant_term(tmp3242[i, j, 2, 2]), order) - F_CS_η[i, j] = Taylor1(constant_term(tmp3243[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp3245[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3246[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3247[i, j, 1] = Taylor1(constant_term(tmp3245[i, j, 1]) + constant_term(tmp3246[i, j, 1]), order) - tmp3248[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3247[i, j, 1]), order) - tmp3249[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3250[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3251[i, j, 2] = Taylor1(constant_term(tmp3249[i, j, 2]) + constant_term(tmp3250[i, j, 2]), order) - tmp3252[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3251[i, j, 2]), order) - tmp3253[i, j, 2, 1] = Taylor1(constant_term(tmp3248[i, j, 2, 1]) + constant_term(tmp3252[i, j, 2, 2]), order) - F_CS_ζ[i, j] = Taylor1(constant_term(tmp3253[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp3236[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) + tmp3237[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp3238[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp3239[i, j, 1] = Taylor1(constant_term(tmp3237[i, j, 1]) + constant_term(tmp3238[i, j, 1]), order) + tmp3240[i, j, 2, 1] = Taylor1(constant_term(tmp3236[i, j, 2, 1]) * constant_term(tmp3239[i, j, 1]), order) + tmp3241[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) + tmp3242[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp3243[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp3244[i, j, 2] = Taylor1(constant_term(tmp3242[i, j, 2]) + constant_term(tmp3243[i, j, 2]), order) + tmp3245[i, j, 2, 2] = Taylor1(constant_term(tmp3241[i, j, 2, 2]) * constant_term(tmp3244[i, j, 2]), order) + tmp3246[i, j, 2, 1] = Taylor1(constant_term(tmp3240[i, j, 2, 1]) + constant_term(tmp3245[i, j, 2, 2]), order) + F_CS_ξ[i, j] = Taylor1(constant_term(tmp3246[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp3248[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) + tmp3249[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp3250[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp3251[i, j, 1] = Taylor1(constant_term(tmp3249[i, j, 1]) - constant_term(tmp3250[i, j, 1]), order) + tmp3252[i, j, 2, 1] = Taylor1(constant_term(tmp3248[i, j, 2, 1]) * constant_term(tmp3251[i, j, 1]), order) + tmp3253[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) + tmp3254[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp3255[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp3256[i, j, 2] = Taylor1(constant_term(tmp3254[i, j, 2]) - constant_term(tmp3255[i, j, 2]), order) + tmp3257[i, j, 2, 2] = Taylor1(constant_term(tmp3253[i, j, 2, 2]) * constant_term(tmp3256[i, j, 2]), order) + tmp3258[i, j, 2, 1] = Taylor1(constant_term(tmp3252[i, j, 2, 1]) + constant_term(tmp3257[i, j, 2, 2]), order) + F_CS_η[i, j] = Taylor1(constant_term(tmp3258[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp3260[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp3261[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp3262[i, j, 1] = Taylor1(constant_term(tmp3260[i, j, 1]) + constant_term(tmp3261[i, j, 1]), order) + tmp3263[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3262[i, j, 1]), order) + tmp3264[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp3265[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp3266[i, j, 2] = Taylor1(constant_term(tmp3264[i, j, 2]) + constant_term(tmp3265[i, j, 2]), order) + tmp3267[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3266[i, j, 2]), order) + tmp3268[i, j, 2, 1] = Taylor1(constant_term(tmp3263[i, j, 2, 1]) + constant_term(tmp3267[i, j, 2, 2]), order) + F_CS_ζ[i, j] = Taylor1(constant_term(tmp3268[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -6380,32 +4800,32 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q Cnm_sinmλ[i, j, n, m] = Taylor1(constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]), order) Snm_cosmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]), order) Snm_sinmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]), order) - tmp3259[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) - tmp3260[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp3261[i, j, n, m] = Taylor1(constant_term(tmp3259[i, j, n, m]) * constant_term(tmp3260[i, j, n, m]), order) - tmp3262[i, j, n, m] = Taylor1(constant_term(tmp3261[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp3262[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) - tmp3264[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) - tmp3265[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) - tmp3266[i, j, n, m] = Taylor1(constant_term(tmp3264[i, j, n, m]) * constant_term(tmp3265[i, j, n, m]), order) - tmp3267[i, j, n, m] = Taylor1(constant_term(tmp3266[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp3267[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) - tmp3269[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp3270[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3269[i, j, n, m]), order) - tmp3271[i, j, n, m] = Taylor1(constant_term(tmp3270[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp3271[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) + tmp3274[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) + tmp3275[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp3276[i, j, n, m] = Taylor1(constant_term(tmp3274[i, j, n, m]) * constant_term(tmp3275[i, j, n, m]), order) + tmp3277[i, j, n, m] = Taylor1(constant_term(tmp3276[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp3277[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) + tmp3279[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) + tmp3280[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) + tmp3281[i, j, n, m] = Taylor1(constant_term(tmp3279[i, j, n, m]) * constant_term(tmp3280[i, j, n, m]), order) + tmp3282[i, j, n, m] = Taylor1(constant_term(tmp3281[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp3282[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) + tmp3284[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp3285[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3284[i, j, n, m]), order) + tmp3286[i, j, n, m] = Taylor1(constant_term(tmp3285[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp3286[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ξ[i, j, n, m])), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(temp_CS_η[i, j, n, m])), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ζ[i, j, n, m])), order) end end - tmp3273[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) - tmp3274[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) - F_JCS_ξ[i, j] = Taylor1(constant_term(tmp3273[i, j]) + constant_term(tmp3274[i, j]), order) + tmp3288[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) + tmp3289[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) + F_JCS_ξ[i, j] = Taylor1(constant_term(tmp3288[i, j]) + constant_term(tmp3289[i, j]), order) F_JCS_η[i, j] = Taylor1(constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]), order) - tmp3277[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) - tmp3278[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) - F_JCS_ζ[i, j] = Taylor1(constant_term(tmp3277[i, j]) + constant_term(tmp3278[i, j]), order) + tmp3292[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) + tmp3293[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) + F_JCS_ζ[i, j] = Taylor1(constant_term(tmp3292[i, j]) + constant_term(tmp3293[i, j]), order) else F_JCS_ξ[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) F_JCS_η[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -6413,138 +4833,138 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q end Rb2p[i, j, 1, 1] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 2, 1] = Taylor1(-(constant_term(sin_λ[i, j])), order) - tmp3284[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp3284[i, j]) * constant_term(cos_λ[i, j]), order) + tmp3299[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp3299[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 1, 2] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 2, 2] = Taylor1(identity(constant_term(cos_λ[i, j])), order) - tmp3287[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp3287[i, j]) * constant_term(sin_λ[i, j]), order) + tmp3302[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp3302[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 1, 3] = Taylor1(identity(constant_term(sin_ϕ[i, j])), order) Rb2p[i, j, 2, 3] = Taylor1(identity(constant_term(zero_q_1)), order) Rb2p[i, j, 3, 3] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) - tmp3289[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3290[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3291[i, j, 1, 1] = Taylor1(constant_term(tmp3289[i, j, 1, 1]) + constant_term(tmp3290[i, j, 1, 2]), order) - tmp3292[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp3291[i, j, 1, 1]) + constant_term(tmp3292[i, j, 1, 3]), order) - tmp3294[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3295[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3296[i, j, 2, 1] = Taylor1(constant_term(tmp3294[i, j, 2, 1]) + constant_term(tmp3295[i, j, 2, 2]), order) - tmp3297[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp3296[i, j, 2, 1]) + constant_term(tmp3297[i, j, 2, 3]), order) - tmp3299[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3300[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3301[i, j, 3, 1] = Taylor1(constant_term(tmp3299[i, j, 3, 1]) + constant_term(tmp3300[i, j, 3, 2]), order) - tmp3302[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp3301[i, j, 3, 1]) + constant_term(tmp3302[i, j, 3, 3]), order) - tmp3304[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3305[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) + tmp3304[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) + tmp3305[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) tmp3306[i, j, 1, 1] = Taylor1(constant_term(tmp3304[i, j, 1, 1]) + constant_term(tmp3305[i, j, 1, 2]), order) - tmp3307[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp3306[i, j, 1, 1]) + constant_term(tmp3307[i, j, 1, 3]), order) - tmp3309[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3310[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) + tmp3307[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp3306[i, j, 1, 1]) + constant_term(tmp3307[i, j, 1, 3]), order) + tmp3309[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) + tmp3310[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) tmp3311[i, j, 2, 1] = Taylor1(constant_term(tmp3309[i, j, 2, 1]) + constant_term(tmp3310[i, j, 2, 2]), order) - tmp3312[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp3311[i, j, 2, 1]) + constant_term(tmp3312[i, j, 2, 3]), order) - tmp3314[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3315[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) + tmp3312[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp3311[i, j, 2, 1]) + constant_term(tmp3312[i, j, 2, 3]), order) + tmp3314[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) + tmp3315[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) tmp3316[i, j, 3, 1] = Taylor1(constant_term(tmp3314[i, j, 3, 1]) + constant_term(tmp3315[i, j, 3, 2]), order) - tmp3317[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp3316[i, j, 3, 1]) + constant_term(tmp3317[i, j, 3, 3]), order) - tmp3319[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3320[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3317[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp3316[i, j, 3, 1]) + constant_term(tmp3317[i, j, 3, 3]), order) + tmp3319[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) + tmp3320[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) tmp3321[i, j, 1, 1] = Taylor1(constant_term(tmp3319[i, j, 1, 1]) + constant_term(tmp3320[i, j, 1, 2]), order) - tmp3322[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp3321[i, j, 1, 1]) + constant_term(tmp3322[i, j, 1, 3]), order) - tmp3324[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3325[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3322[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp3321[i, j, 1, 1]) + constant_term(tmp3322[i, j, 1, 3]), order) + tmp3324[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) + tmp3325[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) tmp3326[i, j, 2, 1] = Taylor1(constant_term(tmp3324[i, j, 2, 1]) + constant_term(tmp3325[i, j, 2, 2]), order) - tmp3327[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp3326[i, j, 2, 1]) + constant_term(tmp3327[i, j, 2, 3]), order) - tmp3329[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3330[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3327[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp3326[i, j, 2, 1]) + constant_term(tmp3327[i, j, 2, 3]), order) + tmp3329[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) + tmp3330[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) tmp3331[i, j, 3, 1] = Taylor1(constant_term(tmp3329[i, j, 3, 1]) + constant_term(tmp3330[i, j, 3, 2]), order) - tmp3332[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp3331[i, j, 3, 1]) + constant_term(tmp3332[i, j, 3, 3]), order) - tmp3334[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) - tmp3335[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) - tmp3336[i, j, 1, 1] = Taylor1(constant_term(tmp3334[i, j, 1, 1]) + constant_term(tmp3335[i, j, 2, 1]), order) - tmp3337[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) - F_JCS_x[i, j] = Taylor1(constant_term(tmp3336[i, j, 1, 1]) + constant_term(tmp3337[i, j, 3, 1]), order) - tmp3339[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) - tmp3340[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) - tmp3341[i, j, 1, 2] = Taylor1(constant_term(tmp3339[i, j, 1, 2]) + constant_term(tmp3340[i, j, 2, 2]), order) - tmp3342[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) - F_JCS_y[i, j] = Taylor1(constant_term(tmp3341[i, j, 1, 2]) + constant_term(tmp3342[i, j, 3, 2]), order) - tmp3344[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) - tmp3345[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) - tmp3346[i, j, 1, 3] = Taylor1(constant_term(tmp3344[i, j, 1, 3]) + constant_term(tmp3345[i, j, 2, 3]), order) - tmp3347[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) - F_JCS_z[i, j] = Taylor1(constant_term(tmp3346[i, j, 1, 3]) + constant_term(tmp3347[i, j, 3, 3]), order) + tmp3332[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp3331[i, j, 3, 1]) + constant_term(tmp3332[i, j, 3, 3]), order) + tmp3334[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) + tmp3335[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3336[i, j, 1, 1] = Taylor1(constant_term(tmp3334[i, j, 1, 1]) + constant_term(tmp3335[i, j, 1, 2]), order) + tmp3337[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp3336[i, j, 1, 1]) + constant_term(tmp3337[i, j, 1, 3]), order) + tmp3339[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) + tmp3340[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3341[i, j, 2, 1] = Taylor1(constant_term(tmp3339[i, j, 2, 1]) + constant_term(tmp3340[i, j, 2, 2]), order) + tmp3342[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp3341[i, j, 2, 1]) + constant_term(tmp3342[i, j, 2, 3]), order) + tmp3344[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) + tmp3345[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3346[i, j, 3, 1] = Taylor1(constant_term(tmp3344[i, j, 3, 1]) + constant_term(tmp3345[i, j, 3, 2]), order) + tmp3347[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp3346[i, j, 3, 1]) + constant_term(tmp3347[i, j, 3, 3]), order) + tmp3349[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) + tmp3350[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) + tmp3351[i, j, 1, 1] = Taylor1(constant_term(tmp3349[i, j, 1, 1]) + constant_term(tmp3350[i, j, 2, 1]), order) + tmp3352[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) + F_JCS_x[i, j] = Taylor1(constant_term(tmp3351[i, j, 1, 1]) + constant_term(tmp3352[i, j, 3, 1]), order) + tmp3354[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) + tmp3355[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) + tmp3356[i, j, 1, 2] = Taylor1(constant_term(tmp3354[i, j, 1, 2]) + constant_term(tmp3355[i, j, 2, 2]), order) + tmp3357[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) + F_JCS_y[i, j] = Taylor1(constant_term(tmp3356[i, j, 1, 2]) + constant_term(tmp3357[i, j, 3, 2]), order) + tmp3359[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) + tmp3360[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) + tmp3361[i, j, 1, 3] = Taylor1(constant_term(tmp3359[i, j, 1, 3]) + constant_term(tmp3360[i, j, 2, 3]), order) + tmp3362[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) + F_JCS_z[i, j] = Taylor1(constant_term(tmp3361[i, j, 1, 3]) + constant_term(tmp3362[i, j, 3, 3]), order) end end end end - tmp3349 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - for i = CartesianIndices(tmp3349) - tmp3349[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3364 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + for i = eachindex(tmp3364) + tmp3364[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3351 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - for i = CartesianIndices(tmp3351) - tmp3351[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3366 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + for i = eachindex(tmp3366) + tmp3366[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3353 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - for i = CartesianIndices(tmp3353) - tmp3353[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3368 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + for i = eachindex(tmp3368) + tmp3368[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3355 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - for i = CartesianIndices(tmp3355) - tmp3355[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3370 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + for i = eachindex(tmp3370) + tmp3370[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3357 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - for i = CartesianIndices(tmp3357) - tmp3357[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3372 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + for i = eachindex(tmp3372) + tmp3372[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3359 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - for i = CartesianIndices(tmp3359) - tmp3359[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3374 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + for i = eachindex(tmp3374) + tmp3374[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3361 = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(tmp3361) - tmp3361[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3376 = Array{Taylor1{_S}}(undef, size(Y)) + for i = eachindex(tmp3376) + tmp3376[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3362 = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(tmp3362) - tmp3362[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3377 = Array{Taylor1{_S}}(undef, size(Z)) + for i = eachindex(tmp3377) + tmp3377[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3363 = Array{Taylor1{_S}}(undef, size(tmp3361)) - for i = CartesianIndices(tmp3363) - tmp3363[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3378 = Array{Taylor1{_S}}(undef, size(tmp3376)) + for i = eachindex(tmp3378) + tmp3378[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3365 = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(tmp3365) - tmp3365[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3380 = Array{Taylor1{_S}}(undef, size(Z)) + for i = eachindex(tmp3380) + tmp3380[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3366 = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(tmp3366) - tmp3366[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3381 = Array{Taylor1{_S}}(undef, size(X)) + for i = eachindex(tmp3381) + tmp3381[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3367 = Array{Taylor1{_S}}(undef, size(tmp3365)) - for i = CartesianIndices(tmp3367) - tmp3367[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3382 = Array{Taylor1{_S}}(undef, size(tmp3380)) + for i = eachindex(tmp3382) + tmp3382[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3369 = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(tmp3369) - tmp3369[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3384 = Array{Taylor1{_S}}(undef, size(X)) + for i = eachindex(tmp3384) + tmp3384[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3370 = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(tmp3370) - tmp3370[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3385 = Array{Taylor1{_S}}(undef, size(Y)) + for i = eachindex(tmp3385) + tmp3385[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3371 = Array{Taylor1{_S}}(undef, size(tmp3369)) - for i = CartesianIndices(tmp3371) - tmp3371[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3386 = Array{Taylor1{_S}}(undef, size(tmp3384)) + for i = eachindex(tmp3386) + tmp3386[i] = Taylor1(zero(constant_term(q[1])), order) end for j = 1:N_ext for i = 1:N_ext @@ -6552,37 +4972,37 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q continue else if UJ_interaction[i, j] - tmp3349[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp3349[i, j]), order) + tmp3364[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp3364[i, j]), order) accX[j] = Taylor1(identity(constant_term(temp_accX_j[i, j])), order) - tmp3351[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp3351[i, j]), order) + tmp3366[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp3366[i, j]), order) accY[j] = Taylor1(identity(constant_term(temp_accY_j[i, j])), order) - tmp3353[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp3353[i, j]), order) + tmp3368[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp3368[i, j]), order) accZ[j] = Taylor1(identity(constant_term(temp_accZ_j[i, j])), order) - tmp3355[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp3355[i, j]), order) + tmp3370[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp3370[i, j]), order) accX[i] = Taylor1(identity(constant_term(temp_accX_i[i, j])), order) - tmp3357[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp3357[i, j]), order) + tmp3372[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp3372[i, j]), order) accY[i] = Taylor1(identity(constant_term(temp_accY_i[i, j])), order) - tmp3359[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp3359[i, j]), order) + tmp3374[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp3374[i, j]), order) accZ[i] = Taylor1(identity(constant_term(temp_accZ_i[i, j])), order) if j == mo - tmp3361[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp3362[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp3363[i, j] = Taylor1(constant_term(tmp3361[i, j]) - constant_term(tmp3362[i, j]), order) - N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3363[i, j]), order) - tmp3365[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp3366[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp3367[i, j] = Taylor1(constant_term(tmp3365[i, j]) - constant_term(tmp3366[i, j]), order) - N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3367[i, j]), order) - tmp3369[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp3370[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp3371[i, j] = Taylor1(constant_term(tmp3369[i, j]) - constant_term(tmp3370[i, j]), order) - N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3371[i, j]), order) + tmp3376[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp3377[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp3378[i, j] = Taylor1(constant_term(tmp3376[i, j]) - constant_term(tmp3377[i, j]), order) + N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3378[i, j]), order) + tmp3380[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp3381[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp3382[i, j] = Taylor1(constant_term(tmp3380[i, j]) - constant_term(tmp3381[i, j]), order) + N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3382[i, j]), order) + tmp3384[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp3385[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp3386[i, j] = Taylor1(constant_term(tmp3384[i, j]) - constant_term(tmp3385[i, j]), order) + N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3386[i, j]), order) temp_N_M_x[i] = Taylor1(constant_term(N_MfigM[1]) - constant_term(N_MfigM_pmA_x[i]), order) N_MfigM[1] = Taylor1(identity(constant_term(temp_N_M_x[i])), order) temp_N_M_y[i] = Taylor1(constant_term(N_MfigM[2]) - constant_term(N_MfigM_pmA_y[i]), order) @@ -6594,40 +5014,44 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q end end end - tmp3383 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) - for i = CartesianIndices(tmp3383) - tmp3383[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3398 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) + for i = eachindex(tmp3398) + tmp3398[i] = Taylor1(zero(constant_term(q[1])), order) end Xij_t_Ui = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(Xij_t_Ui) + for i = eachindex(Xij_t_Ui) Xij_t_Ui[i] = Taylor1(zero(constant_term(q[1])), order) end Yij_t_Vi = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(Yij_t_Vi) + for i = eachindex(Yij_t_Vi) Yij_t_Vi[i] = Taylor1(zero(constant_term(q[1])), order) end Zij_t_Wi = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(Zij_t_Wi) + for i = eachindex(Zij_t_Wi) Zij_t_Wi[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3389 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) - for i = CartesianIndices(tmp3389) - tmp3389[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3404 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) + for i = eachindex(tmp3404) + tmp3404[i] = Taylor1(zero(constant_term(q[1])), order) end - Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp3389)) - for i = CartesianIndices(Rij_dot_Vi) + Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp3404)) + for i = eachindex(Rij_dot_Vi) Rij_dot_Vi[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3392 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) - for i = CartesianIndices(tmp3392) - tmp3392[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3407 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) + for i = eachindex(tmp3407) + tmp3407[i] = Taylor1(zero(constant_term(q[1])), order) + end + tmp4099 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) + for i = eachindex(tmp4099) + tmp4099[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3395 = Array{Taylor1{_S}}(undef, size(rij_dot_vi_div_rij_sq)) - for i = CartesianIndices(tmp3395) - tmp3395[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3410 = Array{Taylor1{_S}}(undef, size(rij_dot_vi_div_rij_sq)) + for i = eachindex(tmp3410) + tmp3410[i] = Taylor1(zero(constant_term(q[1])), order) end pn1t2_7 = Array{Taylor1{_S}}(undef, size(ϕs_and_vs)) - for i = CartesianIndices(pn1t2_7) + for i = eachindex(pn1t2_7) pn1t2_7[i] = Taylor1(zero(constant_term(q[1])), order) end #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1619 =# Threads.@threads for j = 1:N @@ -6639,18 +5063,19 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q ϕi_plus_4ϕj[i, j] = Taylor1(constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]), order) _2v2[i, j] = Taylor1(constant_term(2) * constant_term(v2[i]), order) sj2_plus_2si2[i, j] = Taylor1(constant_term(v2[j]) + constant_term(_2v2[i, j]), order) - tmp3383[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) - sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3383[i, j]), order) + tmp3398[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) + sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3398[i, j]), order) ϕs_and_vs[i, j] = Taylor1(constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]), order) Xij_t_Ui[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(dq[3i - 2]), order) Yij_t_Vi[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(dq[3i - 1]), order) Zij_t_Wi[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(dq[3i]), order) - tmp3389[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) - Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp3389[i, j]) + constant_term(Zij_t_Wi[i, j]), order) - tmp3392[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) - rij_dot_vi_div_rij_sq[i, j] = Taylor1(constant_term(tmp3392[i, j]) / constant_term(r_p2[i, j]), order) - tmp3395[i, j] = Taylor1(constant_term(1.5) * constant_term(rij_dot_vi_div_rij_sq[i, j]), order) - pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3395[i, j]), order) + tmp3404[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) + Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp3404[i, j]) + constant_term(Zij_t_Wi[i, j]), order) + tmp3407[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) + tmp4099[i, j] = Taylor1(zero(constant_term(Rij_dot_Vi[i, j])), order) + rij_dot_vi_div_rij_sq[i, j] = Taylor1(constant_term(tmp3407[i, j]) / constant_term(r_p2[i, j]), order) + tmp3410[i, j] = Taylor1(constant_term(1.5) * constant_term(rij_dot_vi_div_rij_sq[i, j]), order) + pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3410[i, j]), order) pn1t1_7[i, j] = Taylor1(constant_term(c_p2) + constant_term(pn1t2_7[i, j]), order) end end @@ -6658,52 +5083,52 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q pntempY[j] = Taylor1(identity(constant_term(zero_q_1)), order) pntempZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp3402 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) - for i = CartesianIndices(tmp3402) - tmp3402[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3417 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) + for i = eachindex(tmp3417) + tmp3417[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3403 = Array{Taylor1{_S}}(undef, size(tmp3402)) - for i = CartesianIndices(tmp3403) - tmp3403[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3418 = Array{Taylor1{_S}}(undef, size(tmp3417)) + for i = eachindex(tmp3418) + tmp3418[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3404 = Array{Taylor1{_S}}(undef, size(tmp3403)) - for i = CartesianIndices(tmp3404) - tmp3404[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3419 = Array{Taylor1{_S}}(undef, size(tmp3418)) + for i = eachindex(tmp3419) + tmp3419[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3412 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) - for i = CartesianIndices(tmp3412) - tmp3412[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3427 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) + for i = eachindex(tmp3427) + tmp3427[i] = Taylor1(zero(constant_term(q[1])), order) end termpnx = Array{Taylor1{_S}}(undef, size(X_t_pn1)) - for i = CartesianIndices(termpnx) + for i = eachindex(termpnx) termpnx[i] = Taylor1(zero(constant_term(q[1])), order) end sumpnx = Array{Taylor1{_S}}(undef, size(termpnx)) - for i = CartesianIndices(sumpnx) + for i = eachindex(sumpnx) sumpnx[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3415 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) - for i = CartesianIndices(tmp3415) - tmp3415[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3430 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) + for i = eachindex(tmp3430) + tmp3430[i] = Taylor1(zero(constant_term(q[1])), order) end termpny = Array{Taylor1{_S}}(undef, size(Y_t_pn1)) - for i = CartesianIndices(termpny) + for i = eachindex(termpny) termpny[i] = Taylor1(zero(constant_term(q[1])), order) end sumpny = Array{Taylor1{_S}}(undef, size(termpny)) - for i = CartesianIndices(sumpny) + for i = eachindex(sumpny) sumpny[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp3418 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) - for i = CartesianIndices(tmp3418) - tmp3418[i] = Taylor1(zero(constant_term(q[1])), order) + tmp3433 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) + for i = eachindex(tmp3433) + tmp3433[i] = Taylor1(zero(constant_term(q[1])), order) end termpnz = Array{Taylor1{_S}}(undef, size(Z_t_pn1)) - for i = CartesianIndices(termpnz) + for i = eachindex(termpnz) termpnz[i] = Taylor1(zero(constant_term(q[1])), order) end sumpnz = Array{Taylor1{_S}}(undef, size(termpnz)) - for i = CartesianIndices(sumpnz) + for i = eachindex(sumpnz) sumpnz[i] = Taylor1(zero(constant_term(q[1])), order) end #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1658 =# Threads.@threads for j = 1:N @@ -6714,26 +5139,26 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q pNX_t_X[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(X[i, j]), order) pNY_t_Y[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(Y[i, j]), order) pNZ_t_Z[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(Z[i, j]), order) - tmp3402[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) - tmp3403[i, j] = Taylor1(constant_term(tmp3402[i, j]) + constant_term(pNZ_t_Z[i, j]), order) - tmp3404[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp3403[i, j]), order) - pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp3404[i, j]), order) + tmp3417[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) + tmp3418[i, j] = Taylor1(constant_term(tmp3417[i, j]) + constant_term(pNZ_t_Z[i, j]), order) + tmp3419[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp3418[i, j]), order) + pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp3419[i, j]), order) X_t_pn1[i, j] = Taylor1(constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]), order) Y_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]), order) Z_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]), order) pNX_t_pn3[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(pn3[i, j]), order) pNY_t_pn3[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(pn3[i, j]), order) pNZ_t_pn3[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(pn3[i, j]), order) - tmp3412[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) - termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp3412[i, j]), order) + tmp3427[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) + termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp3427[i, j]), order) sumpnx[i, j] = Taylor1(constant_term(pntempX[j]) + constant_term(termpnx[i, j]), order) pntempX[j] = Taylor1(identity(constant_term(sumpnx[i, j])), order) - tmp3415[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) - termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp3415[i, j]), order) + tmp3430[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) + termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp3430[i, j]), order) sumpny[i, j] = Taylor1(constant_term(pntempY[j]) + constant_term(termpny[i, j]), order) pntempY[j] = Taylor1(identity(constant_term(sumpny[i, j])), order) - tmp3418[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) - termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp3418[i, j]), order) + tmp3433[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) + termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp3433[i, j]), order) sumpnz[i, j] = Taylor1(constant_term(pntempZ[j]) + constant_term(termpnz[i, j]), order) pntempZ[j] = Taylor1(identity(constant_term(sumpnz[i, j])), order) end @@ -6745,248 +5170,281 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q x0s_M = Taylor1(identity(constant_term(r_star_M_0[1])), order) y0s_M = Taylor1(identity(constant_term(r_star_M_0[2])), order) z0s_M = Taylor1(identity(constant_term(r_star_M_0[3])), order) - tmp3425 = Taylor1(constant_term(x0s_M) ^ float(constant_term(2)), order) - tmp3427 = Taylor1(constant_term(y0s_M) ^ float(constant_term(2)), order) - ρ0s2_M = Taylor1(constant_term(tmp3425) + constant_term(tmp3427), order) + tmp3440 = Taylor1(constant_term(x0s_M) ^ float(constant_term(2)), order) + tmp4100 = Taylor1(zero(constant_term(x0s_M)), order) + tmp3442 = Taylor1(constant_term(y0s_M) ^ float(constant_term(2)), order) + tmp4101 = Taylor1(zero(constant_term(y0s_M)), order) + ρ0s2_M = Taylor1(constant_term(tmp3440) + constant_term(tmp3442), order) ρ0s_M = Taylor1(sqrt(constant_term(ρ0s2_M)), order) z0s2_M = Taylor1(constant_term(z0s_M) ^ float(constant_term(2)), order) + tmp4102 = Taylor1(zero(constant_term(z0s_M)), order) r0s2_M = Taylor1(constant_term(ρ0s2_M) + constant_term(z0s2_M), order) r0s_M = Taylor1(sqrt(constant_term(r0s2_M)), order) r0s5_M = Taylor1(constant_term(r0s_M) ^ float(constant_term(5)), order) + tmp4103 = Taylor1(zero(constant_term(r0s_M)), order) x0s_S = Taylor1(identity(constant_term(r_star_S_0[1])), order) y0s_S = Taylor1(identity(constant_term(r_star_S_0[2])), order) z0s_S = Taylor1(identity(constant_term(r_star_S_0[3])), order) - tmp3437 = Taylor1(constant_term(x0s_S) ^ float(constant_term(2)), order) - tmp3439 = Taylor1(constant_term(y0s_S) ^ float(constant_term(2)), order) - ρ0s2_S = Taylor1(constant_term(tmp3437) + constant_term(tmp3439), order) + tmp3452 = Taylor1(constant_term(x0s_S) ^ float(constant_term(2)), order) + tmp4104 = Taylor1(zero(constant_term(x0s_S)), order) + tmp3454 = Taylor1(constant_term(y0s_S) ^ float(constant_term(2)), order) + tmp4105 = Taylor1(zero(constant_term(y0s_S)), order) + ρ0s2_S = Taylor1(constant_term(tmp3452) + constant_term(tmp3454), order) ρ0s_S = Taylor1(sqrt(constant_term(ρ0s2_S)), order) z0s2_S = Taylor1(constant_term(z0s_S) ^ float(constant_term(2)), order) + tmp4106 = Taylor1(zero(constant_term(z0s_S)), order) r0s2_S = Taylor1(constant_term(ρ0s2_S) + constant_term(z0s2_S), order) r0s_S = Taylor1(sqrt(constant_term(r0s2_S)), order) r0s5_S = Taylor1(constant_term(r0s_S) ^ float(constant_term(5)), order) - tmp3449 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_0[3]), order) - tmp3451 = Taylor1(constant_term(tmp3449) ^ float(constant_term(2)), order) - tmp3453 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_M), order) - tmp3455 = Taylor1(constant_term(tmp3453) ^ float(constant_term(2)), order) - tmp3456 = Taylor1(constant_term(0.5) * constant_term(tmp3455), order) - tmp3457 = Taylor1(constant_term(tmp3451) + constant_term(tmp3456), order) - tmp3458 = Taylor1(constant_term(tmp3457) / constant_term(r_p2[mo, ea]), order) - tmp3459 = Taylor1(constant_term(5) * constant_term(tmp3458), order) - coeff0_M = Taylor1(constant_term(r0s2_M) - constant_term(tmp3459), order) - tmp3462 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_0[3]), order) - tmp3464 = Taylor1(constant_term(tmp3462) ^ float(constant_term(2)), order) - tmp3466 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_S), order) - tmp3468 = Taylor1(constant_term(tmp3466) ^ float(constant_term(2)), order) - tmp3469 = Taylor1(constant_term(0.5) * constant_term(tmp3468), order) - tmp3470 = Taylor1(constant_term(tmp3464) + constant_term(tmp3469), order) - tmp3471 = Taylor1(constant_term(tmp3470) / constant_term(r_p2[mo, ea]), order) - tmp3472 = Taylor1(constant_term(5) * constant_term(tmp3471), order) - coeff0_S = Taylor1(constant_term(r0s2_S) - constant_term(tmp3472), order) + tmp4107 = Taylor1(zero(constant_term(r0s_S)), order) + tmp3464 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_0[3]), order) + tmp3466 = Taylor1(constant_term(tmp3464) ^ float(constant_term(2)), order) + tmp4108 = Taylor1(zero(constant_term(tmp3464)), order) + tmp3468 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_M), order) + tmp3470 = Taylor1(constant_term(tmp3468) ^ float(constant_term(2)), order) + tmp4109 = Taylor1(zero(constant_term(tmp3468)), order) + tmp3471 = Taylor1(constant_term(0.5) * constant_term(tmp3470), order) + tmp3472 = Taylor1(constant_term(tmp3466) + constant_term(tmp3471), order) + tmp3473 = Taylor1(constant_term(tmp3472) / constant_term(r_p2[mo, ea]), order) + tmp3474 = Taylor1(constant_term(5) * constant_term(tmp3473), order) + coeff0_M = Taylor1(constant_term(r0s2_M) - constant_term(tmp3474), order) + tmp3477 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_0[3]), order) + tmp3479 = Taylor1(constant_term(tmp3477) ^ float(constant_term(2)), order) + tmp4110 = Taylor1(zero(constant_term(tmp3477)), order) + tmp3481 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_S), order) + tmp3483 = Taylor1(constant_term(tmp3481) ^ float(constant_term(2)), order) + tmp4111 = Taylor1(zero(constant_term(tmp3481)), order) + tmp3484 = Taylor1(constant_term(0.5) * constant_term(tmp3483), order) + tmp3485 = Taylor1(constant_term(tmp3479) + constant_term(tmp3484), order) + tmp3486 = Taylor1(constant_term(tmp3485) / constant_term(r_p2[mo, ea]), order) + tmp3487 = Taylor1(constant_term(5) * constant_term(tmp3486), order) + coeff0_S = Taylor1(constant_term(r0s2_S) - constant_term(tmp3487), order) k_20E_div_r0s5_M = Taylor1(constant_term(k_20E) / constant_term(r0s5_M), order) k_20E_div_r0s5_S = Taylor1(constant_term(k_20E) / constant_term(r0s5_S), order) - tmp3476 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) - tmp3477 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp3476), order) - a_tid_0_M_x = Taylor1(constant_term(tmp3477) * constant_term(X_bf[mo, ea]), order) - tmp3479 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) - tmp3480 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp3479), order) - a_tid_0_M_y = Taylor1(constant_term(tmp3480) * constant_term(Y_bf[mo, ea]), order) - tmp3483 = Taylor1(constant_term(2) * constant_term(z0s2_M), order) - tmp3484 = Taylor1(constant_term(tmp3483) + constant_term(coeff0_M), order) - tmp3485 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp3484), order) - a_tid_0_M_z = Taylor1(constant_term(tmp3485) * constant_term(Z_bf[mo, ea]), order) - tmp3487 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) - tmp3488 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp3487), order) - a_tid_0_S_x = Taylor1(constant_term(tmp3488) * constant_term(X_bf[mo, ea]), order) - tmp3490 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) - tmp3491 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp3490), order) - a_tid_0_S_y = Taylor1(constant_term(tmp3491) * constant_term(Y_bf[mo, ea]), order) - tmp3494 = Taylor1(constant_term(2) * constant_term(z0s2_S), order) - tmp3495 = Taylor1(constant_term(tmp3494) + constant_term(coeff0_S), order) - tmp3496 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp3495), order) - a_tid_0_S_z = Taylor1(constant_term(tmp3496) * constant_term(Z_bf[mo, ea]), order) + tmp3491 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) + tmp3492 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp3491), order) + a_tid_0_M_x = Taylor1(constant_term(tmp3492) * constant_term(X_bf[mo, ea]), order) + tmp3494 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) + tmp3495 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp3494), order) + a_tid_0_M_y = Taylor1(constant_term(tmp3495) * constant_term(Y_bf[mo, ea]), order) + tmp3498 = Taylor1(constant_term(2) * constant_term(z0s2_M), order) + tmp3499 = Taylor1(constant_term(tmp3498) + constant_term(coeff0_M), order) + tmp3500 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp3499), order) + a_tid_0_M_z = Taylor1(constant_term(tmp3500) * constant_term(Z_bf[mo, ea]), order) + tmp3502 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) + tmp3503 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp3502), order) + a_tid_0_S_x = Taylor1(constant_term(tmp3503) * constant_term(X_bf[mo, ea]), order) + tmp3505 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) + tmp3506 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp3505), order) + a_tid_0_S_y = Taylor1(constant_term(tmp3506) * constant_term(Y_bf[mo, ea]), order) + tmp3509 = Taylor1(constant_term(2) * constant_term(z0s2_S), order) + tmp3510 = Taylor1(constant_term(tmp3509) + constant_term(coeff0_S), order) + tmp3511 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp3510), order) + a_tid_0_S_z = Taylor1(constant_term(tmp3511) * constant_term(Z_bf[mo, ea]), order) x1s_M = Taylor1(identity(constant_term(r_star_M_1[1])), order) y1s_M = Taylor1(identity(constant_term(r_star_M_1[2])), order) z1s_M = Taylor1(identity(constant_term(r_star_M_1[3])), order) - tmp3499 = Taylor1(constant_term(x1s_M) ^ float(constant_term(2)), order) - tmp3501 = Taylor1(constant_term(y1s_M) ^ float(constant_term(2)), order) - ρ1s2_M = Taylor1(constant_term(tmp3499) + constant_term(tmp3501), order) + tmp3514 = Taylor1(constant_term(x1s_M) ^ float(constant_term(2)), order) + tmp4112 = Taylor1(zero(constant_term(x1s_M)), order) + tmp3516 = Taylor1(constant_term(y1s_M) ^ float(constant_term(2)), order) + tmp4113 = Taylor1(zero(constant_term(y1s_M)), order) + ρ1s2_M = Taylor1(constant_term(tmp3514) + constant_term(tmp3516), order) ρ1s_M = Taylor1(sqrt(constant_term(ρ1s2_M)), order) z1s2_M = Taylor1(constant_term(z1s_M) ^ float(constant_term(2)), order) + tmp4114 = Taylor1(zero(constant_term(z1s_M)), order) r1s2_M = Taylor1(constant_term(ρ1s2_M) + constant_term(z1s2_M), order) r1s_M = Taylor1(sqrt(constant_term(r1s2_M)), order) r1s5_M = Taylor1(constant_term(r1s_M) ^ float(constant_term(5)), order) + tmp4115 = Taylor1(zero(constant_term(r1s_M)), order) x1s_S = Taylor1(identity(constant_term(r_star_S_1[1])), order) y1s_S = Taylor1(identity(constant_term(r_star_S_1[2])), order) z1s_S = Taylor1(identity(constant_term(r_star_S_1[3])), order) - tmp3511 = Taylor1(constant_term(x1s_S) ^ float(constant_term(2)), order) - tmp3513 = Taylor1(constant_term(y1s_S) ^ float(constant_term(2)), order) - ρ1s2_S = Taylor1(constant_term(tmp3511) + constant_term(tmp3513), order) + tmp3526 = Taylor1(constant_term(x1s_S) ^ float(constant_term(2)), order) + tmp4116 = Taylor1(zero(constant_term(x1s_S)), order) + tmp3528 = Taylor1(constant_term(y1s_S) ^ float(constant_term(2)), order) + tmp4117 = Taylor1(zero(constant_term(y1s_S)), order) + ρ1s2_S = Taylor1(constant_term(tmp3526) + constant_term(tmp3528), order) ρ1s_S = Taylor1(sqrt(constant_term(ρ1s2_S)), order) z1s2_S = Taylor1(constant_term(z1s_S) ^ float(constant_term(2)), order) + tmp4118 = Taylor1(zero(constant_term(z1s_S)), order) r1s2_S = Taylor1(constant_term(ρ1s2_S) + constant_term(z1s2_S), order) r1s_S = Taylor1(sqrt(constant_term(r1s2_S)), order) r1s5_S = Taylor1(constant_term(r1s_S) ^ float(constant_term(5)), order) - tmp3522 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_1[1]), order) - tmp3523 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_1[2]), order) - coeff1_1_M = Taylor1(constant_term(tmp3522) + constant_term(tmp3523), order) - tmp3525 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_1[1]), order) - tmp3526 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_1[2]), order) - coeff1_1_S = Taylor1(constant_term(tmp3525) + constant_term(tmp3526), order) + tmp4119 = Taylor1(zero(constant_term(r1s_S)), order) + tmp3537 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_1[1]), order) + tmp3538 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_1[2]), order) + coeff1_1_M = Taylor1(constant_term(tmp3537) + constant_term(tmp3538), order) + tmp3540 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_1[1]), order) + tmp3541 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_1[2]), order) + coeff1_1_S = Taylor1(constant_term(tmp3540) + constant_term(tmp3541), order) coeff2_1_M = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_1[3]), order) coeff2_1_S = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_1[3]), order) - tmp3531 = Taylor1(constant_term(10) * constant_term(coeff1_1_M), order) - tmp3532 = Taylor1(constant_term(tmp3531) * constant_term(coeff2_1_M), order) - coeff3_1_M = Taylor1(constant_term(tmp3532) / constant_term(r_p2[mo, ea]), order) - tmp3535 = Taylor1(constant_term(10) * constant_term(coeff1_1_S), order) - tmp3536 = Taylor1(constant_term(tmp3535) * constant_term(coeff2_1_S), order) - coeff3_1_S = Taylor1(constant_term(tmp3536) / constant_term(r_p2[mo, ea]), order) + tmp3546 = Taylor1(constant_term(10) * constant_term(coeff1_1_M), order) + tmp3547 = Taylor1(constant_term(tmp3546) * constant_term(coeff2_1_M), order) + coeff3_1_M = Taylor1(constant_term(tmp3547) / constant_term(r_p2[mo, ea]), order) + tmp3550 = Taylor1(constant_term(10) * constant_term(coeff1_1_S), order) + tmp3551 = Taylor1(constant_term(tmp3550) * constant_term(coeff2_1_S), order) + coeff3_1_S = Taylor1(constant_term(tmp3551) / constant_term(r_p2[mo, ea]), order) k_21E_div_r1s5_M = Taylor1(constant_term(k_21E) / constant_term(r1s5_M), order) k_21E_div_r1s5_S = Taylor1(constant_term(k_21E) / constant_term(r1s5_S), order) - tmp3541 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) - tmp3542 = Taylor1(constant_term(tmp3541) * constant_term(r_star_M_1[1]), order) - tmp3543 = Taylor1(constant_term(coeff3_1_M) * constant_term(X_bf[mo, ea]), order) - tmp3544 = Taylor1(constant_term(tmp3542) - constant_term(tmp3543), order) - a_tid_1_M_x = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp3544), order) - tmp3547 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) - tmp3548 = Taylor1(constant_term(tmp3547) * constant_term(r_star_M_1[2]), order) - tmp3549 = Taylor1(constant_term(coeff3_1_M) * constant_term(Y_bf[mo, ea]), order) - tmp3550 = Taylor1(constant_term(tmp3548) - constant_term(tmp3549), order) - a_tid_1_M_y = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp3550), order) - tmp3553 = Taylor1(constant_term(2) * constant_term(coeff1_1_M), order) - tmp3554 = Taylor1(constant_term(tmp3553) * constant_term(r_star_M_1[3]), order) - tmp3555 = Taylor1(constant_term(coeff3_1_M) * constant_term(Z_bf[mo, ea]), order) - tmp3556 = Taylor1(constant_term(tmp3554) - constant_term(tmp3555), order) - a_tid_1_M_z = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp3556), order) - tmp3559 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) - tmp3560 = Taylor1(constant_term(tmp3559) * constant_term(r_star_S_1[1]), order) - tmp3561 = Taylor1(constant_term(coeff3_1_S) * constant_term(X_bf[mo, ea]), order) - tmp3562 = Taylor1(constant_term(tmp3560) - constant_term(tmp3561), order) - a_tid_1_S_x = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp3562), order) - tmp3565 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) - tmp3566 = Taylor1(constant_term(tmp3565) * constant_term(r_star_S_1[2]), order) - tmp3567 = Taylor1(constant_term(coeff3_1_S) * constant_term(Y_bf[mo, ea]), order) - tmp3568 = Taylor1(constant_term(tmp3566) - constant_term(tmp3567), order) - a_tid_1_S_y = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp3568), order) - tmp3571 = Taylor1(constant_term(2) * constant_term(coeff1_1_S), order) - tmp3572 = Taylor1(constant_term(tmp3571) * constant_term(r_star_S_1[3]), order) - tmp3573 = Taylor1(constant_term(coeff3_1_S) * constant_term(Z_bf[mo, ea]), order) - tmp3574 = Taylor1(constant_term(tmp3572) - constant_term(tmp3573), order) - a_tid_1_S_z = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp3574), order) + tmp3556 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) + tmp3557 = Taylor1(constant_term(tmp3556) * constant_term(r_star_M_1[1]), order) + tmp3558 = Taylor1(constant_term(coeff3_1_M) * constant_term(X_bf[mo, ea]), order) + tmp3559 = Taylor1(constant_term(tmp3557) - constant_term(tmp3558), order) + a_tid_1_M_x = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp3559), order) + tmp3562 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) + tmp3563 = Taylor1(constant_term(tmp3562) * constant_term(r_star_M_1[2]), order) + tmp3564 = Taylor1(constant_term(coeff3_1_M) * constant_term(Y_bf[mo, ea]), order) + tmp3565 = Taylor1(constant_term(tmp3563) - constant_term(tmp3564), order) + a_tid_1_M_y = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp3565), order) + tmp3568 = Taylor1(constant_term(2) * constant_term(coeff1_1_M), order) + tmp3569 = Taylor1(constant_term(tmp3568) * constant_term(r_star_M_1[3]), order) + tmp3570 = Taylor1(constant_term(coeff3_1_M) * constant_term(Z_bf[mo, ea]), order) + tmp3571 = Taylor1(constant_term(tmp3569) - constant_term(tmp3570), order) + a_tid_1_M_z = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp3571), order) + tmp3574 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) + tmp3575 = Taylor1(constant_term(tmp3574) * constant_term(r_star_S_1[1]), order) + tmp3576 = Taylor1(constant_term(coeff3_1_S) * constant_term(X_bf[mo, ea]), order) + tmp3577 = Taylor1(constant_term(tmp3575) - constant_term(tmp3576), order) + a_tid_1_S_x = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp3577), order) + tmp3580 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) + tmp3581 = Taylor1(constant_term(tmp3580) * constant_term(r_star_S_1[2]), order) + tmp3582 = Taylor1(constant_term(coeff3_1_S) * constant_term(Y_bf[mo, ea]), order) + tmp3583 = Taylor1(constant_term(tmp3581) - constant_term(tmp3582), order) + a_tid_1_S_y = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp3583), order) + tmp3586 = Taylor1(constant_term(2) * constant_term(coeff1_1_S), order) + tmp3587 = Taylor1(constant_term(tmp3586) * constant_term(r_star_S_1[3]), order) + tmp3588 = Taylor1(constant_term(coeff3_1_S) * constant_term(Z_bf[mo, ea]), order) + tmp3589 = Taylor1(constant_term(tmp3587) - constant_term(tmp3588), order) + a_tid_1_S_z = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp3589), order) x2s_M = Taylor1(identity(constant_term(r_star_M_2[1])), order) y2s_M = Taylor1(identity(constant_term(r_star_M_2[2])), order) z2s_M = Taylor1(identity(constant_term(r_star_M_2[3])), order) - tmp3577 = Taylor1(constant_term(x2s_M) ^ float(constant_term(2)), order) - tmp3579 = Taylor1(constant_term(y2s_M) ^ float(constant_term(2)), order) - ρ2s2_M = Taylor1(constant_term(tmp3577) + constant_term(tmp3579), order) + tmp3592 = Taylor1(constant_term(x2s_M) ^ float(constant_term(2)), order) + tmp4120 = Taylor1(zero(constant_term(x2s_M)), order) + tmp3594 = Taylor1(constant_term(y2s_M) ^ float(constant_term(2)), order) + tmp4121 = Taylor1(zero(constant_term(y2s_M)), order) + ρ2s2_M = Taylor1(constant_term(tmp3592) + constant_term(tmp3594), order) ρ2s_M = Taylor1(sqrt(constant_term(ρ2s2_M)), order) z2s2_M = Taylor1(constant_term(z2s_M) ^ float(constant_term(2)), order) + tmp4122 = Taylor1(zero(constant_term(z2s_M)), order) r2s2_M = Taylor1(constant_term(ρ2s2_M) + constant_term(z2s2_M), order) r2s_M = Taylor1(sqrt(constant_term(r2s2_M)), order) r2s5_M = Taylor1(constant_term(r2s_M) ^ float(constant_term(5)), order) + tmp4123 = Taylor1(zero(constant_term(r2s_M)), order) x2s_S = Taylor1(identity(constant_term(r_star_S_2[1])), order) y2s_S = Taylor1(identity(constant_term(r_star_S_2[2])), order) z2s_S = Taylor1(identity(constant_term(r_star_S_2[3])), order) - tmp3589 = Taylor1(constant_term(x2s_S) ^ float(constant_term(2)), order) - tmp3591 = Taylor1(constant_term(y2s_S) ^ float(constant_term(2)), order) - ρ2s2_S = Taylor1(constant_term(tmp3589) + constant_term(tmp3591), order) + tmp3604 = Taylor1(constant_term(x2s_S) ^ float(constant_term(2)), order) + tmp4124 = Taylor1(zero(constant_term(x2s_S)), order) + tmp3606 = Taylor1(constant_term(y2s_S) ^ float(constant_term(2)), order) + tmp4125 = Taylor1(zero(constant_term(y2s_S)), order) + ρ2s2_S = Taylor1(constant_term(tmp3604) + constant_term(tmp3606), order) ρ2s_S = Taylor1(sqrt(constant_term(ρ2s2_S)), order) z2s2_S = Taylor1(constant_term(z2s_S) ^ float(constant_term(2)), order) + tmp4126 = Taylor1(zero(constant_term(z2s_S)), order) r2s2_S = Taylor1(constant_term(ρ2s2_S) + constant_term(z2s2_S), order) r2s_S = Taylor1(sqrt(constant_term(r2s2_S)), order) r2s5_S = Taylor1(constant_term(r2s_S) ^ float(constant_term(5)), order) - tmp3600 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_2[1]), order) - tmp3601 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_2[2]), order) - coeff1_2_M = Taylor1(constant_term(tmp3600) + constant_term(tmp3601), order) - tmp3603 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_2[1]), order) - tmp3604 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_2[2]), order) - coeff1_2_S = Taylor1(constant_term(tmp3603) + constant_term(tmp3604), order) - tmp3608 = Taylor1(constant_term(coeff1_2_M) ^ float(constant_term(2)), order) - tmp3611 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) - tmp3612 = Taylor1(constant_term(0.5) * constant_term(tmp3611), order) - tmp3613 = Taylor1(constant_term(tmp3612) * constant_term(ρ2s2_M), order) - tmp3614 = Taylor1(constant_term(tmp3608) - constant_term(tmp3613), order) - tmp3615 = Taylor1(constant_term(5) * constant_term(tmp3614), order) - coeff3_2_M = Taylor1(constant_term(tmp3615) / constant_term(r_p2[mo, ea]), order) - tmp3619 = Taylor1(constant_term(coeff1_2_S) ^ float(constant_term(2)), order) - tmp3622 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) - tmp3623 = Taylor1(constant_term(0.5) * constant_term(tmp3622), order) - tmp3624 = Taylor1(constant_term(tmp3623) * constant_term(ρ2s2_S), order) - tmp3625 = Taylor1(constant_term(tmp3619) - constant_term(tmp3624), order) - tmp3626 = Taylor1(constant_term(5) * constant_term(tmp3625), order) - coeff3_2_S = Taylor1(constant_term(tmp3626) / constant_term(r_p2[mo, ea]), order) + tmp4127 = Taylor1(zero(constant_term(r2s_S)), order) + tmp3615 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_2[1]), order) + tmp3616 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_2[2]), order) + coeff1_2_M = Taylor1(constant_term(tmp3615) + constant_term(tmp3616), order) + tmp3618 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_2[1]), order) + tmp3619 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_2[2]), order) + coeff1_2_S = Taylor1(constant_term(tmp3618) + constant_term(tmp3619), order) + tmp3623 = Taylor1(constant_term(coeff1_2_M) ^ float(constant_term(2)), order) + tmp4128 = Taylor1(zero(constant_term(coeff1_2_M)), order) + tmp3626 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) + tmp4129 = Taylor1(zero(constant_term(r_xy[mo, ea])), order) + tmp3627 = Taylor1(constant_term(0.5) * constant_term(tmp3626), order) + tmp3628 = Taylor1(constant_term(tmp3627) * constant_term(ρ2s2_M), order) + tmp3629 = Taylor1(constant_term(tmp3623) - constant_term(tmp3628), order) + tmp3630 = Taylor1(constant_term(5) * constant_term(tmp3629), order) + coeff3_2_M = Taylor1(constant_term(tmp3630) / constant_term(r_p2[mo, ea]), order) + tmp3634 = Taylor1(constant_term(coeff1_2_S) ^ float(constant_term(2)), order) + tmp4130 = Taylor1(zero(constant_term(coeff1_2_S)), order) + tmp3637 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) + tmp4131 = Taylor1(zero(constant_term(r_xy[mo, ea])), order) + tmp3638 = Taylor1(constant_term(0.5) * constant_term(tmp3637), order) + tmp3639 = Taylor1(constant_term(tmp3638) * constant_term(ρ2s2_S), order) + tmp3640 = Taylor1(constant_term(tmp3634) - constant_term(tmp3639), order) + tmp3641 = Taylor1(constant_term(5) * constant_term(tmp3640), order) + coeff3_2_S = Taylor1(constant_term(tmp3641) / constant_term(r_p2[mo, ea]), order) k_22E_div_r2s5_M = Taylor1(constant_term(k_22E) / constant_term(r2s5_M), order) k_22E_div_r2s5_S = Taylor1(constant_term(k_22E) / constant_term(r2s5_S), order) - tmp3631 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) - tmp3632 = Taylor1(constant_term(tmp3631) * constant_term(r_star_M_2[1]), order) - tmp3633 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) - tmp3634 = Taylor1(constant_term(tmp3633) * constant_term(X_bf[mo, ea]), order) - tmp3635 = Taylor1(constant_term(tmp3632) - constant_term(tmp3634), order) - a_tid_2_M_x = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp3635), order) - tmp3638 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) - tmp3639 = Taylor1(constant_term(tmp3638) * constant_term(r_star_M_2[2]), order) - tmp3640 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) - tmp3641 = Taylor1(constant_term(tmp3640) * constant_term(Y_bf[mo, ea]), order) - tmp3642 = Taylor1(constant_term(tmp3639) - constant_term(tmp3641), order) - a_tid_2_M_y = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp3642), order) - tmp3644 = Taylor1(-(constant_term(coeff3_2_M)), order) - tmp3645 = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp3644), order) - a_tid_2_M_z = Taylor1(constant_term(tmp3645) * constant_term(Z_bf[mo, ea]), order) - tmp3648 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) - tmp3649 = Taylor1(constant_term(tmp3648) * constant_term(r_star_S_2[1]), order) - tmp3650 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) - tmp3651 = Taylor1(constant_term(tmp3650) * constant_term(X_bf[mo, ea]), order) - tmp3652 = Taylor1(constant_term(tmp3649) - constant_term(tmp3651), order) - a_tid_2_S_x = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp3652), order) - tmp3655 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) - tmp3656 = Taylor1(constant_term(tmp3655) * constant_term(r_star_S_2[2]), order) - tmp3657 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) - tmp3658 = Taylor1(constant_term(tmp3657) * constant_term(Y_bf[mo, ea]), order) - tmp3659 = Taylor1(constant_term(tmp3656) - constant_term(tmp3658), order) - a_tid_2_S_y = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp3659), order) - tmp3661 = Taylor1(-(constant_term(coeff3_2_S)), order) - tmp3662 = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp3661), order) - a_tid_2_S_z = Taylor1(constant_term(tmp3662) * constant_term(Z_bf[mo, ea]), order) - tmp3664 = Taylor1(constant_term(RE_au) / constant_term(r_p1d2[mo, ea]), order) - RE_div_r_p5 = Taylor1(constant_term(tmp3664) ^ float(constant_term(5)), order) + tmp3646 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) + tmp3647 = Taylor1(constant_term(tmp3646) * constant_term(r_star_M_2[1]), order) + tmp3648 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) + tmp3649 = Taylor1(constant_term(tmp3648) * constant_term(X_bf[mo, ea]), order) + tmp3650 = Taylor1(constant_term(tmp3647) - constant_term(tmp3649), order) + a_tid_2_M_x = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp3650), order) + tmp3653 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) + tmp3654 = Taylor1(constant_term(tmp3653) * constant_term(r_star_M_2[2]), order) + tmp3655 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) + tmp3656 = Taylor1(constant_term(tmp3655) * constant_term(Y_bf[mo, ea]), order) + tmp3657 = Taylor1(constant_term(tmp3654) - constant_term(tmp3656), order) + a_tid_2_M_y = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp3657), order) + tmp3659 = Taylor1(-(constant_term(coeff3_2_M)), order) + tmp3660 = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp3659), order) + a_tid_2_M_z = Taylor1(constant_term(tmp3660) * constant_term(Z_bf[mo, ea]), order) + tmp3663 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) + tmp3664 = Taylor1(constant_term(tmp3663) * constant_term(r_star_S_2[1]), order) + tmp3665 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) + tmp3666 = Taylor1(constant_term(tmp3665) * constant_term(X_bf[mo, ea]), order) + tmp3667 = Taylor1(constant_term(tmp3664) - constant_term(tmp3666), order) + a_tid_2_S_x = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp3667), order) + tmp3670 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) + tmp3671 = Taylor1(constant_term(tmp3670) * constant_term(r_star_S_2[2]), order) + tmp3672 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) + tmp3673 = Taylor1(constant_term(tmp3672) * constant_term(Y_bf[mo, ea]), order) + tmp3674 = Taylor1(constant_term(tmp3671) - constant_term(tmp3673), order) + a_tid_2_S_y = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp3674), order) + tmp3676 = Taylor1(-(constant_term(coeff3_2_S)), order) + tmp3677 = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp3676), order) + a_tid_2_S_z = Taylor1(constant_term(tmp3677) * constant_term(Z_bf[mo, ea]), order) + tmp3679 = Taylor1(constant_term(RE_au) / constant_term(r_p1d2[mo, ea]), order) + RE_div_r_p5 = Taylor1(constant_term(tmp3679) ^ float(constant_term(5)), order) + tmp4132 = Taylor1(zero(constant_term(tmp3679)), order) aux_tidacc = Taylor1(constant_term(tid_num_coeff) * constant_term(RE_div_r_p5), order) a_tidal_coeff_M = Taylor1(constant_term(μ[mo]) * constant_term(aux_tidacc), order) a_tidal_coeff_S = Taylor1(constant_term(μ[su]) * constant_term(aux_tidacc), order) - tmp3670 = Taylor1(constant_term(a_tid_0_M_x) + constant_term(a_tid_1_M_x), order) - tmp3671 = Taylor1(constant_term(tmp3670) + constant_term(a_tid_2_M_x), order) - tmp3672 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp3671), order) - tmp3673 = Taylor1(constant_term(a_tid_0_S_x) + constant_term(a_tid_1_S_x), order) - tmp3674 = Taylor1(constant_term(tmp3673) + constant_term(a_tid_2_S_x), order) - tmp3675 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp3674), order) - a_tidal_tod_x = Taylor1(constant_term(tmp3672) + constant_term(tmp3675), order) - tmp3677 = Taylor1(constant_term(a_tid_0_M_y) + constant_term(a_tid_1_M_y), order) - tmp3678 = Taylor1(constant_term(tmp3677) + constant_term(a_tid_2_M_y), order) - tmp3679 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp3678), order) - tmp3680 = Taylor1(constant_term(a_tid_0_S_y) + constant_term(a_tid_1_S_y), order) - tmp3681 = Taylor1(constant_term(tmp3680) + constant_term(a_tid_2_S_y), order) - tmp3682 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp3681), order) - a_tidal_tod_y = Taylor1(constant_term(tmp3679) + constant_term(tmp3682), order) - tmp3684 = Taylor1(constant_term(a_tid_0_M_z) + constant_term(a_tid_1_M_z), order) - tmp3685 = Taylor1(constant_term(tmp3684) + constant_term(a_tid_2_M_z), order) - tmp3686 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp3685), order) - tmp3687 = Taylor1(constant_term(a_tid_0_S_z) + constant_term(a_tid_1_S_z), order) - tmp3688 = Taylor1(constant_term(tmp3687) + constant_term(a_tid_2_S_z), order) - tmp3689 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp3688), order) - a_tidal_tod_z = Taylor1(constant_term(tmp3686) + constant_term(tmp3689), order) - tmp3691 = Taylor1(constant_term(RotM[1, 1, ea]) * constant_term(a_tidal_tod_x), order) - tmp3692 = Taylor1(constant_term(RotM[2, 1, ea]) * constant_term(a_tidal_tod_y), order) - tmp3693 = Taylor1(constant_term(tmp3691) + constant_term(tmp3692), order) - tmp3694 = Taylor1(constant_term(RotM[3, 1, ea]) * constant_term(a_tidal_tod_z), order) - a_tidal_x = Taylor1(constant_term(tmp3693) + constant_term(tmp3694), order) - tmp3696 = Taylor1(constant_term(RotM[1, 2, ea]) * constant_term(a_tidal_tod_x), order) - tmp3697 = Taylor1(constant_term(RotM[2, 2, ea]) * constant_term(a_tidal_tod_y), order) - tmp3698 = Taylor1(constant_term(tmp3696) + constant_term(tmp3697), order) - tmp3699 = Taylor1(constant_term(RotM[3, 2, ea]) * constant_term(a_tidal_tod_z), order) - a_tidal_y = Taylor1(constant_term(tmp3698) + constant_term(tmp3699), order) - tmp3701 = Taylor1(constant_term(RotM[1, 3, ea]) * constant_term(a_tidal_tod_x), order) - tmp3702 = Taylor1(constant_term(RotM[2, 3, ea]) * constant_term(a_tidal_tod_y), order) - tmp3703 = Taylor1(constant_term(tmp3701) + constant_term(tmp3702), order) - tmp3704 = Taylor1(constant_term(RotM[3, 3, ea]) * constant_term(a_tidal_tod_z), order) - a_tidal_z = Taylor1(constant_term(tmp3703) + constant_term(tmp3704), order) + tmp3685 = Taylor1(constant_term(a_tid_0_M_x) + constant_term(a_tid_1_M_x), order) + tmp3686 = Taylor1(constant_term(tmp3685) + constant_term(a_tid_2_M_x), order) + tmp3687 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp3686), order) + tmp3688 = Taylor1(constant_term(a_tid_0_S_x) + constant_term(a_tid_1_S_x), order) + tmp3689 = Taylor1(constant_term(tmp3688) + constant_term(a_tid_2_S_x), order) + tmp3690 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp3689), order) + a_tidal_tod_x = Taylor1(constant_term(tmp3687) + constant_term(tmp3690), order) + tmp3692 = Taylor1(constant_term(a_tid_0_M_y) + constant_term(a_tid_1_M_y), order) + tmp3693 = Taylor1(constant_term(tmp3692) + constant_term(a_tid_2_M_y), order) + tmp3694 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp3693), order) + tmp3695 = Taylor1(constant_term(a_tid_0_S_y) + constant_term(a_tid_1_S_y), order) + tmp3696 = Taylor1(constant_term(tmp3695) + constant_term(a_tid_2_S_y), order) + tmp3697 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp3696), order) + a_tidal_tod_y = Taylor1(constant_term(tmp3694) + constant_term(tmp3697), order) + tmp3699 = Taylor1(constant_term(a_tid_0_M_z) + constant_term(a_tid_1_M_z), order) + tmp3700 = Taylor1(constant_term(tmp3699) + constant_term(a_tid_2_M_z), order) + tmp3701 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp3700), order) + tmp3702 = Taylor1(constant_term(a_tid_0_S_z) + constant_term(a_tid_1_S_z), order) + tmp3703 = Taylor1(constant_term(tmp3702) + constant_term(a_tid_2_S_z), order) + tmp3704 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp3703), order) + a_tidal_tod_z = Taylor1(constant_term(tmp3701) + constant_term(tmp3704), order) + tmp3706 = Taylor1(constant_term(RotM[1, 1, ea]) * constant_term(a_tidal_tod_x), order) + tmp3707 = Taylor1(constant_term(RotM[2, 1, ea]) * constant_term(a_tidal_tod_y), order) + tmp3708 = Taylor1(constant_term(tmp3706) + constant_term(tmp3707), order) + tmp3709 = Taylor1(constant_term(RotM[3, 1, ea]) * constant_term(a_tidal_tod_z), order) + a_tidal_x = Taylor1(constant_term(tmp3708) + constant_term(tmp3709), order) + tmp3711 = Taylor1(constant_term(RotM[1, 2, ea]) * constant_term(a_tidal_tod_x), order) + tmp3712 = Taylor1(constant_term(RotM[2, 2, ea]) * constant_term(a_tidal_tod_y), order) + tmp3713 = Taylor1(constant_term(tmp3711) + constant_term(tmp3712), order) + tmp3714 = Taylor1(constant_term(RotM[3, 2, ea]) * constant_term(a_tidal_tod_z), order) + a_tidal_y = Taylor1(constant_term(tmp3713) + constant_term(tmp3714), order) + tmp3716 = Taylor1(constant_term(RotM[1, 3, ea]) * constant_term(a_tidal_tod_x), order) + tmp3717 = Taylor1(constant_term(RotM[2, 3, ea]) * constant_term(a_tidal_tod_y), order) + tmp3718 = Taylor1(constant_term(tmp3716) + constant_term(tmp3717), order) + tmp3719 = Taylor1(constant_term(RotM[3, 3, ea]) * constant_term(a_tidal_tod_z), order) + a_tidal_z = Taylor1(constant_term(tmp3718) + constant_term(tmp3719), order) accX_mo_tides = Taylor1(constant_term(accX[mo]) + constant_term(a_tidal_x), order) accY_mo_tides = Taylor1(constant_term(accY[mo]) + constant_term(a_tidal_y), order) accZ_mo_tides = Taylor1(constant_term(accZ[mo]) + constant_term(a_tidal_z), order) @@ -7003,359 +5461,364 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q dq[3 * (N + i) - 1] = Taylor1(identity(constant_term(postNewtonY[i])), order) dq[3 * (N + i)] = Taylor1(identity(constant_term(postNewtonZ[i])), order) end - tmp3712 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp3713 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp3714 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp3715 = Taylor1(constant_term(tmp3713) + constant_term(tmp3714), order) - Iω_x = Taylor1(constant_term(tmp3712) + constant_term(tmp3715), order) - tmp3717 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp3718 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp3719 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp3720 = Taylor1(constant_term(tmp3718) + constant_term(tmp3719), order) - Iω_y = Taylor1(constant_term(tmp3717) + constant_term(tmp3720), order) - tmp3722 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp3723 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp3724 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp3725 = Taylor1(constant_term(tmp3723) + constant_term(tmp3724), order) - Iω_z = Taylor1(constant_term(tmp3722) + constant_term(tmp3725), order) - tmp3727 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) - tmp3728 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) - ωxIω_x = Taylor1(constant_term(tmp3727) - constant_term(tmp3728), order) - tmp3730 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) - tmp3731 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) - ωxIω_y = Taylor1(constant_term(tmp3730) - constant_term(tmp3731), order) - tmp3733 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) - tmp3734 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) - ωxIω_z = Taylor1(constant_term(tmp3733) - constant_term(tmp3734), order) - tmp3736 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp3737 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp3738 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp3739 = Taylor1(constant_term(tmp3737) + constant_term(tmp3738), order) - dIω_x = Taylor1(constant_term(tmp3736) + constant_term(tmp3739), order) - tmp3741 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp3742 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp3743 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp3744 = Taylor1(constant_term(tmp3742) + constant_term(tmp3743), order) - dIω_y = Taylor1(constant_term(tmp3741) + constant_term(tmp3744), order) - tmp3746 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp3747 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp3748 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp3749 = Taylor1(constant_term(tmp3747) + constant_term(tmp3748), order) - dIω_z = Taylor1(constant_term(tmp3746) + constant_term(tmp3749), order) + tmp3727 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp3728 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp3729 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp3730 = Taylor1(constant_term(tmp3728) + constant_term(tmp3729), order) + Iω_x = Taylor1(constant_term(tmp3727) + constant_term(tmp3730), order) + tmp3732 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp3733 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp3734 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp3735 = Taylor1(constant_term(tmp3733) + constant_term(tmp3734), order) + Iω_y = Taylor1(constant_term(tmp3732) + constant_term(tmp3735), order) + tmp3737 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp3738 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp3739 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp3740 = Taylor1(constant_term(tmp3738) + constant_term(tmp3739), order) + Iω_z = Taylor1(constant_term(tmp3737) + constant_term(tmp3740), order) + tmp3742 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) + tmp3743 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) + ωxIω_x = Taylor1(constant_term(tmp3742) - constant_term(tmp3743), order) + tmp3745 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) + tmp3746 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) + ωxIω_y = Taylor1(constant_term(tmp3745) - constant_term(tmp3746), order) + tmp3748 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) + tmp3749 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) + ωxIω_z = Taylor1(constant_term(tmp3748) - constant_term(tmp3749), order) + tmp3751 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp3752 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp3753 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp3754 = Taylor1(constant_term(tmp3752) + constant_term(tmp3753), order) + dIω_x = Taylor1(constant_term(tmp3751) + constant_term(tmp3754), order) + tmp3756 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp3757 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp3758 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp3759 = Taylor1(constant_term(tmp3757) + constant_term(tmp3758), order) + dIω_y = Taylor1(constant_term(tmp3756) + constant_term(tmp3759), order) + tmp3761 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp3762 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp3763 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp3764 = Taylor1(constant_term(tmp3762) + constant_term(tmp3763), order) + dIω_z = Taylor1(constant_term(tmp3761) + constant_term(tmp3764), order) er_EM_I_1 = Taylor1(constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) er_EM_I_2 = Taylor1(constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) er_EM_I_3 = Taylor1(constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) p_E_I_1 = Taylor1(identity(constant_term(RotM[3, 1, ea])), order) p_E_I_2 = Taylor1(identity(constant_term(RotM[3, 2, ea])), order) p_E_I_3 = Taylor1(identity(constant_term(RotM[3, 3, ea])), order) - tmp3754 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) - tmp3755 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) - tmp3756 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) - tmp3757 = Taylor1(constant_term(tmp3755) + constant_term(tmp3756), order) - er_EM_1 = Taylor1(constant_term(tmp3754) + constant_term(tmp3757), order) - tmp3759 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) - tmp3760 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) - tmp3761 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) - tmp3762 = Taylor1(constant_term(tmp3760) + constant_term(tmp3761), order) - er_EM_2 = Taylor1(constant_term(tmp3759) + constant_term(tmp3762), order) - tmp3764 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) - tmp3765 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) - tmp3766 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) - tmp3767 = Taylor1(constant_term(tmp3765) + constant_term(tmp3766), order) - er_EM_3 = Taylor1(constant_term(tmp3764) + constant_term(tmp3767), order) - tmp3769 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) - tmp3770 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) - tmp3771 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) + tmp3769 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) + tmp3770 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) + tmp3771 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) tmp3772 = Taylor1(constant_term(tmp3770) + constant_term(tmp3771), order) - p_E_1 = Taylor1(constant_term(tmp3769) + constant_term(tmp3772), order) - tmp3774 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) - tmp3775 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) - tmp3776 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) + er_EM_1 = Taylor1(constant_term(tmp3769) + constant_term(tmp3772), order) + tmp3774 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) + tmp3775 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) + tmp3776 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) tmp3777 = Taylor1(constant_term(tmp3775) + constant_term(tmp3776), order) - p_E_2 = Taylor1(constant_term(tmp3774) + constant_term(tmp3777), order) - tmp3779 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) - tmp3780 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) - tmp3781 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) + er_EM_2 = Taylor1(constant_term(tmp3774) + constant_term(tmp3777), order) + tmp3779 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) + tmp3780 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) + tmp3781 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) tmp3782 = Taylor1(constant_term(tmp3780) + constant_term(tmp3781), order) - p_E_3 = Taylor1(constant_term(tmp3779) + constant_term(tmp3782), order) - tmp3784 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) - tmp3785 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) - tmp3786 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) + er_EM_3 = Taylor1(constant_term(tmp3779) + constant_term(tmp3782), order) + tmp3784 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) + tmp3785 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) + tmp3786 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) tmp3787 = Taylor1(constant_term(tmp3785) + constant_term(tmp3786), order) - I_er_EM_1 = Taylor1(constant_term(tmp3784) + constant_term(tmp3787), order) - tmp3789 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) - tmp3790 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) - tmp3791 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) + p_E_1 = Taylor1(constant_term(tmp3784) + constant_term(tmp3787), order) + tmp3789 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) + tmp3790 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) + tmp3791 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) tmp3792 = Taylor1(constant_term(tmp3790) + constant_term(tmp3791), order) - I_er_EM_2 = Taylor1(constant_term(tmp3789) + constant_term(tmp3792), order) - tmp3794 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) - tmp3795 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) - tmp3796 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) + p_E_2 = Taylor1(constant_term(tmp3789) + constant_term(tmp3792), order) + tmp3794 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) + tmp3795 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) + tmp3796 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) tmp3797 = Taylor1(constant_term(tmp3795) + constant_term(tmp3796), order) - I_er_EM_3 = Taylor1(constant_term(tmp3794) + constant_term(tmp3797), order) - tmp3799 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) - tmp3800 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) - tmp3801 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) + p_E_3 = Taylor1(constant_term(tmp3794) + constant_term(tmp3797), order) + tmp3799 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) + tmp3800 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) + tmp3801 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) tmp3802 = Taylor1(constant_term(tmp3800) + constant_term(tmp3801), order) - I_p_E_1 = Taylor1(constant_term(tmp3799) + constant_term(tmp3802), order) - tmp3804 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) - tmp3805 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) - tmp3806 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) + I_er_EM_1 = Taylor1(constant_term(tmp3799) + constant_term(tmp3802), order) + tmp3804 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) + tmp3805 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) + tmp3806 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) tmp3807 = Taylor1(constant_term(tmp3805) + constant_term(tmp3806), order) - I_p_E_2 = Taylor1(constant_term(tmp3804) + constant_term(tmp3807), order) - tmp3809 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) - tmp3810 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) - tmp3811 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) + I_er_EM_2 = Taylor1(constant_term(tmp3804) + constant_term(tmp3807), order) + tmp3809 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) + tmp3810 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) + tmp3811 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) tmp3812 = Taylor1(constant_term(tmp3810) + constant_term(tmp3811), order) - I_p_E_3 = Taylor1(constant_term(tmp3809) + constant_term(tmp3812), order) - tmp3814 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) - tmp3815 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) - er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp3814) - constant_term(tmp3815), order) - tmp3817 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) - tmp3818 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) - er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp3817) - constant_term(tmp3818), order) - tmp3820 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) - tmp3821 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) - er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp3820) - constant_term(tmp3821), order) - tmp3823 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) - tmp3824 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) - er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp3823) - constant_term(tmp3824), order) - tmp3826 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) - tmp3827 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) - er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp3826) - constant_term(tmp3827), order) - tmp3829 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) - tmp3830 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) - er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp3829) - constant_term(tmp3830), order) - tmp3832 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) - tmp3833 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) - p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp3832) - constant_term(tmp3833), order) - tmp3835 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) - tmp3836 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) - p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp3835) - constant_term(tmp3836), order) - tmp3838 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) - tmp3839 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) - p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp3838) - constant_term(tmp3839), order) - tmp3841 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) - tmp3842 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) - p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp3841) - constant_term(tmp3842), order) - tmp3844 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) - tmp3845 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) - p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp3844) - constant_term(tmp3845), order) - tmp3847 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) - tmp3848 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) - p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp3847) - constant_term(tmp3848), order) - tmp3852 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) - tmp3853 = Taylor1(constant_term(7) * constant_term(tmp3852), order) - one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp3853), order) + I_er_EM_3 = Taylor1(constant_term(tmp3809) + constant_term(tmp3812), order) + tmp3814 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) + tmp3815 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) + tmp3816 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) + tmp3817 = Taylor1(constant_term(tmp3815) + constant_term(tmp3816), order) + I_p_E_1 = Taylor1(constant_term(tmp3814) + constant_term(tmp3817), order) + tmp3819 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) + tmp3820 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) + tmp3821 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) + tmp3822 = Taylor1(constant_term(tmp3820) + constant_term(tmp3821), order) + I_p_E_2 = Taylor1(constant_term(tmp3819) + constant_term(tmp3822), order) + tmp3824 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) + tmp3825 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) + tmp3826 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) + tmp3827 = Taylor1(constant_term(tmp3825) + constant_term(tmp3826), order) + I_p_E_3 = Taylor1(constant_term(tmp3824) + constant_term(tmp3827), order) + tmp3829 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) + tmp3830 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) + er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp3829) - constant_term(tmp3830), order) + tmp3832 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) + tmp3833 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) + er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp3832) - constant_term(tmp3833), order) + tmp3835 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) + tmp3836 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) + er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp3835) - constant_term(tmp3836), order) + tmp3838 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) + tmp3839 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) + er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp3838) - constant_term(tmp3839), order) + tmp3841 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) + tmp3842 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) + er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp3841) - constant_term(tmp3842), order) + tmp3844 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) + tmp3845 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) + er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp3844) - constant_term(tmp3845), order) + tmp3847 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) + tmp3848 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) + p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp3847) - constant_term(tmp3848), order) + tmp3850 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) + tmp3851 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) + p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp3850) - constant_term(tmp3851), order) + tmp3853 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) + tmp3854 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) + p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp3853) - constant_term(tmp3854), order) + tmp3856 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) + tmp3857 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) + p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp3856) - constant_term(tmp3857), order) + tmp3859 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) + tmp3860 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) + p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp3859) - constant_term(tmp3860), order) + tmp3862 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) + tmp3863 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) + p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp3862) - constant_term(tmp3863), order) + tmp3867 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) + tmp4133 = Taylor1(zero(constant_term(sin_ϕ[ea, mo])), order) + tmp3868 = Taylor1(constant_term(7) * constant_term(tmp3867), order) + one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp3868), order) two_sinϕEM = Taylor1(constant_term(2) * constant_term(sin_ϕ[ea, mo]), order) - tmp3858 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) - N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp3858), order) - tmp3860 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) - tmp3861 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) - tmp3862 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3861), order) - tmp3863 = Taylor1(constant_term(tmp3860) + constant_term(tmp3862), order) - tmp3865 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) - tmp3866 = Taylor1(constant_term(tmp3863) - constant_term(tmp3865), order) - N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3866), order) - tmp3868 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) - tmp3869 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) - tmp3870 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3869), order) - tmp3871 = Taylor1(constant_term(tmp3868) + constant_term(tmp3870), order) - tmp3873 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) - tmp3874 = Taylor1(constant_term(tmp3871) - constant_term(tmp3873), order) - N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3874), order) - tmp3876 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) - tmp3877 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) - tmp3878 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3877), order) - tmp3879 = Taylor1(constant_term(tmp3876) + constant_term(tmp3878), order) - tmp3881 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) - tmp3882 = Taylor1(constant_term(tmp3879) - constant_term(tmp3881), order) - N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3882), order) - tmp3884 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp3885 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp3886 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp3887 = Taylor1(constant_term(tmp3885) + constant_term(tmp3886), order) - N_1_LMF = Taylor1(constant_term(tmp3884) + constant_term(tmp3887), order) - tmp3889 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp3890 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp3891 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp3892 = Taylor1(constant_term(tmp3890) + constant_term(tmp3891), order) - N_2_LMF = Taylor1(constant_term(tmp3889) + constant_term(tmp3892), order) - tmp3894 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp3895 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp3896 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp3897 = Taylor1(constant_term(tmp3895) + constant_term(tmp3896), order) - N_3_LMF = Taylor1(constant_term(tmp3894) + constant_term(tmp3897), order) - tmp3899 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) - tmp3900 = Taylor1(constant_term(k_ν) * constant_term(tmp3899), order) - tmp3901 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp3902 = Taylor1(constant_term(tmp3901) * constant_term(q[6N + 11]), order) - N_cmb_1 = Taylor1(constant_term(tmp3900) - constant_term(tmp3902), order) - tmp3904 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) - tmp3905 = Taylor1(constant_term(k_ν) * constant_term(tmp3904), order) - tmp3906 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp3907 = Taylor1(constant_term(tmp3906) * constant_term(q[6N + 10]), order) - N_cmb_2 = Taylor1(constant_term(tmp3905) + constant_term(tmp3907), order) - tmp3909 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) - N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp3909), order) - tmp3911 = Taylor1(constant_term(μ[mo]) * constant_term(N_1_LMF), order) - tmp3912 = Taylor1(constant_term(N_MfigM_figE_1) + constant_term(tmp3911), order) - tmp3913 = Taylor1(constant_term(tmp3912) + constant_term(N_cmb_1), order) - tmp3914 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) - I_dω_1 = Taylor1(constant_term(tmp3913) - constant_term(tmp3914), order) - tmp3916 = Taylor1(constant_term(μ[mo]) * constant_term(N_2_LMF), order) - tmp3917 = Taylor1(constant_term(N_MfigM_figE_2) + constant_term(tmp3916), order) - tmp3918 = Taylor1(constant_term(tmp3917) + constant_term(N_cmb_2), order) - tmp3919 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) - I_dω_2 = Taylor1(constant_term(tmp3918) - constant_term(tmp3919), order) - tmp3921 = Taylor1(constant_term(μ[mo]) * constant_term(N_3_LMF), order) - tmp3922 = Taylor1(constant_term(N_MfigM_figE_3) + constant_term(tmp3921), order) - tmp3923 = Taylor1(constant_term(tmp3922) + constant_term(N_cmb_3), order) - tmp3924 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) - I_dω_3 = Taylor1(constant_term(tmp3923) - constant_term(tmp3924), order) + tmp3873 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) + tmp4134 = Taylor1(zero(constant_term(r_p1d2[mo, ea])), order) + N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp3873), order) + tmp3875 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) + tmp3876 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) + tmp3877 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3876), order) + tmp3878 = Taylor1(constant_term(tmp3875) + constant_term(tmp3877), order) + tmp3880 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) + tmp3881 = Taylor1(constant_term(tmp3878) - constant_term(tmp3880), order) + N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3881), order) + tmp3883 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) + tmp3884 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) + tmp3885 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3884), order) + tmp3886 = Taylor1(constant_term(tmp3883) + constant_term(tmp3885), order) + tmp3888 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) + tmp3889 = Taylor1(constant_term(tmp3886) - constant_term(tmp3888), order) + N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3889), order) + tmp3891 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) + tmp3892 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) + tmp3893 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3892), order) + tmp3894 = Taylor1(constant_term(tmp3891) + constant_term(tmp3893), order) + tmp3896 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) + tmp3897 = Taylor1(constant_term(tmp3894) - constant_term(tmp3896), order) + N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3897), order) + tmp3899 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp3900 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp3901 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp3902 = Taylor1(constant_term(tmp3900) + constant_term(tmp3901), order) + N_1_LMF = Taylor1(constant_term(tmp3899) + constant_term(tmp3902), order) + tmp3904 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp3905 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp3906 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp3907 = Taylor1(constant_term(tmp3905) + constant_term(tmp3906), order) + N_2_LMF = Taylor1(constant_term(tmp3904) + constant_term(tmp3907), order) + tmp3909 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp3910 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp3911 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp3912 = Taylor1(constant_term(tmp3910) + constant_term(tmp3911), order) + N_3_LMF = Taylor1(constant_term(tmp3909) + constant_term(tmp3912), order) + tmp3914 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) + tmp3915 = Taylor1(constant_term(k_ν) * constant_term(tmp3914), order) + tmp3916 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp3917 = Taylor1(constant_term(tmp3916) * constant_term(q[6N + 11]), order) + N_cmb_1 = Taylor1(constant_term(tmp3915) - constant_term(tmp3917), order) + tmp3919 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) + tmp3920 = Taylor1(constant_term(k_ν) * constant_term(tmp3919), order) + tmp3921 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp3922 = Taylor1(constant_term(tmp3921) * constant_term(q[6N + 10]), order) + N_cmb_2 = Taylor1(constant_term(tmp3920) + constant_term(tmp3922), order) + tmp3924 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) + N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp3924), order) + tmp3926 = Taylor1(constant_term(μ[mo]) * constant_term(N_1_LMF), order) + tmp3927 = Taylor1(constant_term(N_MfigM_figE_1) + constant_term(tmp3926), order) + tmp3928 = Taylor1(constant_term(tmp3927) + constant_term(N_cmb_1), order) + tmp3929 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) + I_dω_1 = Taylor1(constant_term(tmp3928) - constant_term(tmp3929), order) + tmp3931 = Taylor1(constant_term(μ[mo]) * constant_term(N_2_LMF), order) + tmp3932 = Taylor1(constant_term(N_MfigM_figE_2) + constant_term(tmp3931), order) + tmp3933 = Taylor1(constant_term(tmp3932) + constant_term(N_cmb_2), order) + tmp3934 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) + I_dω_2 = Taylor1(constant_term(tmp3933) - constant_term(tmp3934), order) + tmp3936 = Taylor1(constant_term(μ[mo]) * constant_term(N_3_LMF), order) + tmp3937 = Taylor1(constant_term(N_MfigM_figE_3) + constant_term(tmp3936), order) + tmp3938 = Taylor1(constant_term(tmp3937) + constant_term(N_cmb_3), order) + tmp3939 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) + I_dω_3 = Taylor1(constant_term(tmp3938) - constant_term(tmp3939), order) Ic_ωc_1 = Taylor1(constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]), order) Ic_ωc_2 = Taylor1(constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]), order) Ic_ωc_3 = Taylor1(constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]), order) - tmp3929 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) - tmp3930 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) - m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp3929) - constant_term(tmp3930), order) - tmp3932 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) - tmp3933 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) - m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp3932) - constant_term(tmp3933), order) - tmp3935 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) - tmp3936 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) - m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp3935) - constant_term(tmp3936), order) + tmp3944 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) + tmp3945 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) + m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp3944) - constant_term(tmp3945), order) + tmp3947 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) + tmp3948 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) + m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp3947) - constant_term(tmp3948), order) + tmp3950 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) + tmp3951 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) + m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp3950) - constant_term(tmp3951), order) Ic_dωc_1 = Taylor1(constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1), order) Ic_dωc_2 = Taylor1(constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2), order) Ic_dωc_3 = Taylor1(constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3), order) - tmp3941 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp4072 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp3942 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3941), order) - tmp3943 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp4073 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp3944 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3943), order) - tmp3945 = Taylor1(constant_term(tmp3942) + constant_term(tmp3944), order) - tmp3946 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp4074 = Taylor1(cos(constant_term(q[6N + 2])), order) - dq[6N + 1] = Taylor1(constant_term(tmp3945) / constant_term(tmp3946), order) - tmp3948 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp4075 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp3949 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3948), order) - tmp3950 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp4076 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp3951 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3950), order) - dq[6N + 2] = Taylor1(constant_term(tmp3949) - constant_term(tmp3951), order) - tmp3953 = Taylor1(cos(constant_term(q[6N + 2])), order) - tmp4077 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp3954 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp3953), order) - dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp3954), order) - tmp3956 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) - tmp3957 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) - tmp3958 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) - tmp3959 = Taylor1(constant_term(tmp3957) + constant_term(tmp3958), order) - dq[6N + 4] = Taylor1(constant_term(tmp3956) + constant_term(tmp3959), order) - tmp3961 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) - tmp3962 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) - tmp3963 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) - tmp3964 = Taylor1(constant_term(tmp3962) + constant_term(tmp3963), order) - dq[6N + 5] = Taylor1(constant_term(tmp3961) + constant_term(tmp3964), order) - tmp3966 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) - tmp3967 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) - tmp3968 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) - tmp3969 = Taylor1(constant_term(tmp3967) + constant_term(tmp3968), order) - dq[6N + 6] = Taylor1(constant_term(tmp3966) + constant_term(tmp3969), order) - tmp3971 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp4078 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp3972 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp3971), order) - dq[6N + 9] = Taylor1(-(constant_term(tmp3972)), order) - tmp3974 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp4079 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp3975 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp3974), order) - dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp3975), order) + tmp3956 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp4135 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp3957 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3956), order) + tmp3958 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp4136 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp3959 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3958), order) + tmp3960 = Taylor1(constant_term(tmp3957) + constant_term(tmp3959), order) + tmp3961 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp4137 = Taylor1(cos(constant_term(q[6N + 2])), order) + dq[6N + 1] = Taylor1(constant_term(tmp3960) / constant_term(tmp3961), order) + tmp3963 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp4138 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp3964 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3963), order) + tmp3965 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp4139 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp3966 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3965), order) + dq[6N + 2] = Taylor1(constant_term(tmp3964) - constant_term(tmp3966), order) + tmp3968 = Taylor1(cos(constant_term(q[6N + 2])), order) + tmp4140 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp3969 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp3968), order) + dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp3969), order) + tmp3971 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) + tmp3972 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) + tmp3973 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) + tmp3974 = Taylor1(constant_term(tmp3972) + constant_term(tmp3973), order) + dq[6N + 4] = Taylor1(constant_term(tmp3971) + constant_term(tmp3974), order) + tmp3976 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) + tmp3977 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) + tmp3978 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) + tmp3979 = Taylor1(constant_term(tmp3977) + constant_term(tmp3978), order) + dq[6N + 5] = Taylor1(constant_term(tmp3976) + constant_term(tmp3979), order) + tmp3981 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) + tmp3982 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) + tmp3983 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) + tmp3984 = Taylor1(constant_term(tmp3982) + constant_term(tmp3983), order) + dq[6N + 6] = Taylor1(constant_term(tmp3981) + constant_term(tmp3984), order) + tmp3986 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp4141 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp3987 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp3986), order) + dq[6N + 9] = Taylor1(-(constant_term(tmp3987)), order) + tmp3989 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp4142 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp3990 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp3989), order) + dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp3990), order) dq[6N + 8] = Taylor1(identity(constant_term(ω_c_CE_1)), order) dq[6N + 10] = Taylor1(constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1), order) dq[6N + 11] = Taylor1(constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2), order) dq[6N + 12] = Taylor1(constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3), order) - tmp3980 = Taylor1(constant_term(newtonianCoeff[su, ea]) * constant_term(J2_t[su]), order) - tmp3983 = Taylor1(constant_term(sin_ϕ[su, ea]) ^ float(constant_term(2)), order) - tmp3984 = Taylor1(constant_term(3) * constant_term(tmp3983), order) - tmp3985 = Taylor1(constant_term(one_t) - constant_term(tmp3984), order) - tmp3987 = Taylor1(constant_term(tmp3985) / constant_term(2), order) - w_LE = Taylor1(constant_term(tmp3980) * constant_term(tmp3987), order) - tmp3990 = Taylor1(constant_term(0.5) * constant_term(v2[ea]), order) - tmp3991 = Taylor1(constant_term(tmp3990) + constant_term(newtonianNb_Potential[ea]), order) - α_TTmTDB = Taylor1(constant_term(tmp3991) + constant_term(w_LE), order) + tmp3995 = Taylor1(constant_term(newtonianCoeff[su, ea]) * constant_term(J2_t[su]), order) + tmp3998 = Taylor1(constant_term(sin_ϕ[su, ea]) ^ float(constant_term(2)), order) + tmp4143 = Taylor1(zero(constant_term(sin_ϕ[su, ea])), order) + tmp3999 = Taylor1(constant_term(3) * constant_term(tmp3998), order) + tmp4000 = Taylor1(constant_term(one_t) - constant_term(tmp3999), order) + tmp4002 = Taylor1(constant_term(tmp4000) / constant_term(2), order) + w_LE = Taylor1(constant_term(tmp3995) * constant_term(tmp4002), order) + tmp4005 = Taylor1(constant_term(0.5) * constant_term(v2[ea]), order) + tmp4006 = Taylor1(constant_term(tmp4005) + constant_term(newtonianNb_Potential[ea]), order) + α_TTmTDB = Taylor1(constant_term(tmp4006) + constant_term(w_LE), order) v4E = Taylor1(constant_term(v2[ea]) ^ float(constant_term(2)), order) + tmp4144 = Taylor1(zero(constant_term(v2[ea])), order) ϕ_Earth_Newtonian_sq = Taylor1(constant_term(newtonianNb_Potential[ea]) ^ float(constant_term(2)), order) - tmp3998 = Taylor1(constant_term(ϕ_Earth_Newtonian_sq) / constant_term(2), order) - tmp4000 = Taylor1(constant_term(v4E) / constant_term(8), order) - β_TTmTDB = Taylor1(constant_term(tmp3998) - constant_term(tmp4000), order) + tmp4145 = Taylor1(zero(constant_term(newtonianNb_Potential[ea])), order) + tmp4013 = Taylor1(constant_term(ϕ_Earth_Newtonian_sq) / constant_term(2), order) + tmp4015 = Taylor1(constant_term(v4E) / constant_term(8), order) + β_TTmTDB = Taylor1(constant_term(tmp4013) - constant_term(tmp4015), order) β_TTmTDB_i_1 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) - for i = CartesianIndices(β_TTmTDB_i_1) + for i = eachindex(β_TTmTDB_i_1) β_TTmTDB_i_1[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp4005 = Array{Taylor1{_S}}(undef, size(v2)) - for i = CartesianIndices(tmp4005) - tmp4005[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4020 = Array{Taylor1{_S}}(undef, size(v2)) + for i = eachindex(tmp4020) + tmp4020[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp4007 = Array{Taylor1{_S}}(undef, size(v2)) - for i = CartesianIndices(tmp4007) - tmp4007[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4022 = Array{Taylor1{_S}}(undef, size(v2)) + for i = eachindex(tmp4022) + tmp4022[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp4008 = Array{Taylor1{_S}}(undef, size(tmp4005)) - for i = CartesianIndices(tmp4008) - tmp4008[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4023 = Array{Taylor1{_S}}(undef, size(tmp4020)) + for i = eachindex(tmp4023) + tmp4023[i] = Taylor1(zero(constant_term(q[1])), order) end β_TTmTDB_i_2 = Array{Taylor1{_S}}(undef, size(newtonianNb_Potential)) - for i = CartesianIndices(β_TTmTDB_i_2) + for i = eachindex(β_TTmTDB_i_2) β_TTmTDB_i_2[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp4010 = Array{Taylor1{_S}}(undef, size(X)) - for i = CartesianIndices(tmp4010) - tmp4010[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4025 = Array{Taylor1{_S}}(undef, size(X)) + for i = eachindex(tmp4025) + tmp4025[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp4011 = Array{Taylor1{_S}}(undef, size(Y)) - for i = CartesianIndices(tmp4011) - tmp4011[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4026 = Array{Taylor1{_S}}(undef, size(Y)) + for i = eachindex(tmp4026) + tmp4026[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp4012 = Array{Taylor1{_S}}(undef, size(tmp4010)) - for i = CartesianIndices(tmp4012) - tmp4012[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4027 = Array{Taylor1{_S}}(undef, size(tmp4025)) + for i = eachindex(tmp4027) + tmp4027[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp4013 = Array{Taylor1{_S}}(undef, size(Z)) - for i = CartesianIndices(tmp4013) - tmp4013[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4028 = Array{Taylor1{_S}}(undef, size(Z)) + for i = eachindex(tmp4028) + tmp4028[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp4014 = Array{Taylor1{_S}}(undef, size(tmp4012)) - for i = CartesianIndices(tmp4014) - tmp4014[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4029 = Array{Taylor1{_S}}(undef, size(tmp4027)) + for i = eachindex(tmp4029) + tmp4029[i] = Taylor1(zero(constant_term(q[1])), order) end - β_TTmTDB_i_3 = Array{Taylor1{_S}}(undef, size(tmp4014)) - for i = CartesianIndices(β_TTmTDB_i_3) + β_TTmTDB_i_3 = Array{Taylor1{_S}}(undef, size(tmp4029)) + for i = eachindex(β_TTmTDB_i_3) β_TTmTDB_i_3[i] = Taylor1(zero(constant_term(q[1])), order) end β_TTmTDB_i_4 = Array{Taylor1{_S}}(undef, size(rij_dot_vi_div_rij_sq)) - for i = CartesianIndices(β_TTmTDB_i_4) + for i = eachindex(β_TTmTDB_i_4) β_TTmTDB_i_4[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp4019 = Array{Taylor1{_S}}(undef, size(β_TTmTDB_i_1)) - for i = CartesianIndices(tmp4019) - tmp4019[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4034 = Array{Taylor1{_S}}(undef, size(β_TTmTDB_i_1)) + for i = eachindex(tmp4034) + tmp4034[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp4020 = Array{Taylor1{_S}}(undef, size(β_TTmTDB_i_3)) - for i = CartesianIndices(tmp4020) - tmp4020[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4035 = Array{Taylor1{_S}}(undef, size(β_TTmTDB_i_3)) + for i = eachindex(tmp4035) + tmp4035[i] = Taylor1(zero(constant_term(q[1])), order) end - β_TTmTDB_i = Array{Taylor1{_S}}(undef, size(tmp4019)) - for i = CartesianIndices(β_TTmTDB_i) + β_TTmTDB_i = Array{Taylor1{_S}}(undef, size(tmp4034)) + for i = eachindex(β_TTmTDB_i) β_TTmTDB_i[i] = Taylor1(zero(constant_term(q[1])), order) end - tmp4022 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) - for i = CartesianIndices(tmp4022) - tmp4022[i] = Taylor1(zero(constant_term(q[1])), order) + tmp4037 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) + for i = eachindex(tmp4037) + tmp4037[i] = Taylor1(zero(constant_term(q[1])), order) end - temp_β_TTmTDB = Array{Taylor1{_S}}(undef, size(tmp4022)) - for i = CartesianIndices(temp_β_TTmTDB) + temp_β_TTmTDB = Array{Taylor1{_S}}(undef, size(tmp4037)) + for i = eachindex(temp_β_TTmTDB) temp_β_TTmTDB[i] = Taylor1(zero(constant_term(q[1])), order) end for i = 1:N @@ -7363,522 +5826,522 @@ function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q continue else β_TTmTDB_i_1[i, ea] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, ea]), order) - tmp4005[ea] = Taylor1(constant_term(1.5) * constant_term(v2[ea]), order) - tmp4007[i] = Taylor1(constant_term(2) * constant_term(v2[i]), order) - tmp4008[ea] = Taylor1(constant_term(tmp4005[ea]) + constant_term(tmp4007[i]), order) - β_TTmTDB_i_2[i] = Taylor1(constant_term(newtonianNb_Potential[i]) - constant_term(tmp4008[ea]), order) - tmp4010[i, ea] = Taylor1(constant_term(dq[3 * (N + i) - 2]) * constant_term(X[i, ea]), order) - tmp4011[i, ea] = Taylor1(constant_term(dq[3 * (N + i) - 1]) * constant_term(Y[i, ea]), order) - tmp4012[i, ea] = Taylor1(constant_term(tmp4010[i, ea]) + constant_term(tmp4011[i, ea]), order) - tmp4013[i, ea] = Taylor1(constant_term(dq[3 * (N + i)]) * constant_term(Z[i, ea]), order) - tmp4014[i, ea] = Taylor1(constant_term(tmp4012[i, ea]) + constant_term(tmp4013[i, ea]), order) - β_TTmTDB_i_3[i, ea] = Taylor1(constant_term(tmp4014[i, ea]) / constant_term(2), order) + tmp4020[ea] = Taylor1(constant_term(1.5) * constant_term(v2[ea]), order) + tmp4022[i] = Taylor1(constant_term(2) * constant_term(v2[i]), order) + tmp4023[ea] = Taylor1(constant_term(tmp4020[ea]) + constant_term(tmp4022[i]), order) + β_TTmTDB_i_2[i] = Taylor1(constant_term(newtonianNb_Potential[i]) - constant_term(tmp4023[ea]), order) + tmp4025[i, ea] = Taylor1(constant_term(dq[3 * (N + i) - 2]) * constant_term(X[i, ea]), order) + tmp4026[i, ea] = Taylor1(constant_term(dq[3 * (N + i) - 1]) * constant_term(Y[i, ea]), order) + tmp4027[i, ea] = Taylor1(constant_term(tmp4025[i, ea]) + constant_term(tmp4026[i, ea]), order) + tmp4028[i, ea] = Taylor1(constant_term(dq[3 * (N + i)]) * constant_term(Z[i, ea]), order) + tmp4029[i, ea] = Taylor1(constant_term(tmp4027[i, ea]) + constant_term(tmp4028[i, ea]), order) + β_TTmTDB_i_3[i, ea] = Taylor1(constant_term(tmp4029[i, ea]) / constant_term(2), order) β_TTmTDB_i_4[i, ea] = Taylor1(constant_term(rij_dot_vi_div_rij_sq[i, ea]) / constant_term(2), order) - tmp4019[i, ea] = Taylor1(constant_term(β_TTmTDB_i_1[i, ea]) + constant_term(β_TTmTDB_i_2[i]), order) - tmp4020[i, ea] = Taylor1(constant_term(β_TTmTDB_i_3[i, ea]) + constant_term(β_TTmTDB_i_4[i, ea]), order) - β_TTmTDB_i[i, ea] = Taylor1(constant_term(tmp4019[i, ea]) + constant_term(tmp4020[i, ea]), order) - tmp4022[i, ea] = Taylor1(constant_term(newtonian1b_Potential[i, ea]) * constant_term(β_TTmTDB_i[i, ea]), order) - temp_β_TTmTDB[i, ea] = Taylor1(constant_term(β_TTmTDB) + constant_term(tmp4022[i, ea]), order) + tmp4034[i, ea] = Taylor1(constant_term(β_TTmTDB_i_1[i, ea]) + constant_term(β_TTmTDB_i_2[i]), order) + tmp4035[i, ea] = Taylor1(constant_term(β_TTmTDB_i_3[i, ea]) + constant_term(β_TTmTDB_i_4[i, ea]), order) + β_TTmTDB_i[i, ea] = Taylor1(constant_term(tmp4034[i, ea]) + constant_term(tmp4035[i, ea]), order) + tmp4037[i, ea] = Taylor1(constant_term(newtonian1b_Potential[i, ea]) * constant_term(β_TTmTDB_i[i, ea]), order) + temp_β_TTmTDB[i, ea] = Taylor1(constant_term(β_TTmTDB) + constant_term(tmp4037[i, ea]), order) β_TTmTDB = Taylor1(identity(constant_term(temp_β_TTmTDB[i, ea])), order) end end - tmp4024 = Taylor1(constant_term(c_m2) * constant_term(α_TTmTDB), order) - tmp4025 = Taylor1(constant_term(L_B) - constant_term(tmp4024), order) - tmp4026 = Taylor1(constant_term(tmp4025) * constant_term(one_plus_L_B_minus_L_G), order) - tmp4027 = Taylor1(constant_term(c_m4) * constant_term(β_TTmTDB), order) - tmp4028 = Taylor1(constant_term(tmp4027) - constant_term(L_G), order) - tmp4029 = Taylor1(constant_term(tmp4026) + constant_term(tmp4028), order) - dq[6N + 13] = Taylor1(constant_term(daysec) * constant_term(tmp4029), order) - return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp2961, tmp2962, tmp2963, tmp2964, tmp2965, tmp2966, tmp2967, tmp2968, tmp2970, tmp2971, tmp2972, tmp2973, tmp2974, tmp2975, tmp2976, tmp2977, tmp2978, tmp2980, tmp2981, tmp2983, tmp2984, tmp2985, tmp2986, tmp2987, tmp2988, tmp2989, tmp2990, tmp2992, tmp2993, tmp2994, tmp2995, tmp2996, tmp2997, tmp2998, tmp2999, tmp3001, tmp3002, tmp3003, tmp3005, tmp3006, tmp3008, tmp3009, tmp3012, tmp3013, tmp3014, tmp3015, tmp3017, tmp3018, tmp3019, tmp3020, tmp3021, tmp3023, tmp3024, tmp3025, tmp3026, tmp3028, tmp3029, tmp3030, tmp3031, tmp3032, tmp3034, tmp3035, tmp3036, tmp3037, tmp3039, tmp3040, tmp3041, tmp3042, tmp3043, tmp3045, tmp3046, tmp3047, tmp3048, tmp3050, tmp3051, tmp3052, tmp3053, tmp3055, tmp3056, tmp3057, tmp3058, tmp3130, tmp3132, tmp3133, tmp3135, tmp3136, tmp3139, tmp3141, tmp3143, tmp3144, tmp3425, tmp3427, tmp3437, tmp3439, tmp3449, tmp3451, tmp3453, tmp3455, tmp3456, tmp3457, tmp3458, tmp3459, tmp3462, tmp3464, tmp3466, tmp3468, tmp3469, tmp3470, tmp3471, tmp3472, tmp3476, tmp3477, tmp3479, tmp3480, tmp3483, tmp3484, tmp3485, tmp3487, tmp3488, tmp3490, tmp3491, tmp3494, tmp3495, tmp3496, tmp3499, tmp3501, tmp3511, tmp3513, tmp3522, tmp3523, tmp3525, tmp3526, tmp3531, tmp3532, tmp3535, tmp3536, tmp3541, tmp3542, tmp3543, tmp3544, tmp3547, tmp3548, tmp3549, tmp3550, tmp3553, tmp3554, tmp3555, tmp3556, tmp3559, tmp3560, tmp3561, tmp3562, tmp3565, tmp3566, tmp3567, tmp3568, tmp3571, tmp3572, tmp3573, tmp3574, tmp3577, tmp3579, tmp3589, tmp3591, tmp3600, tmp3601, tmp3603, tmp3604, tmp3608, tmp3611, tmp3612, tmp3613, tmp3614, tmp3615, tmp3619, tmp3622, tmp3623, tmp3624, tmp3625, tmp3626, tmp3631, tmp3632, tmp3633, tmp3634, tmp3635, tmp3638, tmp3639, tmp3640, tmp3641, tmp3642, tmp3644, tmp3645, tmp3648, tmp3649, tmp3650, tmp3651, tmp3652, tmp3655, tmp3656, tmp3657, tmp3658, tmp3659, tmp3661, tmp3662, tmp3664, tmp3670, tmp3671, tmp3672, tmp3673, tmp3674, tmp3675, tmp3677, tmp3678, tmp3679, tmp3680, tmp3681, tmp3682, tmp3684, tmp3685, tmp3686, tmp3687, tmp3688, tmp3689, tmp3691, tmp3692, tmp3693, tmp3694, tmp3696, tmp3697, tmp3698, tmp3699, tmp3701, tmp3702, tmp3703, tmp3704, tmp3712, tmp3713, tmp3714, tmp3715, tmp3717, tmp3718, tmp3719, tmp3720, tmp3722, tmp3723, tmp3724, tmp3725, tmp3727, tmp3728, tmp3730, tmp3731, tmp3733, tmp3734, tmp3736, tmp3737, tmp3738, tmp3739, tmp3741, tmp3742, tmp3743, tmp3744, tmp3746, tmp3747, tmp3748, tmp3749, tmp3754, tmp3755, tmp3756, tmp3757, tmp3759, tmp3760, tmp3761, tmp3762, tmp3764, tmp3765, tmp3766, tmp3767, tmp3769, tmp3770, tmp3771, tmp3772, tmp3774, tmp3775, tmp3776, tmp3777, tmp3779, tmp3780, tmp3781, tmp3782, tmp3784, tmp3785, tmp3786, tmp3787, tmp3789, tmp3790, tmp3791, tmp3792, tmp3794, tmp3795, tmp3796, tmp3797, tmp3799, tmp3800, tmp3801, tmp3802, tmp3804, tmp3805, tmp3806, tmp3807, tmp3809, tmp3810, tmp3811, tmp3812, tmp3814, tmp3815, tmp3817, tmp3818, tmp3820, tmp3821, tmp3823, tmp3824, tmp3826, tmp3827, tmp3829, tmp3830, tmp3832, tmp3833, tmp3835, tmp3836, tmp3838, tmp3839, tmp3841, tmp3842, tmp3844, tmp3845, tmp3847, tmp3848, tmp3852, tmp3853, tmp3858, tmp3860, tmp3861, tmp3862, tmp3863, tmp3865, tmp3866, tmp3868, tmp3869, tmp3870, tmp3871, tmp3873, tmp3874, tmp3876, tmp3877, tmp3878, tmp3879, tmp3881, tmp3882, tmp3884, tmp3885, tmp3886, tmp3887, tmp3889, tmp3890, tmp3891, tmp3892, tmp3894, tmp3895, tmp3896, tmp3897, tmp3899, tmp3900, tmp3901, tmp3902, tmp3904, tmp3905, tmp3906, tmp3907, tmp3909, tmp3911, tmp3912, tmp3913, tmp3914, tmp3916, tmp3917, tmp3918, tmp3919, tmp3921, tmp3922, tmp3923, tmp3924, tmp3929, tmp3930, tmp3932, tmp3933, tmp3935, tmp3936, tmp3941, tmp3942, tmp3943, tmp3944, tmp3945, tmp3946, tmp3948, tmp3949, tmp3950, tmp3951, tmp3953, tmp3954, tmp3956, tmp3957, tmp3958, tmp3959, tmp3961, tmp3962, tmp3963, tmp3964, tmp3966, tmp3967, tmp3968, tmp3969, tmp3971, tmp3972, tmp3974, tmp3975, tmp3980, tmp3983, tmp3984, tmp3985, tmp3987, tmp3990, tmp3991, tmp3998, tmp4000, tmp4024, tmp4025, tmp4026, tmp4027, tmp4028, tmp4029, ϕ_m, θ_m, ψ_m, tmp4031, tmp4032, tmp4033, tmp4034, tmp4035, tmp4036, tmp4037, tmp4038, tmp4039, tmp4040, tmp4041, tmp4042, tmp4043, tmp4044, tmp4045, tmp4046, tmp4047, tmp4048, tmp4049, tmp4050, tmp4051, tmp4052, tmp4053, tmp4054, tmp4055, tmp4056, tmp4057, tmp4058, tmp4059, ϕ_c, tmp4060, tmp4061, tmp4062, tmp4063, tmp4064, tmp4065, tmp4066, tmp4067, tmp4068, tmp4069, tmp4070, tmp4071, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, x0s_M, y0s_M, z0s_M, ρ0s2_M, ρ0s_M, z0s2_M, r0s2_M, r0s_M, r0s5_M, x0s_S, y0s_S, z0s_S, ρ0s2_S, ρ0s_S, z0s2_S, r0s2_S, r0s_S, r0s5_S, coeff0_M, coeff0_S, k_20E_div_r0s5_M, k_20E_div_r0s5_S, a_tid_0_M_x, a_tid_0_M_y, a_tid_0_M_z, a_tid_0_S_x, a_tid_0_S_y, a_tid_0_S_z, x1s_M, y1s_M, z1s_M, ρ1s2_M, ρ1s_M, z1s2_M, r1s2_M, r1s_M, r1s5_M, x1s_S, y1s_S, z1s_S, ρ1s2_S, ρ1s_S, z1s2_S, r1s2_S, r1s_S, r1s5_S, coeff1_1_M, coeff1_1_S, coeff2_1_M, coeff2_1_S, coeff3_1_M, coeff3_1_S, k_21E_div_r1s5_M, k_21E_div_r1s5_S, a_tid_1_M_x, a_tid_1_M_y, a_tid_1_M_z, a_tid_1_S_x, a_tid_1_S_y, a_tid_1_S_z, x2s_M, y2s_M, z2s_M, ρ2s2_M, ρ2s_M, z2s2_M, r2s2_M, r2s_M, r2s5_M, x2s_S, y2s_S, z2s_S, ρ2s2_S, ρ2s_S, z2s2_S, r2s2_S, r2s_S, r2s5_S, coeff1_2_M, coeff1_2_S, coeff3_2_M, coeff3_2_S, k_22E_div_r2s5_M, k_22E_div_r2s5_S, a_tid_2_M_x, a_tid_2_M_y, a_tid_2_M_z, a_tid_2_S_x, a_tid_2_S_y, a_tid_2_S_z, RE_div_r_p5, aux_tidacc, a_tidal_coeff_M, a_tidal_coeff_S, a_tidal_tod_x, a_tidal_tod_y, a_tidal_tod_z, a_tidal_x, a_tidal_y, a_tidal_z, accX_mo_tides, accY_mo_tides, accZ_mo_tides, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, one_minus_7sin2ϕEM, two_sinϕEM, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp4072, tmp4073, tmp4074, tmp4075, tmp4076, tmp4077, tmp4078, tmp4079, w_LE, α_TTmTDB, v4E, ϕ_Earth_Newtonian_sq, β_TTmTDB], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp3067, tmp3069, tmp3072, tmp3074, tmp3077, tmp3079, tmp3123, tmp3125, tmp3126, tmp3128, tmp4005, tmp4007, tmp4008, β_TTmTDB_i_2], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, rij_dot_vi_div_rij_sq, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp3087, tmp3090, tmp3092, tmp3093, tmp3095, tmp3103, tmp3104, tmp3115, temp_001, tmp3117, temp_002, tmp3119, temp_003, temp_004, tmp3156, tmp3158, tmp3160, tmp3164, tmp3166, tmp3167, tmp3273, tmp3274, tmp3277, tmp3278, tmp3284, tmp3287, tmp3349, tmp3351, tmp3353, tmp3355, tmp3357, tmp3359, tmp3361, tmp3362, tmp3363, tmp3365, tmp3366, tmp3367, tmp3369, tmp3370, tmp3371, tmp3383, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp3389, Rij_dot_Vi, tmp3392, tmp3395, pn1t2_7, tmp3402, tmp3403, tmp3404, tmp3412, termpnx, sumpnx, tmp3415, termpny, sumpny, tmp3418, termpnz, sumpnz, β_TTmTDB_i_1, tmp4010, tmp4011, tmp4012, tmp4013, tmp4014, β_TTmTDB_i_3, β_TTmTDB_i_4, tmp4019, tmp4020, β_TTmTDB_i, tmp4022, temp_β_TTmTDB], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp3172, tmp3173, tmp3174, tmp3176, tmp3177, tmp3182, tmp3183, tmp3185, tmp3186, tmp3187, tmp3189, tmp3190, tmp3191, tmp3193, tmp3194, tmp3195, tmp3196, tmp3199, tmp3200, tmp3202, tmp3203, tmp3222, tmp3223, tmp3224, tmp3227, tmp3228, tmp3229, tmp3234, tmp3235, tmp3236, tmp3239, tmp3240, tmp3241, tmp3245, tmp3246, tmp3247, tmp3249, tmp3250, tmp3251], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp3205, tmp3208, tmp3210, tmp3212, tmp3213, tmp3214, tmp3217, tmp3218, tmp3219, tmp3221, tmp3225, tmp3226, tmp3230, tmp3231, tmp3233, tmp3237, tmp3238, tmp3242, tmp3243, tmp3248, tmp3252, tmp3253, tmp3259, tmp3260, tmp3261, tmp3262, tmp3264, tmp3265, tmp3266, tmp3267, tmp3269, tmp3270, tmp3271, tmp3289, tmp3290, tmp3291, tmp3292, tmp3294, tmp3295, tmp3296, tmp3297, tmp3299, tmp3300, tmp3301, tmp3302, tmp3304, tmp3305, tmp3306, tmp3307, tmp3309, tmp3310, tmp3311, tmp3312, tmp3314, tmp3315, tmp3316, tmp3317, tmp3319, tmp3320, tmp3321, tmp3322, tmp3324, tmp3325, tmp3326, tmp3327, tmp3329, tmp3330, tmp3331, tmp3332, tmp3334, tmp3335, tmp3336, tmp3337, tmp3339, tmp3340, tmp3341, tmp3342, tmp3344, tmp3345, tmp3346, tmp3347]) + tmp4039 = Taylor1(constant_term(c_m2) * constant_term(α_TTmTDB), order) + tmp4040 = Taylor1(constant_term(L_B) - constant_term(tmp4039), order) + tmp4041 = Taylor1(constant_term(tmp4040) * constant_term(one_plus_L_B_minus_L_G), order) + tmp4042 = Taylor1(constant_term(c_m4) * constant_term(β_TTmTDB), order) + tmp4043 = Taylor1(constant_term(tmp4042) - constant_term(L_G), order) + tmp4044 = Taylor1(constant_term(tmp4041) + constant_term(tmp4043), order) + dq[6N + 13] = Taylor1(constant_term(daysec) * constant_term(tmp4044), order) + return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp2976, tmp2977, tmp2978, tmp2979, tmp2980, tmp2981, tmp2982, tmp2983, tmp2985, tmp2986, tmp2987, tmp2988, tmp2989, tmp2990, tmp2991, tmp2992, tmp2993, tmp2995, tmp2996, tmp2998, tmp2999, tmp3000, tmp3001, tmp3002, tmp3003, tmp3004, tmp3005, tmp3007, tmp3008, tmp3009, tmp3010, tmp3011, tmp3012, tmp3013, tmp3014, tmp3016, tmp3017, tmp3018, tmp3020, tmp3021, tmp3023, tmp3024, tmp3027, tmp3028, tmp3029, tmp3030, tmp3032, tmp3033, tmp3034, tmp3035, tmp3036, tmp3038, tmp3039, tmp3040, tmp3041, tmp3043, tmp3044, tmp3045, tmp3046, tmp3047, tmp3049, tmp3050, tmp3051, tmp3052, tmp3054, tmp3055, tmp3056, tmp3057, tmp3058, tmp3060, tmp3061, tmp3062, tmp3063, tmp3065, tmp3066, tmp3067, tmp3068, tmp3070, tmp3071, tmp3072, tmp3073, tmp3145, tmp3147, tmp3148, tmp3150, tmp3151, tmp3154, tmp3156, tmp3158, tmp3159, tmp3440, tmp3442, tmp3452, tmp3454, tmp3464, tmp3466, tmp3468, tmp3470, tmp3471, tmp3472, tmp3473, tmp3474, tmp3477, tmp3479, tmp3481, tmp3483, tmp3484, tmp3485, tmp3486, tmp3487, tmp3491, tmp3492, tmp3494, tmp3495, tmp3498, tmp3499, tmp3500, tmp3502, tmp3503, tmp3505, tmp3506, tmp3509, tmp3510, tmp3511, tmp3514, tmp3516, tmp3526, tmp3528, tmp3537, tmp3538, tmp3540, tmp3541, tmp3546, tmp3547, tmp3550, tmp3551, tmp3556, tmp3557, tmp3558, tmp3559, tmp3562, tmp3563, tmp3564, tmp3565, tmp3568, tmp3569, tmp3570, tmp3571, tmp3574, tmp3575, tmp3576, tmp3577, tmp3580, tmp3581, tmp3582, tmp3583, tmp3586, tmp3587, tmp3588, tmp3589, tmp3592, tmp3594, tmp3604, tmp3606, tmp3615, tmp3616, tmp3618, tmp3619, tmp3623, tmp3626, tmp3627, tmp3628, tmp3629, tmp3630, tmp3634, tmp3637, tmp3638, tmp3639, tmp3640, tmp3641, tmp3646, tmp3647, tmp3648, tmp3649, tmp3650, tmp3653, tmp3654, tmp3655, tmp3656, tmp3657, tmp3659, tmp3660, tmp3663, tmp3664, tmp3665, tmp3666, tmp3667, tmp3670, tmp3671, tmp3672, tmp3673, tmp3674, tmp3676, tmp3677, tmp3679, tmp3685, tmp3686, tmp3687, tmp3688, tmp3689, tmp3690, tmp3692, tmp3693, tmp3694, tmp3695, tmp3696, tmp3697, tmp3699, tmp3700, tmp3701, tmp3702, tmp3703, tmp3704, tmp3706, tmp3707, tmp3708, tmp3709, tmp3711, tmp3712, tmp3713, tmp3714, tmp3716, tmp3717, tmp3718, tmp3719, tmp3727, tmp3728, tmp3729, tmp3730, tmp3732, tmp3733, tmp3734, tmp3735, tmp3737, tmp3738, tmp3739, tmp3740, tmp3742, tmp3743, tmp3745, tmp3746, tmp3748, tmp3749, tmp3751, tmp3752, tmp3753, tmp3754, tmp3756, tmp3757, tmp3758, tmp3759, tmp3761, tmp3762, tmp3763, tmp3764, tmp3769, tmp3770, tmp3771, tmp3772, tmp3774, tmp3775, tmp3776, tmp3777, tmp3779, tmp3780, tmp3781, tmp3782, tmp3784, tmp3785, tmp3786, tmp3787, tmp3789, tmp3790, tmp3791, tmp3792, tmp3794, tmp3795, tmp3796, tmp3797, tmp3799, tmp3800, tmp3801, tmp3802, tmp3804, tmp3805, tmp3806, tmp3807, tmp3809, tmp3810, tmp3811, tmp3812, tmp3814, tmp3815, tmp3816, tmp3817, tmp3819, tmp3820, tmp3821, tmp3822, tmp3824, tmp3825, tmp3826, tmp3827, tmp3829, tmp3830, tmp3832, tmp3833, tmp3835, tmp3836, tmp3838, tmp3839, tmp3841, tmp3842, tmp3844, tmp3845, tmp3847, tmp3848, tmp3850, tmp3851, tmp3853, tmp3854, tmp3856, tmp3857, tmp3859, tmp3860, tmp3862, tmp3863, tmp3867, tmp3868, tmp3873, tmp3875, tmp3876, tmp3877, tmp3878, tmp3880, tmp3881, tmp3883, tmp3884, tmp3885, tmp3886, tmp3888, tmp3889, tmp3891, tmp3892, tmp3893, tmp3894, tmp3896, tmp3897, tmp3899, tmp3900, tmp3901, tmp3902, tmp3904, tmp3905, tmp3906, tmp3907, tmp3909, tmp3910, tmp3911, tmp3912, tmp3914, tmp3915, tmp3916, tmp3917, tmp3919, tmp3920, tmp3921, tmp3922, tmp3924, tmp3926, tmp3927, tmp3928, tmp3929, tmp3931, tmp3932, tmp3933, tmp3934, tmp3936, tmp3937, tmp3938, tmp3939, tmp3944, tmp3945, tmp3947, tmp3948, tmp3950, tmp3951, tmp3956, tmp3957, tmp3958, tmp3959, tmp3960, tmp3961, tmp3963, tmp3964, tmp3965, tmp3966, tmp3968, tmp3969, tmp3971, tmp3972, tmp3973, tmp3974, tmp3976, tmp3977, tmp3978, tmp3979, tmp3981, tmp3982, tmp3983, tmp3984, tmp3986, tmp3987, tmp3989, tmp3990, tmp3995, tmp3998, tmp3999, tmp4000, tmp4002, tmp4005, tmp4006, tmp4013, tmp4015, tmp4039, tmp4040, tmp4041, tmp4042, tmp4043, tmp4044, ϕ_m, θ_m, ψ_m, tmp4046, tmp4047, tmp4048, tmp4049, tmp4050, tmp4051, tmp4052, tmp4053, tmp4054, tmp4055, tmp4056, tmp4057, tmp4058, tmp4059, tmp4060, tmp4061, tmp4062, tmp4063, tmp4064, tmp4065, tmp4066, tmp4067, tmp4068, tmp4069, tmp4070, tmp4071, tmp4072, tmp4073, tmp4074, ϕ_c, tmp4075, tmp4076, tmp4077, tmp4078, tmp4079, tmp4080, tmp4081, tmp4082, tmp4083, tmp4084, tmp4085, tmp4086, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, x0s_M, y0s_M, z0s_M, tmp4100, tmp4101, ρ0s2_M, ρ0s_M, z0s2_M, tmp4102, r0s2_M, r0s_M, r0s5_M, tmp4103, x0s_S, y0s_S, z0s_S, tmp4104, tmp4105, ρ0s2_S, ρ0s_S, z0s2_S, tmp4106, r0s2_S, r0s_S, r0s5_S, tmp4107, tmp4108, tmp4109, coeff0_M, tmp4110, tmp4111, coeff0_S, k_20E_div_r0s5_M, k_20E_div_r0s5_S, a_tid_0_M_x, a_tid_0_M_y, a_tid_0_M_z, a_tid_0_S_x, a_tid_0_S_y, a_tid_0_S_z, x1s_M, y1s_M, z1s_M, tmp4112, tmp4113, ρ1s2_M, ρ1s_M, z1s2_M, tmp4114, r1s2_M, r1s_M, r1s5_M, tmp4115, x1s_S, y1s_S, z1s_S, tmp4116, tmp4117, ρ1s2_S, ρ1s_S, z1s2_S, tmp4118, r1s2_S, r1s_S, r1s5_S, tmp4119, coeff1_1_M, coeff1_1_S, coeff2_1_M, coeff2_1_S, coeff3_1_M, coeff3_1_S, k_21E_div_r1s5_M, k_21E_div_r1s5_S, a_tid_1_M_x, a_tid_1_M_y, a_tid_1_M_z, a_tid_1_S_x, a_tid_1_S_y, a_tid_1_S_z, x2s_M, y2s_M, z2s_M, tmp4120, tmp4121, ρ2s2_M, ρ2s_M, z2s2_M, tmp4122, r2s2_M, r2s_M, r2s5_M, tmp4123, x2s_S, y2s_S, z2s_S, tmp4124, tmp4125, ρ2s2_S, ρ2s_S, z2s2_S, tmp4126, r2s2_S, r2s_S, r2s5_S, tmp4127, coeff1_2_M, coeff1_2_S, tmp4128, tmp4129, coeff3_2_M, tmp4130, tmp4131, coeff3_2_S, k_22E_div_r2s5_M, k_22E_div_r2s5_S, a_tid_2_M_x, a_tid_2_M_y, a_tid_2_M_z, a_tid_2_S_x, a_tid_2_S_y, a_tid_2_S_z, RE_div_r_p5, tmp4132, aux_tidacc, a_tidal_coeff_M, a_tidal_coeff_S, a_tidal_tod_x, a_tidal_tod_y, a_tidal_tod_z, a_tidal_x, a_tidal_y, a_tidal_z, accX_mo_tides, accY_mo_tides, accZ_mo_tides, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, tmp4133, one_minus_7sin2ϕEM, two_sinϕEM, tmp4134, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp4135, tmp4136, tmp4137, tmp4138, tmp4139, tmp4140, tmp4141, tmp4142, tmp4143, w_LE, α_TTmTDB, v4E, tmp4144, ϕ_Earth_Newtonian_sq, tmp4145, β_TTmTDB], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp3082, tmp3084, tmp3087, tmp3089, tmp3092, tmp3094, tmp3138, tmp4092, tmp3140, tmp4093, tmp3141, tmp3143, tmp4094, tmp4020, tmp4022, tmp4023, β_TTmTDB_i_2], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, rij_dot_vi_div_rij_sq, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp3102, tmp3105, tmp4087, tmp3107, tmp4088, tmp3108, tmp3110, tmp4089, tmp4090, tmp4091, tmp3118, tmp3119, tmp3130, temp_001, tmp3132, temp_002, tmp3134, temp_003, temp_004, tmp3171, tmp3173, tmp3175, tmp3179, tmp4095, tmp3181, tmp4096, tmp3182, tmp4097, tmp4098, tmp3288, tmp3289, tmp3292, tmp3293, tmp3299, tmp3302, tmp3364, tmp3366, tmp3368, tmp3370, tmp3372, tmp3374, tmp3376, tmp3377, tmp3378, tmp3380, tmp3381, tmp3382, tmp3384, tmp3385, tmp3386, tmp3398, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp3404, Rij_dot_Vi, tmp3407, tmp4099, tmp3410, pn1t2_7, tmp3417, tmp3418, tmp3419, tmp3427, termpnx, sumpnx, tmp3430, termpny, sumpny, tmp3433, termpnz, sumpnz, β_TTmTDB_i_1, tmp4025, tmp4026, tmp4027, tmp4028, tmp4029, β_TTmTDB_i_3, β_TTmTDB_i_4, tmp4034, tmp4035, β_TTmTDB_i, tmp4037, temp_β_TTmTDB], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp3187, tmp3188, tmp3189, tmp3191, tmp3192, tmp3197, tmp3198, tmp3200, tmp3201, tmp3202, tmp3204, tmp3205, tmp3206, tmp3208, tmp3209, tmp3210, tmp3211, tmp3214, tmp3215, tmp3217, tmp3218, tmp3237, tmp3238, tmp3239, tmp3242, tmp3243, tmp3244, tmp3249, tmp3250, tmp3251, tmp3254, tmp3255, tmp3256, tmp3260, tmp3261, tmp3262, tmp3264, tmp3265, tmp3266], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp3220, tmp3223, tmp3225, tmp3227, tmp3228, tmp3229, tmp3232, tmp3233, tmp3234, tmp3236, tmp3240, tmp3241, tmp3245, tmp3246, tmp3248, tmp3252, tmp3253, tmp3257, tmp3258, tmp3263, tmp3267, tmp3268, tmp3274, tmp3275, tmp3276, tmp3277, tmp3279, tmp3280, tmp3281, tmp3282, tmp3284, tmp3285, tmp3286, tmp3304, tmp3305, tmp3306, tmp3307, tmp3309, tmp3310, tmp3311, tmp3312, tmp3314, tmp3315, tmp3316, tmp3317, tmp3319, tmp3320, tmp3321, tmp3322, tmp3324, tmp3325, tmp3326, tmp3327, tmp3329, tmp3330, tmp3331, tmp3332, tmp3334, tmp3335, tmp3336, tmp3337, tmp3339, tmp3340, tmp3341, tmp3342, tmp3344, tmp3345, tmp3346, tmp3347, tmp3349, tmp3350, tmp3351, tmp3352, tmp3354, tmp3355, tmp3356, tmp3357, tmp3359, tmp3360, tmp3361, tmp3362]) end # TaylorIntegration.jetcoeffs! method for src/dynamical_model.jl: DE430! function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params, __ralloc::TaylorIntegration.RetAlloc{Taylor1{_S}}) where {_T <: Real, _S <: Number, _N} order = t.order - tmp2961 = __ralloc.v0[1] - tmp2962 = __ralloc.v0[2] - tmp2963 = __ralloc.v0[3] - tmp2964 = __ralloc.v0[4] - tmp2965 = __ralloc.v0[5] - tmp2966 = __ralloc.v0[6] - tmp2967 = __ralloc.v0[7] - tmp2968 = __ralloc.v0[8] - tmp2970 = __ralloc.v0[9] - tmp2971 = __ralloc.v0[10] - tmp2972 = __ralloc.v0[11] - tmp2973 = __ralloc.v0[12] - tmp2974 = __ralloc.v0[13] - tmp2975 = __ralloc.v0[14] - tmp2976 = __ralloc.v0[15] - tmp2977 = __ralloc.v0[16] - tmp2978 = __ralloc.v0[17] - tmp2980 = __ralloc.v0[18] - tmp2981 = __ralloc.v0[19] - tmp2983 = __ralloc.v0[20] - tmp2984 = __ralloc.v0[21] - tmp2985 = __ralloc.v0[22] - tmp2986 = __ralloc.v0[23] - tmp2987 = __ralloc.v0[24] - tmp2988 = __ralloc.v0[25] - tmp2989 = __ralloc.v0[26] - tmp2990 = __ralloc.v0[27] - tmp2992 = __ralloc.v0[28] - tmp2993 = __ralloc.v0[29] - tmp2994 = __ralloc.v0[30] - tmp2995 = __ralloc.v0[31] - tmp2996 = __ralloc.v0[32] - tmp2997 = __ralloc.v0[33] - tmp2998 = __ralloc.v0[34] - tmp2999 = __ralloc.v0[35] - tmp3001 = __ralloc.v0[36] - tmp3002 = __ralloc.v0[37] - tmp3003 = __ralloc.v0[38] - tmp3005 = __ralloc.v0[39] - tmp3006 = __ralloc.v0[40] - tmp3008 = __ralloc.v0[41] - tmp3009 = __ralloc.v0[42] - tmp3012 = __ralloc.v0[43] - tmp3013 = __ralloc.v0[44] - tmp3014 = __ralloc.v0[45] - tmp3015 = __ralloc.v0[46] - tmp3017 = __ralloc.v0[47] - tmp3018 = __ralloc.v0[48] - tmp3019 = __ralloc.v0[49] - tmp3020 = __ralloc.v0[50] - tmp3021 = __ralloc.v0[51] - tmp3023 = __ralloc.v0[52] - tmp3024 = __ralloc.v0[53] - tmp3025 = __ralloc.v0[54] - tmp3026 = __ralloc.v0[55] - tmp3028 = __ralloc.v0[56] - tmp3029 = __ralloc.v0[57] - tmp3030 = __ralloc.v0[58] - tmp3031 = __ralloc.v0[59] - tmp3032 = __ralloc.v0[60] - tmp3034 = __ralloc.v0[61] - tmp3035 = __ralloc.v0[62] - tmp3036 = __ralloc.v0[63] - tmp3037 = __ralloc.v0[64] - tmp3039 = __ralloc.v0[65] - tmp3040 = __ralloc.v0[66] - tmp3041 = __ralloc.v0[67] - tmp3042 = __ralloc.v0[68] - tmp3043 = __ralloc.v0[69] - tmp3045 = __ralloc.v0[70] - tmp3046 = __ralloc.v0[71] - tmp3047 = __ralloc.v0[72] - tmp3048 = __ralloc.v0[73] - tmp3050 = __ralloc.v0[74] - tmp3051 = __ralloc.v0[75] - tmp3052 = __ralloc.v0[76] - tmp3053 = __ralloc.v0[77] - tmp3055 = __ralloc.v0[78] - tmp3056 = __ralloc.v0[79] - tmp3057 = __ralloc.v0[80] - tmp3058 = __ralloc.v0[81] - tmp3130 = __ralloc.v0[82] - tmp3132 = __ralloc.v0[83] - tmp3133 = __ralloc.v0[84] - tmp3135 = __ralloc.v0[85] - tmp3136 = __ralloc.v0[86] - tmp3139 = __ralloc.v0[87] - tmp3141 = __ralloc.v0[88] - tmp3143 = __ralloc.v0[89] - tmp3144 = __ralloc.v0[90] - tmp3425 = __ralloc.v0[91] - tmp3427 = __ralloc.v0[92] - tmp3437 = __ralloc.v0[93] - tmp3439 = __ralloc.v0[94] - tmp3449 = __ralloc.v0[95] - tmp3451 = __ralloc.v0[96] - tmp3453 = __ralloc.v0[97] - tmp3455 = __ralloc.v0[98] - tmp3456 = __ralloc.v0[99] - tmp3457 = __ralloc.v0[100] - tmp3458 = __ralloc.v0[101] - tmp3459 = __ralloc.v0[102] - tmp3462 = __ralloc.v0[103] - tmp3464 = __ralloc.v0[104] - tmp3466 = __ralloc.v0[105] - tmp3468 = __ralloc.v0[106] - tmp3469 = __ralloc.v0[107] - tmp3470 = __ralloc.v0[108] - tmp3471 = __ralloc.v0[109] - tmp3472 = __ralloc.v0[110] - tmp3476 = __ralloc.v0[111] - tmp3477 = __ralloc.v0[112] - tmp3479 = __ralloc.v0[113] - tmp3480 = __ralloc.v0[114] - tmp3483 = __ralloc.v0[115] - tmp3484 = __ralloc.v0[116] - tmp3485 = __ralloc.v0[117] - tmp3487 = __ralloc.v0[118] - tmp3488 = __ralloc.v0[119] - tmp3490 = __ralloc.v0[120] - tmp3491 = __ralloc.v0[121] - tmp3494 = __ralloc.v0[122] - tmp3495 = __ralloc.v0[123] - tmp3496 = __ralloc.v0[124] - tmp3499 = __ralloc.v0[125] - tmp3501 = __ralloc.v0[126] - tmp3511 = __ralloc.v0[127] - tmp3513 = __ralloc.v0[128] - tmp3522 = __ralloc.v0[129] - tmp3523 = __ralloc.v0[130] - tmp3525 = __ralloc.v0[131] - tmp3526 = __ralloc.v0[132] - tmp3531 = __ralloc.v0[133] - tmp3532 = __ralloc.v0[134] - tmp3535 = __ralloc.v0[135] - tmp3536 = __ralloc.v0[136] - tmp3541 = __ralloc.v0[137] - tmp3542 = __ralloc.v0[138] - tmp3543 = __ralloc.v0[139] - tmp3544 = __ralloc.v0[140] - tmp3547 = __ralloc.v0[141] - tmp3548 = __ralloc.v0[142] - tmp3549 = __ralloc.v0[143] - tmp3550 = __ralloc.v0[144] - tmp3553 = __ralloc.v0[145] - tmp3554 = __ralloc.v0[146] - tmp3555 = __ralloc.v0[147] - tmp3556 = __ralloc.v0[148] - tmp3559 = __ralloc.v0[149] - tmp3560 = __ralloc.v0[150] - tmp3561 = __ralloc.v0[151] - tmp3562 = __ralloc.v0[152] - tmp3565 = __ralloc.v0[153] - tmp3566 = __ralloc.v0[154] - tmp3567 = __ralloc.v0[155] - tmp3568 = __ralloc.v0[156] - tmp3571 = __ralloc.v0[157] - tmp3572 = __ralloc.v0[158] - tmp3573 = __ralloc.v0[159] - tmp3574 = __ralloc.v0[160] - tmp3577 = __ralloc.v0[161] - tmp3579 = __ralloc.v0[162] - tmp3589 = __ralloc.v0[163] - tmp3591 = __ralloc.v0[164] - tmp3600 = __ralloc.v0[165] - tmp3601 = __ralloc.v0[166] - tmp3603 = __ralloc.v0[167] - tmp3604 = __ralloc.v0[168] - tmp3608 = __ralloc.v0[169] - tmp3611 = __ralloc.v0[170] - tmp3612 = __ralloc.v0[171] - tmp3613 = __ralloc.v0[172] - tmp3614 = __ralloc.v0[173] - tmp3615 = __ralloc.v0[174] - tmp3619 = __ralloc.v0[175] - tmp3622 = __ralloc.v0[176] - tmp3623 = __ralloc.v0[177] - tmp3624 = __ralloc.v0[178] - tmp3625 = __ralloc.v0[179] - tmp3626 = __ralloc.v0[180] - tmp3631 = __ralloc.v0[181] - tmp3632 = __ralloc.v0[182] - tmp3633 = __ralloc.v0[183] - tmp3634 = __ralloc.v0[184] - tmp3635 = __ralloc.v0[185] - tmp3638 = __ralloc.v0[186] - tmp3639 = __ralloc.v0[187] - tmp3640 = __ralloc.v0[188] - tmp3641 = __ralloc.v0[189] - tmp3642 = __ralloc.v0[190] - tmp3644 = __ralloc.v0[191] - tmp3645 = __ralloc.v0[192] - tmp3648 = __ralloc.v0[193] - tmp3649 = __ralloc.v0[194] - tmp3650 = __ralloc.v0[195] - tmp3651 = __ralloc.v0[196] - tmp3652 = __ralloc.v0[197] - tmp3655 = __ralloc.v0[198] - tmp3656 = __ralloc.v0[199] - tmp3657 = __ralloc.v0[200] - tmp3658 = __ralloc.v0[201] - tmp3659 = __ralloc.v0[202] - tmp3661 = __ralloc.v0[203] - tmp3662 = __ralloc.v0[204] - tmp3664 = __ralloc.v0[205] - tmp3670 = __ralloc.v0[206] - tmp3671 = __ralloc.v0[207] - tmp3672 = __ralloc.v0[208] - tmp3673 = __ralloc.v0[209] - tmp3674 = __ralloc.v0[210] - tmp3675 = __ralloc.v0[211] - tmp3677 = __ralloc.v0[212] - tmp3678 = __ralloc.v0[213] - tmp3679 = __ralloc.v0[214] - tmp3680 = __ralloc.v0[215] - tmp3681 = __ralloc.v0[216] - tmp3682 = __ralloc.v0[217] - tmp3684 = __ralloc.v0[218] - tmp3685 = __ralloc.v0[219] - tmp3686 = __ralloc.v0[220] - tmp3687 = __ralloc.v0[221] - tmp3688 = __ralloc.v0[222] - tmp3689 = __ralloc.v0[223] - tmp3691 = __ralloc.v0[224] - tmp3692 = __ralloc.v0[225] - tmp3693 = __ralloc.v0[226] - tmp3694 = __ralloc.v0[227] - tmp3696 = __ralloc.v0[228] - tmp3697 = __ralloc.v0[229] - tmp3698 = __ralloc.v0[230] - tmp3699 = __ralloc.v0[231] - tmp3701 = __ralloc.v0[232] - tmp3702 = __ralloc.v0[233] - tmp3703 = __ralloc.v0[234] - tmp3704 = __ralloc.v0[235] - tmp3712 = __ralloc.v0[236] - tmp3713 = __ralloc.v0[237] - tmp3714 = __ralloc.v0[238] - tmp3715 = __ralloc.v0[239] - tmp3717 = __ralloc.v0[240] - tmp3718 = __ralloc.v0[241] - tmp3719 = __ralloc.v0[242] - tmp3720 = __ralloc.v0[243] - tmp3722 = __ralloc.v0[244] - tmp3723 = __ralloc.v0[245] - tmp3724 = __ralloc.v0[246] - tmp3725 = __ralloc.v0[247] - tmp3727 = __ralloc.v0[248] - tmp3728 = __ralloc.v0[249] - tmp3730 = __ralloc.v0[250] - tmp3731 = __ralloc.v0[251] - tmp3733 = __ralloc.v0[252] - tmp3734 = __ralloc.v0[253] - tmp3736 = __ralloc.v0[254] - tmp3737 = __ralloc.v0[255] - tmp3738 = __ralloc.v0[256] - tmp3739 = __ralloc.v0[257] - tmp3741 = __ralloc.v0[258] - tmp3742 = __ralloc.v0[259] - tmp3743 = __ralloc.v0[260] - tmp3744 = __ralloc.v0[261] - tmp3746 = __ralloc.v0[262] - tmp3747 = __ralloc.v0[263] - tmp3748 = __ralloc.v0[264] - tmp3749 = __ralloc.v0[265] - tmp3754 = __ralloc.v0[266] - tmp3755 = __ralloc.v0[267] - tmp3756 = __ralloc.v0[268] - tmp3757 = __ralloc.v0[269] - tmp3759 = __ralloc.v0[270] - tmp3760 = __ralloc.v0[271] - tmp3761 = __ralloc.v0[272] - tmp3762 = __ralloc.v0[273] - tmp3764 = __ralloc.v0[274] - tmp3765 = __ralloc.v0[275] - tmp3766 = __ralloc.v0[276] - tmp3767 = __ralloc.v0[277] - tmp3769 = __ralloc.v0[278] - tmp3770 = __ralloc.v0[279] - tmp3771 = __ralloc.v0[280] - tmp3772 = __ralloc.v0[281] - tmp3774 = __ralloc.v0[282] - tmp3775 = __ralloc.v0[283] - tmp3776 = __ralloc.v0[284] - tmp3777 = __ralloc.v0[285] - tmp3779 = __ralloc.v0[286] - tmp3780 = __ralloc.v0[287] - tmp3781 = __ralloc.v0[288] - tmp3782 = __ralloc.v0[289] - tmp3784 = __ralloc.v0[290] - tmp3785 = __ralloc.v0[291] - tmp3786 = __ralloc.v0[292] - tmp3787 = __ralloc.v0[293] - tmp3789 = __ralloc.v0[294] - tmp3790 = __ralloc.v0[295] - tmp3791 = __ralloc.v0[296] - tmp3792 = __ralloc.v0[297] - tmp3794 = __ralloc.v0[298] - tmp3795 = __ralloc.v0[299] - tmp3796 = __ralloc.v0[300] - tmp3797 = __ralloc.v0[301] - tmp3799 = __ralloc.v0[302] - tmp3800 = __ralloc.v0[303] - tmp3801 = __ralloc.v0[304] - tmp3802 = __ralloc.v0[305] - tmp3804 = __ralloc.v0[306] - tmp3805 = __ralloc.v0[307] - tmp3806 = __ralloc.v0[308] - tmp3807 = __ralloc.v0[309] - tmp3809 = __ralloc.v0[310] - tmp3810 = __ralloc.v0[311] - tmp3811 = __ralloc.v0[312] - tmp3812 = __ralloc.v0[313] - tmp3814 = __ralloc.v0[314] - tmp3815 = __ralloc.v0[315] - tmp3817 = __ralloc.v0[316] - tmp3818 = __ralloc.v0[317] - tmp3820 = __ralloc.v0[318] - tmp3821 = __ralloc.v0[319] - tmp3823 = __ralloc.v0[320] - tmp3824 = __ralloc.v0[321] - tmp3826 = __ralloc.v0[322] - tmp3827 = __ralloc.v0[323] - tmp3829 = __ralloc.v0[324] - tmp3830 = __ralloc.v0[325] - tmp3832 = __ralloc.v0[326] - tmp3833 = __ralloc.v0[327] - tmp3835 = __ralloc.v0[328] - tmp3836 = __ralloc.v0[329] - tmp3838 = __ralloc.v0[330] - tmp3839 = __ralloc.v0[331] - tmp3841 = __ralloc.v0[332] - tmp3842 = __ralloc.v0[333] - tmp3844 = __ralloc.v0[334] - tmp3845 = __ralloc.v0[335] - tmp3847 = __ralloc.v0[336] - tmp3848 = __ralloc.v0[337] - tmp3852 = __ralloc.v0[338] - tmp3853 = __ralloc.v0[339] - tmp3858 = __ralloc.v0[340] - tmp3860 = __ralloc.v0[341] - tmp3861 = __ralloc.v0[342] - tmp3862 = __ralloc.v0[343] - tmp3863 = __ralloc.v0[344] - tmp3865 = __ralloc.v0[345] - tmp3866 = __ralloc.v0[346] - tmp3868 = __ralloc.v0[347] - tmp3869 = __ralloc.v0[348] - tmp3870 = __ralloc.v0[349] - tmp3871 = __ralloc.v0[350] - tmp3873 = __ralloc.v0[351] - tmp3874 = __ralloc.v0[352] - tmp3876 = __ralloc.v0[353] - tmp3877 = __ralloc.v0[354] - tmp3878 = __ralloc.v0[355] - tmp3879 = __ralloc.v0[356] - tmp3881 = __ralloc.v0[357] - tmp3882 = __ralloc.v0[358] - tmp3884 = __ralloc.v0[359] - tmp3885 = __ralloc.v0[360] - tmp3886 = __ralloc.v0[361] - tmp3887 = __ralloc.v0[362] - tmp3889 = __ralloc.v0[363] - tmp3890 = __ralloc.v0[364] - tmp3891 = __ralloc.v0[365] - tmp3892 = __ralloc.v0[366] - tmp3894 = __ralloc.v0[367] - tmp3895 = __ralloc.v0[368] - tmp3896 = __ralloc.v0[369] - tmp3897 = __ralloc.v0[370] - tmp3899 = __ralloc.v0[371] - tmp3900 = __ralloc.v0[372] - tmp3901 = __ralloc.v0[373] - tmp3902 = __ralloc.v0[374] - tmp3904 = __ralloc.v0[375] - tmp3905 = __ralloc.v0[376] - tmp3906 = __ralloc.v0[377] - tmp3907 = __ralloc.v0[378] - tmp3909 = __ralloc.v0[379] - tmp3911 = __ralloc.v0[380] - tmp3912 = __ralloc.v0[381] - tmp3913 = __ralloc.v0[382] - tmp3914 = __ralloc.v0[383] - tmp3916 = __ralloc.v0[384] - tmp3917 = __ralloc.v0[385] - tmp3918 = __ralloc.v0[386] - tmp3919 = __ralloc.v0[387] - tmp3921 = __ralloc.v0[388] - tmp3922 = __ralloc.v0[389] - tmp3923 = __ralloc.v0[390] - tmp3924 = __ralloc.v0[391] - tmp3929 = __ralloc.v0[392] - tmp3930 = __ralloc.v0[393] - tmp3932 = __ralloc.v0[394] - tmp3933 = __ralloc.v0[395] - tmp3935 = __ralloc.v0[396] - tmp3936 = __ralloc.v0[397] - tmp3941 = __ralloc.v0[398] - tmp3942 = __ralloc.v0[399] - tmp3943 = __ralloc.v0[400] - tmp3944 = __ralloc.v0[401] - tmp3945 = __ralloc.v0[402] - tmp3946 = __ralloc.v0[403] - tmp3948 = __ralloc.v0[404] - tmp3949 = __ralloc.v0[405] - tmp3950 = __ralloc.v0[406] - tmp3951 = __ralloc.v0[407] - tmp3953 = __ralloc.v0[408] - tmp3954 = __ralloc.v0[409] - tmp3956 = __ralloc.v0[410] - tmp3957 = __ralloc.v0[411] - tmp3958 = __ralloc.v0[412] - tmp3959 = __ralloc.v0[413] - tmp3961 = __ralloc.v0[414] - tmp3962 = __ralloc.v0[415] - tmp3963 = __ralloc.v0[416] - tmp3964 = __ralloc.v0[417] - tmp3966 = __ralloc.v0[418] - tmp3967 = __ralloc.v0[419] - tmp3968 = __ralloc.v0[420] - tmp3969 = __ralloc.v0[421] - tmp3971 = __ralloc.v0[422] - tmp3972 = __ralloc.v0[423] - tmp3974 = __ralloc.v0[424] - tmp3975 = __ralloc.v0[425] - tmp3980 = __ralloc.v0[426] - tmp3983 = __ralloc.v0[427] - tmp3984 = __ralloc.v0[428] - tmp3985 = __ralloc.v0[429] - tmp3987 = __ralloc.v0[430] - tmp3990 = __ralloc.v0[431] - tmp3991 = __ralloc.v0[432] - tmp3998 = __ralloc.v0[433] - tmp4000 = __ralloc.v0[434] - tmp4024 = __ralloc.v0[435] - tmp4025 = __ralloc.v0[436] - tmp4026 = __ralloc.v0[437] - tmp4027 = __ralloc.v0[438] - tmp4028 = __ralloc.v0[439] - tmp4029 = __ralloc.v0[440] + tmp2976 = __ralloc.v0[1] + tmp2977 = __ralloc.v0[2] + tmp2978 = __ralloc.v0[3] + tmp2979 = __ralloc.v0[4] + tmp2980 = __ralloc.v0[5] + tmp2981 = __ralloc.v0[6] + tmp2982 = __ralloc.v0[7] + tmp2983 = __ralloc.v0[8] + tmp2985 = __ralloc.v0[9] + tmp2986 = __ralloc.v0[10] + tmp2987 = __ralloc.v0[11] + tmp2988 = __ralloc.v0[12] + tmp2989 = __ralloc.v0[13] + tmp2990 = __ralloc.v0[14] + tmp2991 = __ralloc.v0[15] + tmp2992 = __ralloc.v0[16] + tmp2993 = __ralloc.v0[17] + tmp2995 = __ralloc.v0[18] + tmp2996 = __ralloc.v0[19] + tmp2998 = __ralloc.v0[20] + tmp2999 = __ralloc.v0[21] + tmp3000 = __ralloc.v0[22] + tmp3001 = __ralloc.v0[23] + tmp3002 = __ralloc.v0[24] + tmp3003 = __ralloc.v0[25] + tmp3004 = __ralloc.v0[26] + tmp3005 = __ralloc.v0[27] + tmp3007 = __ralloc.v0[28] + tmp3008 = __ralloc.v0[29] + tmp3009 = __ralloc.v0[30] + tmp3010 = __ralloc.v0[31] + tmp3011 = __ralloc.v0[32] + tmp3012 = __ralloc.v0[33] + tmp3013 = __ralloc.v0[34] + tmp3014 = __ralloc.v0[35] + tmp3016 = __ralloc.v0[36] + tmp3017 = __ralloc.v0[37] + tmp3018 = __ralloc.v0[38] + tmp3020 = __ralloc.v0[39] + tmp3021 = __ralloc.v0[40] + tmp3023 = __ralloc.v0[41] + tmp3024 = __ralloc.v0[42] + tmp3027 = __ralloc.v0[43] + tmp3028 = __ralloc.v0[44] + tmp3029 = __ralloc.v0[45] + tmp3030 = __ralloc.v0[46] + tmp3032 = __ralloc.v0[47] + tmp3033 = __ralloc.v0[48] + tmp3034 = __ralloc.v0[49] + tmp3035 = __ralloc.v0[50] + tmp3036 = __ralloc.v0[51] + tmp3038 = __ralloc.v0[52] + tmp3039 = __ralloc.v0[53] + tmp3040 = __ralloc.v0[54] + tmp3041 = __ralloc.v0[55] + tmp3043 = __ralloc.v0[56] + tmp3044 = __ralloc.v0[57] + tmp3045 = __ralloc.v0[58] + tmp3046 = __ralloc.v0[59] + tmp3047 = __ralloc.v0[60] + tmp3049 = __ralloc.v0[61] + tmp3050 = __ralloc.v0[62] + tmp3051 = __ralloc.v0[63] + tmp3052 = __ralloc.v0[64] + tmp3054 = __ralloc.v0[65] + tmp3055 = __ralloc.v0[66] + tmp3056 = __ralloc.v0[67] + tmp3057 = __ralloc.v0[68] + tmp3058 = __ralloc.v0[69] + tmp3060 = __ralloc.v0[70] + tmp3061 = __ralloc.v0[71] + tmp3062 = __ralloc.v0[72] + tmp3063 = __ralloc.v0[73] + tmp3065 = __ralloc.v0[74] + tmp3066 = __ralloc.v0[75] + tmp3067 = __ralloc.v0[76] + tmp3068 = __ralloc.v0[77] + tmp3070 = __ralloc.v0[78] + tmp3071 = __ralloc.v0[79] + tmp3072 = __ralloc.v0[80] + tmp3073 = __ralloc.v0[81] + tmp3145 = __ralloc.v0[82] + tmp3147 = __ralloc.v0[83] + tmp3148 = __ralloc.v0[84] + tmp3150 = __ralloc.v0[85] + tmp3151 = __ralloc.v0[86] + tmp3154 = __ralloc.v0[87] + tmp3156 = __ralloc.v0[88] + tmp3158 = __ralloc.v0[89] + tmp3159 = __ralloc.v0[90] + tmp3440 = __ralloc.v0[91] + tmp3442 = __ralloc.v0[92] + tmp3452 = __ralloc.v0[93] + tmp3454 = __ralloc.v0[94] + tmp3464 = __ralloc.v0[95] + tmp3466 = __ralloc.v0[96] + tmp3468 = __ralloc.v0[97] + tmp3470 = __ralloc.v0[98] + tmp3471 = __ralloc.v0[99] + tmp3472 = __ralloc.v0[100] + tmp3473 = __ralloc.v0[101] + tmp3474 = __ralloc.v0[102] + tmp3477 = __ralloc.v0[103] + tmp3479 = __ralloc.v0[104] + tmp3481 = __ralloc.v0[105] + tmp3483 = __ralloc.v0[106] + tmp3484 = __ralloc.v0[107] + tmp3485 = __ralloc.v0[108] + tmp3486 = __ralloc.v0[109] + tmp3487 = __ralloc.v0[110] + tmp3491 = __ralloc.v0[111] + tmp3492 = __ralloc.v0[112] + tmp3494 = __ralloc.v0[113] + tmp3495 = __ralloc.v0[114] + tmp3498 = __ralloc.v0[115] + tmp3499 = __ralloc.v0[116] + tmp3500 = __ralloc.v0[117] + tmp3502 = __ralloc.v0[118] + tmp3503 = __ralloc.v0[119] + tmp3505 = __ralloc.v0[120] + tmp3506 = __ralloc.v0[121] + tmp3509 = __ralloc.v0[122] + tmp3510 = __ralloc.v0[123] + tmp3511 = __ralloc.v0[124] + tmp3514 = __ralloc.v0[125] + tmp3516 = __ralloc.v0[126] + tmp3526 = __ralloc.v0[127] + tmp3528 = __ralloc.v0[128] + tmp3537 = __ralloc.v0[129] + tmp3538 = __ralloc.v0[130] + tmp3540 = __ralloc.v0[131] + tmp3541 = __ralloc.v0[132] + tmp3546 = __ralloc.v0[133] + tmp3547 = __ralloc.v0[134] + tmp3550 = __ralloc.v0[135] + tmp3551 = __ralloc.v0[136] + tmp3556 = __ralloc.v0[137] + tmp3557 = __ralloc.v0[138] + tmp3558 = __ralloc.v0[139] + tmp3559 = __ralloc.v0[140] + tmp3562 = __ralloc.v0[141] + tmp3563 = __ralloc.v0[142] + tmp3564 = __ralloc.v0[143] + tmp3565 = __ralloc.v0[144] + tmp3568 = __ralloc.v0[145] + tmp3569 = __ralloc.v0[146] + tmp3570 = __ralloc.v0[147] + tmp3571 = __ralloc.v0[148] + tmp3574 = __ralloc.v0[149] + tmp3575 = __ralloc.v0[150] + tmp3576 = __ralloc.v0[151] + tmp3577 = __ralloc.v0[152] + tmp3580 = __ralloc.v0[153] + tmp3581 = __ralloc.v0[154] + tmp3582 = __ralloc.v0[155] + tmp3583 = __ralloc.v0[156] + tmp3586 = __ralloc.v0[157] + tmp3587 = __ralloc.v0[158] + tmp3588 = __ralloc.v0[159] + tmp3589 = __ralloc.v0[160] + tmp3592 = __ralloc.v0[161] + tmp3594 = __ralloc.v0[162] + tmp3604 = __ralloc.v0[163] + tmp3606 = __ralloc.v0[164] + tmp3615 = __ralloc.v0[165] + tmp3616 = __ralloc.v0[166] + tmp3618 = __ralloc.v0[167] + tmp3619 = __ralloc.v0[168] + tmp3623 = __ralloc.v0[169] + tmp3626 = __ralloc.v0[170] + tmp3627 = __ralloc.v0[171] + tmp3628 = __ralloc.v0[172] + tmp3629 = __ralloc.v0[173] + tmp3630 = __ralloc.v0[174] + tmp3634 = __ralloc.v0[175] + tmp3637 = __ralloc.v0[176] + tmp3638 = __ralloc.v0[177] + tmp3639 = __ralloc.v0[178] + tmp3640 = __ralloc.v0[179] + tmp3641 = __ralloc.v0[180] + tmp3646 = __ralloc.v0[181] + tmp3647 = __ralloc.v0[182] + tmp3648 = __ralloc.v0[183] + tmp3649 = __ralloc.v0[184] + tmp3650 = __ralloc.v0[185] + tmp3653 = __ralloc.v0[186] + tmp3654 = __ralloc.v0[187] + tmp3655 = __ralloc.v0[188] + tmp3656 = __ralloc.v0[189] + tmp3657 = __ralloc.v0[190] + tmp3659 = __ralloc.v0[191] + tmp3660 = __ralloc.v0[192] + tmp3663 = __ralloc.v0[193] + tmp3664 = __ralloc.v0[194] + tmp3665 = __ralloc.v0[195] + tmp3666 = __ralloc.v0[196] + tmp3667 = __ralloc.v0[197] + tmp3670 = __ralloc.v0[198] + tmp3671 = __ralloc.v0[199] + tmp3672 = __ralloc.v0[200] + tmp3673 = __ralloc.v0[201] + tmp3674 = __ralloc.v0[202] + tmp3676 = __ralloc.v0[203] + tmp3677 = __ralloc.v0[204] + tmp3679 = __ralloc.v0[205] + tmp3685 = __ralloc.v0[206] + tmp3686 = __ralloc.v0[207] + tmp3687 = __ralloc.v0[208] + tmp3688 = __ralloc.v0[209] + tmp3689 = __ralloc.v0[210] + tmp3690 = __ralloc.v0[211] + tmp3692 = __ralloc.v0[212] + tmp3693 = __ralloc.v0[213] + tmp3694 = __ralloc.v0[214] + tmp3695 = __ralloc.v0[215] + tmp3696 = __ralloc.v0[216] + tmp3697 = __ralloc.v0[217] + tmp3699 = __ralloc.v0[218] + tmp3700 = __ralloc.v0[219] + tmp3701 = __ralloc.v0[220] + tmp3702 = __ralloc.v0[221] + tmp3703 = __ralloc.v0[222] + tmp3704 = __ralloc.v0[223] + tmp3706 = __ralloc.v0[224] + tmp3707 = __ralloc.v0[225] + tmp3708 = __ralloc.v0[226] + tmp3709 = __ralloc.v0[227] + tmp3711 = __ralloc.v0[228] + tmp3712 = __ralloc.v0[229] + tmp3713 = __ralloc.v0[230] + tmp3714 = __ralloc.v0[231] + tmp3716 = __ralloc.v0[232] + tmp3717 = __ralloc.v0[233] + tmp3718 = __ralloc.v0[234] + tmp3719 = __ralloc.v0[235] + tmp3727 = __ralloc.v0[236] + tmp3728 = __ralloc.v0[237] + tmp3729 = __ralloc.v0[238] + tmp3730 = __ralloc.v0[239] + tmp3732 = __ralloc.v0[240] + tmp3733 = __ralloc.v0[241] + tmp3734 = __ralloc.v0[242] + tmp3735 = __ralloc.v0[243] + tmp3737 = __ralloc.v0[244] + tmp3738 = __ralloc.v0[245] + tmp3739 = __ralloc.v0[246] + tmp3740 = __ralloc.v0[247] + tmp3742 = __ralloc.v0[248] + tmp3743 = __ralloc.v0[249] + tmp3745 = __ralloc.v0[250] + tmp3746 = __ralloc.v0[251] + tmp3748 = __ralloc.v0[252] + tmp3749 = __ralloc.v0[253] + tmp3751 = __ralloc.v0[254] + tmp3752 = __ralloc.v0[255] + tmp3753 = __ralloc.v0[256] + tmp3754 = __ralloc.v0[257] + tmp3756 = __ralloc.v0[258] + tmp3757 = __ralloc.v0[259] + tmp3758 = __ralloc.v0[260] + tmp3759 = __ralloc.v0[261] + tmp3761 = __ralloc.v0[262] + tmp3762 = __ralloc.v0[263] + tmp3763 = __ralloc.v0[264] + tmp3764 = __ralloc.v0[265] + tmp3769 = __ralloc.v0[266] + tmp3770 = __ralloc.v0[267] + tmp3771 = __ralloc.v0[268] + tmp3772 = __ralloc.v0[269] + tmp3774 = __ralloc.v0[270] + tmp3775 = __ralloc.v0[271] + tmp3776 = __ralloc.v0[272] + tmp3777 = __ralloc.v0[273] + tmp3779 = __ralloc.v0[274] + tmp3780 = __ralloc.v0[275] + tmp3781 = __ralloc.v0[276] + tmp3782 = __ralloc.v0[277] + tmp3784 = __ralloc.v0[278] + tmp3785 = __ralloc.v0[279] + tmp3786 = __ralloc.v0[280] + tmp3787 = __ralloc.v0[281] + tmp3789 = __ralloc.v0[282] + tmp3790 = __ralloc.v0[283] + tmp3791 = __ralloc.v0[284] + tmp3792 = __ralloc.v0[285] + tmp3794 = __ralloc.v0[286] + tmp3795 = __ralloc.v0[287] + tmp3796 = __ralloc.v0[288] + tmp3797 = __ralloc.v0[289] + tmp3799 = __ralloc.v0[290] + tmp3800 = __ralloc.v0[291] + tmp3801 = __ralloc.v0[292] + tmp3802 = __ralloc.v0[293] + tmp3804 = __ralloc.v0[294] + tmp3805 = __ralloc.v0[295] + tmp3806 = __ralloc.v0[296] + tmp3807 = __ralloc.v0[297] + tmp3809 = __ralloc.v0[298] + tmp3810 = __ralloc.v0[299] + tmp3811 = __ralloc.v0[300] + tmp3812 = __ralloc.v0[301] + tmp3814 = __ralloc.v0[302] + tmp3815 = __ralloc.v0[303] + tmp3816 = __ralloc.v0[304] + tmp3817 = __ralloc.v0[305] + tmp3819 = __ralloc.v0[306] + tmp3820 = __ralloc.v0[307] + tmp3821 = __ralloc.v0[308] + tmp3822 = __ralloc.v0[309] + tmp3824 = __ralloc.v0[310] + tmp3825 = __ralloc.v0[311] + tmp3826 = __ralloc.v0[312] + tmp3827 = __ralloc.v0[313] + tmp3829 = __ralloc.v0[314] + tmp3830 = __ralloc.v0[315] + tmp3832 = __ralloc.v0[316] + tmp3833 = __ralloc.v0[317] + tmp3835 = __ralloc.v0[318] + tmp3836 = __ralloc.v0[319] + tmp3838 = __ralloc.v0[320] + tmp3839 = __ralloc.v0[321] + tmp3841 = __ralloc.v0[322] + tmp3842 = __ralloc.v0[323] + tmp3844 = __ralloc.v0[324] + tmp3845 = __ralloc.v0[325] + tmp3847 = __ralloc.v0[326] + tmp3848 = __ralloc.v0[327] + tmp3850 = __ralloc.v0[328] + tmp3851 = __ralloc.v0[329] + tmp3853 = __ralloc.v0[330] + tmp3854 = __ralloc.v0[331] + tmp3856 = __ralloc.v0[332] + tmp3857 = __ralloc.v0[333] + tmp3859 = __ralloc.v0[334] + tmp3860 = __ralloc.v0[335] + tmp3862 = __ralloc.v0[336] + tmp3863 = __ralloc.v0[337] + tmp3867 = __ralloc.v0[338] + tmp3868 = __ralloc.v0[339] + tmp3873 = __ralloc.v0[340] + tmp3875 = __ralloc.v0[341] + tmp3876 = __ralloc.v0[342] + tmp3877 = __ralloc.v0[343] + tmp3878 = __ralloc.v0[344] + tmp3880 = __ralloc.v0[345] + tmp3881 = __ralloc.v0[346] + tmp3883 = __ralloc.v0[347] + tmp3884 = __ralloc.v0[348] + tmp3885 = __ralloc.v0[349] + tmp3886 = __ralloc.v0[350] + tmp3888 = __ralloc.v0[351] + tmp3889 = __ralloc.v0[352] + tmp3891 = __ralloc.v0[353] + tmp3892 = __ralloc.v0[354] + tmp3893 = __ralloc.v0[355] + tmp3894 = __ralloc.v0[356] + tmp3896 = __ralloc.v0[357] + tmp3897 = __ralloc.v0[358] + tmp3899 = __ralloc.v0[359] + tmp3900 = __ralloc.v0[360] + tmp3901 = __ralloc.v0[361] + tmp3902 = __ralloc.v0[362] + tmp3904 = __ralloc.v0[363] + tmp3905 = __ralloc.v0[364] + tmp3906 = __ralloc.v0[365] + tmp3907 = __ralloc.v0[366] + tmp3909 = __ralloc.v0[367] + tmp3910 = __ralloc.v0[368] + tmp3911 = __ralloc.v0[369] + tmp3912 = __ralloc.v0[370] + tmp3914 = __ralloc.v0[371] + tmp3915 = __ralloc.v0[372] + tmp3916 = __ralloc.v0[373] + tmp3917 = __ralloc.v0[374] + tmp3919 = __ralloc.v0[375] + tmp3920 = __ralloc.v0[376] + tmp3921 = __ralloc.v0[377] + tmp3922 = __ralloc.v0[378] + tmp3924 = __ralloc.v0[379] + tmp3926 = __ralloc.v0[380] + tmp3927 = __ralloc.v0[381] + tmp3928 = __ralloc.v0[382] + tmp3929 = __ralloc.v0[383] + tmp3931 = __ralloc.v0[384] + tmp3932 = __ralloc.v0[385] + tmp3933 = __ralloc.v0[386] + tmp3934 = __ralloc.v0[387] + tmp3936 = __ralloc.v0[388] + tmp3937 = __ralloc.v0[389] + tmp3938 = __ralloc.v0[390] + tmp3939 = __ralloc.v0[391] + tmp3944 = __ralloc.v0[392] + tmp3945 = __ralloc.v0[393] + tmp3947 = __ralloc.v0[394] + tmp3948 = __ralloc.v0[395] + tmp3950 = __ralloc.v0[396] + tmp3951 = __ralloc.v0[397] + tmp3956 = __ralloc.v0[398] + tmp3957 = __ralloc.v0[399] + tmp3958 = __ralloc.v0[400] + tmp3959 = __ralloc.v0[401] + tmp3960 = __ralloc.v0[402] + tmp3961 = __ralloc.v0[403] + tmp3963 = __ralloc.v0[404] + tmp3964 = __ralloc.v0[405] + tmp3965 = __ralloc.v0[406] + tmp3966 = __ralloc.v0[407] + tmp3968 = __ralloc.v0[408] + tmp3969 = __ralloc.v0[409] + tmp3971 = __ralloc.v0[410] + tmp3972 = __ralloc.v0[411] + tmp3973 = __ralloc.v0[412] + tmp3974 = __ralloc.v0[413] + tmp3976 = __ralloc.v0[414] + tmp3977 = __ralloc.v0[415] + tmp3978 = __ralloc.v0[416] + tmp3979 = __ralloc.v0[417] + tmp3981 = __ralloc.v0[418] + tmp3982 = __ralloc.v0[419] + tmp3983 = __ralloc.v0[420] + tmp3984 = __ralloc.v0[421] + tmp3986 = __ralloc.v0[422] + tmp3987 = __ralloc.v0[423] + tmp3989 = __ralloc.v0[424] + tmp3990 = __ralloc.v0[425] + tmp3995 = __ralloc.v0[426] + tmp3998 = __ralloc.v0[427] + tmp3999 = __ralloc.v0[428] + tmp4000 = __ralloc.v0[429] + tmp4002 = __ralloc.v0[430] + tmp4005 = __ralloc.v0[431] + tmp4006 = __ralloc.v0[432] + tmp4013 = __ralloc.v0[433] + tmp4015 = __ralloc.v0[434] + tmp4039 = __ralloc.v0[435] + tmp4040 = __ralloc.v0[436] + tmp4041 = __ralloc.v0[437] + tmp4042 = __ralloc.v0[438] + tmp4043 = __ralloc.v0[439] + tmp4044 = __ralloc.v0[440] ϕ_m = __ralloc.v0[441] θ_m = __ralloc.v0[442] ψ_m = __ralloc.v0[443] - tmp4031 = __ralloc.v0[444] - tmp4032 = __ralloc.v0[445] - tmp4033 = __ralloc.v0[446] - tmp4034 = __ralloc.v0[447] - tmp4035 = __ralloc.v0[448] - tmp4036 = __ralloc.v0[449] - tmp4037 = __ralloc.v0[450] - tmp4038 = __ralloc.v0[451] - tmp4039 = __ralloc.v0[452] - tmp4040 = __ralloc.v0[453] - tmp4041 = __ralloc.v0[454] - tmp4042 = __ralloc.v0[455] - tmp4043 = __ralloc.v0[456] - tmp4044 = __ralloc.v0[457] - tmp4045 = __ralloc.v0[458] - tmp4046 = __ralloc.v0[459] - tmp4047 = __ralloc.v0[460] - tmp4048 = __ralloc.v0[461] - tmp4049 = __ralloc.v0[462] - tmp4050 = __ralloc.v0[463] - tmp4051 = __ralloc.v0[464] - tmp4052 = __ralloc.v0[465] - tmp4053 = __ralloc.v0[466] - tmp4054 = __ralloc.v0[467] - tmp4055 = __ralloc.v0[468] - tmp4056 = __ralloc.v0[469] - tmp4057 = __ralloc.v0[470] - tmp4058 = __ralloc.v0[471] - tmp4059 = __ralloc.v0[472] + tmp4046 = __ralloc.v0[444] + tmp4047 = __ralloc.v0[445] + tmp4048 = __ralloc.v0[446] + tmp4049 = __ralloc.v0[447] + tmp4050 = __ralloc.v0[448] + tmp4051 = __ralloc.v0[449] + tmp4052 = __ralloc.v0[450] + tmp4053 = __ralloc.v0[451] + tmp4054 = __ralloc.v0[452] + tmp4055 = __ralloc.v0[453] + tmp4056 = __ralloc.v0[454] + tmp4057 = __ralloc.v0[455] + tmp4058 = __ralloc.v0[456] + tmp4059 = __ralloc.v0[457] + tmp4060 = __ralloc.v0[458] + tmp4061 = __ralloc.v0[459] + tmp4062 = __ralloc.v0[460] + tmp4063 = __ralloc.v0[461] + tmp4064 = __ralloc.v0[462] + tmp4065 = __ralloc.v0[463] + tmp4066 = __ralloc.v0[464] + tmp4067 = __ralloc.v0[465] + tmp4068 = __ralloc.v0[466] + tmp4069 = __ralloc.v0[467] + tmp4070 = __ralloc.v0[468] + tmp4071 = __ralloc.v0[469] + tmp4072 = __ralloc.v0[470] + tmp4073 = __ralloc.v0[471] + tmp4074 = __ralloc.v0[472] ϕ_c = __ralloc.v0[473] - tmp4060 = __ralloc.v0[474] - tmp4061 = __ralloc.v0[475] - tmp4062 = __ralloc.v0[476] - tmp4063 = __ralloc.v0[477] - tmp4064 = __ralloc.v0[478] - tmp4065 = __ralloc.v0[479] - tmp4066 = __ralloc.v0[480] - tmp4067 = __ralloc.v0[481] - tmp4068 = __ralloc.v0[482] - tmp4069 = __ralloc.v0[483] - tmp4070 = __ralloc.v0[484] - tmp4071 = __ralloc.v0[485] + tmp4075 = __ralloc.v0[474] + tmp4076 = __ralloc.v0[475] + tmp4077 = __ralloc.v0[476] + tmp4078 = __ralloc.v0[477] + tmp4079 = __ralloc.v0[478] + tmp4080 = __ralloc.v0[479] + tmp4081 = __ralloc.v0[480] + tmp4082 = __ralloc.v0[481] + tmp4083 = __ralloc.v0[482] + tmp4084 = __ralloc.v0[483] + tmp4085 = __ralloc.v0[484] + tmp4086 = __ralloc.v0[485] ω_c_CE_1 = __ralloc.v0[486] ω_c_CE_2 = __ralloc.v0[487] ω_c_CE_3 = __ralloc.v0[488] @@ -7890,182 +6353,220 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract x0s_M = __ralloc.v0[494] y0s_M = __ralloc.v0[495] z0s_M = __ralloc.v0[496] - ρ0s2_M = __ralloc.v0[497] - ρ0s_M = __ralloc.v0[498] - z0s2_M = __ralloc.v0[499] - r0s2_M = __ralloc.v0[500] - r0s_M = __ralloc.v0[501] - r0s5_M = __ralloc.v0[502] - x0s_S = __ralloc.v0[503] - y0s_S = __ralloc.v0[504] - z0s_S = __ralloc.v0[505] - ρ0s2_S = __ralloc.v0[506] - ρ0s_S = __ralloc.v0[507] - z0s2_S = __ralloc.v0[508] - r0s2_S = __ralloc.v0[509] - r0s_S = __ralloc.v0[510] - r0s5_S = __ralloc.v0[511] - coeff0_M = __ralloc.v0[512] - coeff0_S = __ralloc.v0[513] - k_20E_div_r0s5_M = __ralloc.v0[514] - k_20E_div_r0s5_S = __ralloc.v0[515] - a_tid_0_M_x = __ralloc.v0[516] - a_tid_0_M_y = __ralloc.v0[517] - a_tid_0_M_z = __ralloc.v0[518] - a_tid_0_S_x = __ralloc.v0[519] - a_tid_0_S_y = __ralloc.v0[520] - a_tid_0_S_z = __ralloc.v0[521] - x1s_M = __ralloc.v0[522] - y1s_M = __ralloc.v0[523] - z1s_M = __ralloc.v0[524] - ρ1s2_M = __ralloc.v0[525] - ρ1s_M = __ralloc.v0[526] - z1s2_M = __ralloc.v0[527] - r1s2_M = __ralloc.v0[528] - r1s_M = __ralloc.v0[529] - r1s5_M = __ralloc.v0[530] - x1s_S = __ralloc.v0[531] - y1s_S = __ralloc.v0[532] - z1s_S = __ralloc.v0[533] - ρ1s2_S = __ralloc.v0[534] - ρ1s_S = __ralloc.v0[535] - z1s2_S = __ralloc.v0[536] - r1s2_S = __ralloc.v0[537] - r1s_S = __ralloc.v0[538] - r1s5_S = __ralloc.v0[539] - coeff1_1_M = __ralloc.v0[540] - coeff1_1_S = __ralloc.v0[541] - coeff2_1_M = __ralloc.v0[542] - coeff2_1_S = __ralloc.v0[543] - coeff3_1_M = __ralloc.v0[544] - coeff3_1_S = __ralloc.v0[545] - k_21E_div_r1s5_M = __ralloc.v0[546] - k_21E_div_r1s5_S = __ralloc.v0[547] - a_tid_1_M_x = __ralloc.v0[548] - a_tid_1_M_y = __ralloc.v0[549] - a_tid_1_M_z = __ralloc.v0[550] - a_tid_1_S_x = __ralloc.v0[551] - a_tid_1_S_y = __ralloc.v0[552] - a_tid_1_S_z = __ralloc.v0[553] - x2s_M = __ralloc.v0[554] - y2s_M = __ralloc.v0[555] - z2s_M = __ralloc.v0[556] - ρ2s2_M = __ralloc.v0[557] - ρ2s_M = __ralloc.v0[558] - z2s2_M = __ralloc.v0[559] - r2s2_M = __ralloc.v0[560] - r2s_M = __ralloc.v0[561] - r2s5_M = __ralloc.v0[562] - x2s_S = __ralloc.v0[563] - y2s_S = __ralloc.v0[564] - z2s_S = __ralloc.v0[565] - ρ2s2_S = __ralloc.v0[566] - ρ2s_S = __ralloc.v0[567] - z2s2_S = __ralloc.v0[568] - r2s2_S = __ralloc.v0[569] - r2s_S = __ralloc.v0[570] - r2s5_S = __ralloc.v0[571] - coeff1_2_M = __ralloc.v0[572] - coeff1_2_S = __ralloc.v0[573] - coeff3_2_M = __ralloc.v0[574] - coeff3_2_S = __ralloc.v0[575] - k_22E_div_r2s5_M = __ralloc.v0[576] - k_22E_div_r2s5_S = __ralloc.v0[577] - a_tid_2_M_x = __ralloc.v0[578] - a_tid_2_M_y = __ralloc.v0[579] - a_tid_2_M_z = __ralloc.v0[580] - a_tid_2_S_x = __ralloc.v0[581] - a_tid_2_S_y = __ralloc.v0[582] - a_tid_2_S_z = __ralloc.v0[583] - RE_div_r_p5 = __ralloc.v0[584] - aux_tidacc = __ralloc.v0[585] - a_tidal_coeff_M = __ralloc.v0[586] - a_tidal_coeff_S = __ralloc.v0[587] - a_tidal_tod_x = __ralloc.v0[588] - a_tidal_tod_y = __ralloc.v0[589] - a_tidal_tod_z = __ralloc.v0[590] - a_tidal_x = __ralloc.v0[591] - a_tidal_y = __ralloc.v0[592] - a_tidal_z = __ralloc.v0[593] - accX_mo_tides = __ralloc.v0[594] - accY_mo_tides = __ralloc.v0[595] - accZ_mo_tides = __ralloc.v0[596] - Iω_x = __ralloc.v0[597] - Iω_y = __ralloc.v0[598] - Iω_z = __ralloc.v0[599] - ωxIω_x = __ralloc.v0[600] - ωxIω_y = __ralloc.v0[601] - ωxIω_z = __ralloc.v0[602] - dIω_x = __ralloc.v0[603] - dIω_y = __ralloc.v0[604] - dIω_z = __ralloc.v0[605] - er_EM_I_1 = __ralloc.v0[606] - er_EM_I_2 = __ralloc.v0[607] - er_EM_I_3 = __ralloc.v0[608] - p_E_I_1 = __ralloc.v0[609] - p_E_I_2 = __ralloc.v0[610] - p_E_I_3 = __ralloc.v0[611] - er_EM_1 = __ralloc.v0[612] - er_EM_2 = __ralloc.v0[613] - er_EM_3 = __ralloc.v0[614] - p_E_1 = __ralloc.v0[615] - p_E_2 = __ralloc.v0[616] - p_E_3 = __ralloc.v0[617] - I_er_EM_1 = __ralloc.v0[618] - I_er_EM_2 = __ralloc.v0[619] - I_er_EM_3 = __ralloc.v0[620] - I_p_E_1 = __ralloc.v0[621] - I_p_E_2 = __ralloc.v0[622] - I_p_E_3 = __ralloc.v0[623] - er_EM_cross_I_er_EM_1 = __ralloc.v0[624] - er_EM_cross_I_er_EM_2 = __ralloc.v0[625] - er_EM_cross_I_er_EM_3 = __ralloc.v0[626] - er_EM_cross_I_p_E_1 = __ralloc.v0[627] - er_EM_cross_I_p_E_2 = __ralloc.v0[628] - er_EM_cross_I_p_E_3 = __ralloc.v0[629] - p_E_cross_I_er_EM_1 = __ralloc.v0[630] - p_E_cross_I_er_EM_2 = __ralloc.v0[631] - p_E_cross_I_er_EM_3 = __ralloc.v0[632] - p_E_cross_I_p_E_1 = __ralloc.v0[633] - p_E_cross_I_p_E_2 = __ralloc.v0[634] - p_E_cross_I_p_E_3 = __ralloc.v0[635] - one_minus_7sin2ϕEM = __ralloc.v0[636] - two_sinϕEM = __ralloc.v0[637] - N_MfigM_figE_factor_div_rEMp5 = __ralloc.v0[638] - N_MfigM_figE_1 = __ralloc.v0[639] - N_MfigM_figE_2 = __ralloc.v0[640] - N_MfigM_figE_3 = __ralloc.v0[641] - N_1_LMF = __ralloc.v0[642] - N_2_LMF = __ralloc.v0[643] - N_3_LMF = __ralloc.v0[644] - N_cmb_1 = __ralloc.v0[645] - N_cmb_2 = __ralloc.v0[646] - N_cmb_3 = __ralloc.v0[647] - I_dω_1 = __ralloc.v0[648] - I_dω_2 = __ralloc.v0[649] - I_dω_3 = __ralloc.v0[650] - Ic_ωc_1 = __ralloc.v0[651] - Ic_ωc_2 = __ralloc.v0[652] - Ic_ωc_3 = __ralloc.v0[653] - m_ωm_x_Icωc_1 = __ralloc.v0[654] - m_ωm_x_Icωc_2 = __ralloc.v0[655] - m_ωm_x_Icωc_3 = __ralloc.v0[656] - Ic_dωc_1 = __ralloc.v0[657] - Ic_dωc_2 = __ralloc.v0[658] - Ic_dωc_3 = __ralloc.v0[659] - tmp4072 = __ralloc.v0[660] - tmp4073 = __ralloc.v0[661] - tmp4074 = __ralloc.v0[662] - tmp4075 = __ralloc.v0[663] - tmp4076 = __ralloc.v0[664] - tmp4077 = __ralloc.v0[665] - tmp4078 = __ralloc.v0[666] - tmp4079 = __ralloc.v0[667] - w_LE = __ralloc.v0[668] - α_TTmTDB = __ralloc.v0[669] - v4E = __ralloc.v0[670] - ϕ_Earth_Newtonian_sq = __ralloc.v0[671] - β_TTmTDB = __ralloc.v0[672] + tmp4100 = __ralloc.v0[497] + tmp4101 = __ralloc.v0[498] + ρ0s2_M = __ralloc.v0[499] + ρ0s_M = __ralloc.v0[500] + z0s2_M = __ralloc.v0[501] + tmp4102 = __ralloc.v0[502] + r0s2_M = __ralloc.v0[503] + r0s_M = __ralloc.v0[504] + r0s5_M = __ralloc.v0[505] + tmp4103 = __ralloc.v0[506] + x0s_S = __ralloc.v0[507] + y0s_S = __ralloc.v0[508] + z0s_S = __ralloc.v0[509] + tmp4104 = __ralloc.v0[510] + tmp4105 = __ralloc.v0[511] + ρ0s2_S = __ralloc.v0[512] + ρ0s_S = __ralloc.v0[513] + z0s2_S = __ralloc.v0[514] + tmp4106 = __ralloc.v0[515] + r0s2_S = __ralloc.v0[516] + r0s_S = __ralloc.v0[517] + r0s5_S = __ralloc.v0[518] + tmp4107 = __ralloc.v0[519] + tmp4108 = __ralloc.v0[520] + tmp4109 = __ralloc.v0[521] + coeff0_M = __ralloc.v0[522] + tmp4110 = __ralloc.v0[523] + tmp4111 = __ralloc.v0[524] + coeff0_S = __ralloc.v0[525] + k_20E_div_r0s5_M = __ralloc.v0[526] + k_20E_div_r0s5_S = __ralloc.v0[527] + a_tid_0_M_x = __ralloc.v0[528] + a_tid_0_M_y = __ralloc.v0[529] + a_tid_0_M_z = __ralloc.v0[530] + a_tid_0_S_x = __ralloc.v0[531] + a_tid_0_S_y = __ralloc.v0[532] + a_tid_0_S_z = __ralloc.v0[533] + x1s_M = __ralloc.v0[534] + y1s_M = __ralloc.v0[535] + z1s_M = __ralloc.v0[536] + tmp4112 = __ralloc.v0[537] + tmp4113 = __ralloc.v0[538] + ρ1s2_M = __ralloc.v0[539] + ρ1s_M = __ralloc.v0[540] + z1s2_M = __ralloc.v0[541] + tmp4114 = __ralloc.v0[542] + r1s2_M = __ralloc.v0[543] + r1s_M = __ralloc.v0[544] + r1s5_M = __ralloc.v0[545] + tmp4115 = __ralloc.v0[546] + x1s_S = __ralloc.v0[547] + y1s_S = __ralloc.v0[548] + z1s_S = __ralloc.v0[549] + tmp4116 = __ralloc.v0[550] + tmp4117 = __ralloc.v0[551] + ρ1s2_S = __ralloc.v0[552] + ρ1s_S = __ralloc.v0[553] + z1s2_S = __ralloc.v0[554] + tmp4118 = __ralloc.v0[555] + r1s2_S = __ralloc.v0[556] + r1s_S = __ralloc.v0[557] + r1s5_S = __ralloc.v0[558] + tmp4119 = __ralloc.v0[559] + coeff1_1_M = __ralloc.v0[560] + coeff1_1_S = __ralloc.v0[561] + coeff2_1_M = __ralloc.v0[562] + coeff2_1_S = __ralloc.v0[563] + coeff3_1_M = __ralloc.v0[564] + coeff3_1_S = __ralloc.v0[565] + k_21E_div_r1s5_M = __ralloc.v0[566] + k_21E_div_r1s5_S = __ralloc.v0[567] + a_tid_1_M_x = __ralloc.v0[568] + a_tid_1_M_y = __ralloc.v0[569] + a_tid_1_M_z = __ralloc.v0[570] + a_tid_1_S_x = __ralloc.v0[571] + a_tid_1_S_y = __ralloc.v0[572] + a_tid_1_S_z = __ralloc.v0[573] + x2s_M = __ralloc.v0[574] + y2s_M = __ralloc.v0[575] + z2s_M = __ralloc.v0[576] + tmp4120 = __ralloc.v0[577] + tmp4121 = __ralloc.v0[578] + ρ2s2_M = __ralloc.v0[579] + ρ2s_M = __ralloc.v0[580] + z2s2_M = __ralloc.v0[581] + tmp4122 = __ralloc.v0[582] + r2s2_M = __ralloc.v0[583] + r2s_M = __ralloc.v0[584] + r2s5_M = __ralloc.v0[585] + tmp4123 = __ralloc.v0[586] + x2s_S = __ralloc.v0[587] + y2s_S = __ralloc.v0[588] + z2s_S = __ralloc.v0[589] + tmp4124 = __ralloc.v0[590] + tmp4125 = __ralloc.v0[591] + ρ2s2_S = __ralloc.v0[592] + ρ2s_S = __ralloc.v0[593] + z2s2_S = __ralloc.v0[594] + tmp4126 = __ralloc.v0[595] + r2s2_S = __ralloc.v0[596] + r2s_S = __ralloc.v0[597] + r2s5_S = __ralloc.v0[598] + tmp4127 = __ralloc.v0[599] + coeff1_2_M = __ralloc.v0[600] + coeff1_2_S = __ralloc.v0[601] + tmp4128 = __ralloc.v0[602] + tmp4129 = __ralloc.v0[603] + coeff3_2_M = __ralloc.v0[604] + tmp4130 = __ralloc.v0[605] + tmp4131 = __ralloc.v0[606] + coeff3_2_S = __ralloc.v0[607] + k_22E_div_r2s5_M = __ralloc.v0[608] + k_22E_div_r2s5_S = __ralloc.v0[609] + a_tid_2_M_x = __ralloc.v0[610] + a_tid_2_M_y = __ralloc.v0[611] + a_tid_2_M_z = __ralloc.v0[612] + a_tid_2_S_x = __ralloc.v0[613] + a_tid_2_S_y = __ralloc.v0[614] + a_tid_2_S_z = __ralloc.v0[615] + RE_div_r_p5 = __ralloc.v0[616] + tmp4132 = __ralloc.v0[617] + aux_tidacc = __ralloc.v0[618] + a_tidal_coeff_M = __ralloc.v0[619] + a_tidal_coeff_S = __ralloc.v0[620] + a_tidal_tod_x = __ralloc.v0[621] + a_tidal_tod_y = __ralloc.v0[622] + a_tidal_tod_z = __ralloc.v0[623] + a_tidal_x = __ralloc.v0[624] + a_tidal_y = __ralloc.v0[625] + a_tidal_z = __ralloc.v0[626] + accX_mo_tides = __ralloc.v0[627] + accY_mo_tides = __ralloc.v0[628] + accZ_mo_tides = __ralloc.v0[629] + Iω_x = __ralloc.v0[630] + Iω_y = __ralloc.v0[631] + Iω_z = __ralloc.v0[632] + ωxIω_x = __ralloc.v0[633] + ωxIω_y = __ralloc.v0[634] + ωxIω_z = __ralloc.v0[635] + dIω_x = __ralloc.v0[636] + dIω_y = __ralloc.v0[637] + dIω_z = __ralloc.v0[638] + er_EM_I_1 = __ralloc.v0[639] + er_EM_I_2 = __ralloc.v0[640] + er_EM_I_3 = __ralloc.v0[641] + p_E_I_1 = __ralloc.v0[642] + p_E_I_2 = __ralloc.v0[643] + p_E_I_3 = __ralloc.v0[644] + er_EM_1 = __ralloc.v0[645] + er_EM_2 = __ralloc.v0[646] + er_EM_3 = __ralloc.v0[647] + p_E_1 = __ralloc.v0[648] + p_E_2 = __ralloc.v0[649] + p_E_3 = __ralloc.v0[650] + I_er_EM_1 = __ralloc.v0[651] + I_er_EM_2 = __ralloc.v0[652] + I_er_EM_3 = __ralloc.v0[653] + I_p_E_1 = __ralloc.v0[654] + I_p_E_2 = __ralloc.v0[655] + I_p_E_3 = __ralloc.v0[656] + er_EM_cross_I_er_EM_1 = __ralloc.v0[657] + er_EM_cross_I_er_EM_2 = __ralloc.v0[658] + er_EM_cross_I_er_EM_3 = __ralloc.v0[659] + er_EM_cross_I_p_E_1 = __ralloc.v0[660] + er_EM_cross_I_p_E_2 = __ralloc.v0[661] + er_EM_cross_I_p_E_3 = __ralloc.v0[662] + p_E_cross_I_er_EM_1 = __ralloc.v0[663] + p_E_cross_I_er_EM_2 = __ralloc.v0[664] + p_E_cross_I_er_EM_3 = __ralloc.v0[665] + p_E_cross_I_p_E_1 = __ralloc.v0[666] + p_E_cross_I_p_E_2 = __ralloc.v0[667] + p_E_cross_I_p_E_3 = __ralloc.v0[668] + tmp4133 = __ralloc.v0[669] + one_minus_7sin2ϕEM = __ralloc.v0[670] + two_sinϕEM = __ralloc.v0[671] + tmp4134 = __ralloc.v0[672] + N_MfigM_figE_factor_div_rEMp5 = __ralloc.v0[673] + N_MfigM_figE_1 = __ralloc.v0[674] + N_MfigM_figE_2 = __ralloc.v0[675] + N_MfigM_figE_3 = __ralloc.v0[676] + N_1_LMF = __ralloc.v0[677] + N_2_LMF = __ralloc.v0[678] + N_3_LMF = __ralloc.v0[679] + N_cmb_1 = __ralloc.v0[680] + N_cmb_2 = __ralloc.v0[681] + N_cmb_3 = __ralloc.v0[682] + I_dω_1 = __ralloc.v0[683] + I_dω_2 = __ralloc.v0[684] + I_dω_3 = __ralloc.v0[685] + Ic_ωc_1 = __ralloc.v0[686] + Ic_ωc_2 = __ralloc.v0[687] + Ic_ωc_3 = __ralloc.v0[688] + m_ωm_x_Icωc_1 = __ralloc.v0[689] + m_ωm_x_Icωc_2 = __ralloc.v0[690] + m_ωm_x_Icωc_3 = __ralloc.v0[691] + Ic_dωc_1 = __ralloc.v0[692] + Ic_dωc_2 = __ralloc.v0[693] + Ic_dωc_3 = __ralloc.v0[694] + tmp4135 = __ralloc.v0[695] + tmp4136 = __ralloc.v0[696] + tmp4137 = __ralloc.v0[697] + tmp4138 = __ralloc.v0[698] + tmp4139 = __ralloc.v0[699] + tmp4140 = __ralloc.v0[700] + tmp4141 = __ralloc.v0[701] + tmp4142 = __ralloc.v0[702] + tmp4143 = __ralloc.v0[703] + w_LE = __ralloc.v0[704] + α_TTmTDB = __ralloc.v0[705] + v4E = __ralloc.v0[706] + tmp4144 = __ralloc.v0[707] + ϕ_Earth_Newtonian_sq = __ralloc.v0[708] + tmp4145 = __ralloc.v0[709] + β_TTmTDB = __ralloc.v0[710] newtonX = __ralloc.v1[1] newtonY = __ralloc.v1[2] newtonZ = __ralloc.v1[3] @@ -8088,20 +6589,23 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract temp_N_M_z = __ralloc.v1[20] N_MfigM = __ralloc.v1[21] J2_t = __ralloc.v1[22] - tmp3067 = __ralloc.v1[23] - tmp3069 = __ralloc.v1[24] - tmp3072 = __ralloc.v1[25] - tmp3074 = __ralloc.v1[26] - tmp3077 = __ralloc.v1[27] - tmp3079 = __ralloc.v1[28] - tmp3123 = __ralloc.v1[29] - tmp3125 = __ralloc.v1[30] - tmp3126 = __ralloc.v1[31] - tmp3128 = __ralloc.v1[32] - tmp4005 = __ralloc.v1[33] - tmp4007 = __ralloc.v1[34] - tmp4008 = __ralloc.v1[35] - β_TTmTDB_i_2 = __ralloc.v1[36] + tmp3082 = __ralloc.v1[23] + tmp3084 = __ralloc.v1[24] + tmp3087 = __ralloc.v1[25] + tmp3089 = __ralloc.v1[26] + tmp3092 = __ralloc.v1[27] + tmp3094 = __ralloc.v1[28] + tmp3138 = __ralloc.v1[29] + tmp4092 = __ralloc.v1[30] + tmp3140 = __ralloc.v1[31] + tmp4093 = __ralloc.v1[32] + tmp3141 = __ralloc.v1[33] + tmp3143 = __ralloc.v1[34] + tmp4094 = __ralloc.v1[35] + tmp4020 = __ralloc.v1[36] + tmp4022 = __ralloc.v1[37] + tmp4023 = __ralloc.v1[38] + β_TTmTDB_i_2 = __ralloc.v1[39] X = __ralloc.v2[1] Y = __ralloc.v2[2] Z = __ralloc.v2[3] @@ -8191,81 +6695,91 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract pn2x = __ralloc.v2[87] pn2y = __ralloc.v2[88] pn2z = __ralloc.v2[89] - tmp3087 = __ralloc.v2[90] - tmp3090 = __ralloc.v2[91] - tmp3092 = __ralloc.v2[92] - tmp3093 = __ralloc.v2[93] - tmp3095 = __ralloc.v2[94] - tmp3103 = __ralloc.v2[95] - tmp3104 = __ralloc.v2[96] - tmp3115 = __ralloc.v2[97] - temp_001 = __ralloc.v2[98] - tmp3117 = __ralloc.v2[99] - temp_002 = __ralloc.v2[100] + tmp3102 = __ralloc.v2[90] + tmp3105 = __ralloc.v2[91] + tmp4087 = __ralloc.v2[92] + tmp3107 = __ralloc.v2[93] + tmp4088 = __ralloc.v2[94] + tmp3108 = __ralloc.v2[95] + tmp3110 = __ralloc.v2[96] + tmp4089 = __ralloc.v2[97] + tmp4090 = __ralloc.v2[98] + tmp4091 = __ralloc.v2[99] + tmp3118 = __ralloc.v2[100] tmp3119 = __ralloc.v2[101] - temp_003 = __ralloc.v2[102] - temp_004 = __ralloc.v2[103] - tmp3156 = __ralloc.v2[104] - tmp3158 = __ralloc.v2[105] - tmp3160 = __ralloc.v2[106] - tmp3164 = __ralloc.v2[107] - tmp3166 = __ralloc.v2[108] - tmp3167 = __ralloc.v2[109] - tmp3273 = __ralloc.v2[110] - tmp3274 = __ralloc.v2[111] - tmp3277 = __ralloc.v2[112] - tmp3278 = __ralloc.v2[113] - tmp3284 = __ralloc.v2[114] - tmp3287 = __ralloc.v2[115] - tmp3349 = __ralloc.v2[116] - tmp3351 = __ralloc.v2[117] - tmp3353 = __ralloc.v2[118] - tmp3355 = __ralloc.v2[119] - tmp3357 = __ralloc.v2[120] - tmp3359 = __ralloc.v2[121] - tmp3361 = __ralloc.v2[122] - tmp3362 = __ralloc.v2[123] - tmp3363 = __ralloc.v2[124] - tmp3365 = __ralloc.v2[125] + tmp3130 = __ralloc.v2[102] + temp_001 = __ralloc.v2[103] + tmp3132 = __ralloc.v2[104] + temp_002 = __ralloc.v2[105] + tmp3134 = __ralloc.v2[106] + temp_003 = __ralloc.v2[107] + temp_004 = __ralloc.v2[108] + tmp3171 = __ralloc.v2[109] + tmp3173 = __ralloc.v2[110] + tmp3175 = __ralloc.v2[111] + tmp3179 = __ralloc.v2[112] + tmp4095 = __ralloc.v2[113] + tmp3181 = __ralloc.v2[114] + tmp4096 = __ralloc.v2[115] + tmp3182 = __ralloc.v2[116] + tmp4097 = __ralloc.v2[117] + tmp4098 = __ralloc.v2[118] + tmp3288 = __ralloc.v2[119] + tmp3289 = __ralloc.v2[120] + tmp3292 = __ralloc.v2[121] + tmp3293 = __ralloc.v2[122] + tmp3299 = __ralloc.v2[123] + tmp3302 = __ralloc.v2[124] + tmp3364 = __ralloc.v2[125] tmp3366 = __ralloc.v2[126] - tmp3367 = __ralloc.v2[127] - tmp3369 = __ralloc.v2[128] - tmp3370 = __ralloc.v2[129] - tmp3371 = __ralloc.v2[130] - tmp3383 = __ralloc.v2[131] - Xij_t_Ui = __ralloc.v2[132] - Yij_t_Vi = __ralloc.v2[133] - Zij_t_Wi = __ralloc.v2[134] - tmp3389 = __ralloc.v2[135] - Rij_dot_Vi = __ralloc.v2[136] - tmp3392 = __ralloc.v2[137] - tmp3395 = __ralloc.v2[138] - pn1t2_7 = __ralloc.v2[139] - tmp3402 = __ralloc.v2[140] - tmp3403 = __ralloc.v2[141] - tmp3404 = __ralloc.v2[142] - tmp3412 = __ralloc.v2[143] - termpnx = __ralloc.v2[144] - sumpnx = __ralloc.v2[145] - tmp3415 = __ralloc.v2[146] - termpny = __ralloc.v2[147] - sumpny = __ralloc.v2[148] - tmp3418 = __ralloc.v2[149] - termpnz = __ralloc.v2[150] - sumpnz = __ralloc.v2[151] - β_TTmTDB_i_1 = __ralloc.v2[152] - tmp4010 = __ralloc.v2[153] - tmp4011 = __ralloc.v2[154] - tmp4012 = __ralloc.v2[155] - tmp4013 = __ralloc.v2[156] - tmp4014 = __ralloc.v2[157] - β_TTmTDB_i_3 = __ralloc.v2[158] - β_TTmTDB_i_4 = __ralloc.v2[159] - tmp4019 = __ralloc.v2[160] - tmp4020 = __ralloc.v2[161] - β_TTmTDB_i = __ralloc.v2[162] - tmp4022 = __ralloc.v2[163] - temp_β_TTmTDB = __ralloc.v2[164] + tmp3368 = __ralloc.v2[127] + tmp3370 = __ralloc.v2[128] + tmp3372 = __ralloc.v2[129] + tmp3374 = __ralloc.v2[130] + tmp3376 = __ralloc.v2[131] + tmp3377 = __ralloc.v2[132] + tmp3378 = __ralloc.v2[133] + tmp3380 = __ralloc.v2[134] + tmp3381 = __ralloc.v2[135] + tmp3382 = __ralloc.v2[136] + tmp3384 = __ralloc.v2[137] + tmp3385 = __ralloc.v2[138] + tmp3386 = __ralloc.v2[139] + tmp3398 = __ralloc.v2[140] + Xij_t_Ui = __ralloc.v2[141] + Yij_t_Vi = __ralloc.v2[142] + Zij_t_Wi = __ralloc.v2[143] + tmp3404 = __ralloc.v2[144] + Rij_dot_Vi = __ralloc.v2[145] + tmp3407 = __ralloc.v2[146] + tmp4099 = __ralloc.v2[147] + tmp3410 = __ralloc.v2[148] + pn1t2_7 = __ralloc.v2[149] + tmp3417 = __ralloc.v2[150] + tmp3418 = __ralloc.v2[151] + tmp3419 = __ralloc.v2[152] + tmp3427 = __ralloc.v2[153] + termpnx = __ralloc.v2[154] + sumpnx = __ralloc.v2[155] + tmp3430 = __ralloc.v2[156] + termpny = __ralloc.v2[157] + sumpny = __ralloc.v2[158] + tmp3433 = __ralloc.v2[159] + termpnz = __ralloc.v2[160] + sumpnz = __ralloc.v2[161] + β_TTmTDB_i_1 = __ralloc.v2[162] + tmp4025 = __ralloc.v2[163] + tmp4026 = __ralloc.v2[164] + tmp4027 = __ralloc.v2[165] + tmp4028 = __ralloc.v2[166] + tmp4029 = __ralloc.v2[167] + β_TTmTDB_i_3 = __ralloc.v2[168] + β_TTmTDB_i_4 = __ralloc.v2[169] + tmp4034 = __ralloc.v2[170] + tmp4035 = __ralloc.v2[171] + β_TTmTDB_i = __ralloc.v2[172] + tmp4037 = __ralloc.v2[173] + temp_β_TTmTDB = __ralloc.v2[174] P_n = __ralloc.v3[1] dP_n = __ralloc.v3[2] temp_fjξ = __ralloc.v3[3] @@ -8274,45 +6788,45 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract sin_mλ = __ralloc.v3[6] cos_mλ = __ralloc.v3[7] RotM = __ralloc.v3[8] - tmp3172 = __ralloc.v3[9] - tmp3173 = __ralloc.v3[10] - tmp3174 = __ralloc.v3[11] - tmp3176 = __ralloc.v3[12] - tmp3177 = __ralloc.v3[13] - tmp3182 = __ralloc.v3[14] - tmp3183 = __ralloc.v3[15] - tmp3185 = __ralloc.v3[16] - tmp3186 = __ralloc.v3[17] - tmp3187 = __ralloc.v3[18] - tmp3189 = __ralloc.v3[19] - tmp3190 = __ralloc.v3[20] - tmp3191 = __ralloc.v3[21] - tmp3193 = __ralloc.v3[22] - tmp3194 = __ralloc.v3[23] - tmp3195 = __ralloc.v3[24] - tmp3196 = __ralloc.v3[25] - tmp3199 = __ralloc.v3[26] - tmp3200 = __ralloc.v3[27] - tmp3202 = __ralloc.v3[28] - tmp3203 = __ralloc.v3[29] - tmp3222 = __ralloc.v3[30] - tmp3223 = __ralloc.v3[31] - tmp3224 = __ralloc.v3[32] - tmp3227 = __ralloc.v3[33] - tmp3228 = __ralloc.v3[34] - tmp3229 = __ralloc.v3[35] - tmp3234 = __ralloc.v3[36] - tmp3235 = __ralloc.v3[37] - tmp3236 = __ralloc.v3[38] - tmp3239 = __ralloc.v3[39] - tmp3240 = __ralloc.v3[40] - tmp3241 = __ralloc.v3[41] - tmp3245 = __ralloc.v3[42] - tmp3246 = __ralloc.v3[43] - tmp3247 = __ralloc.v3[44] - tmp3249 = __ralloc.v3[45] - tmp3250 = __ralloc.v3[46] - tmp3251 = __ralloc.v3[47] + tmp3187 = __ralloc.v3[9] + tmp3188 = __ralloc.v3[10] + tmp3189 = __ralloc.v3[11] + tmp3191 = __ralloc.v3[12] + tmp3192 = __ralloc.v3[13] + tmp3197 = __ralloc.v3[14] + tmp3198 = __ralloc.v3[15] + tmp3200 = __ralloc.v3[16] + tmp3201 = __ralloc.v3[17] + tmp3202 = __ralloc.v3[18] + tmp3204 = __ralloc.v3[19] + tmp3205 = __ralloc.v3[20] + tmp3206 = __ralloc.v3[21] + tmp3208 = __ralloc.v3[22] + tmp3209 = __ralloc.v3[23] + tmp3210 = __ralloc.v3[24] + tmp3211 = __ralloc.v3[25] + tmp3214 = __ralloc.v3[26] + tmp3215 = __ralloc.v3[27] + tmp3217 = __ralloc.v3[28] + tmp3218 = __ralloc.v3[29] + tmp3237 = __ralloc.v3[30] + tmp3238 = __ralloc.v3[31] + tmp3239 = __ralloc.v3[32] + tmp3242 = __ralloc.v3[33] + tmp3243 = __ralloc.v3[34] + tmp3244 = __ralloc.v3[35] + tmp3249 = __ralloc.v3[36] + tmp3250 = __ralloc.v3[37] + tmp3251 = __ralloc.v3[38] + tmp3254 = __ralloc.v3[39] + tmp3255 = __ralloc.v3[40] + tmp3256 = __ralloc.v3[41] + tmp3260 = __ralloc.v3[42] + tmp3261 = __ralloc.v3[43] + tmp3262 = __ralloc.v3[44] + tmp3264 = __ralloc.v3[45] + tmp3265 = __ralloc.v3[46] + tmp3266 = __ralloc.v3[47] temp_CS_ξ = __ralloc.v4[1] temp_CS_η = __ralloc.v4[2] temp_CS_ζ = __ralloc.v4[3] @@ -8325,87 +6839,87 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract cosϕ_dP_nm = __ralloc.v4[10] Rb2p = __ralloc.v4[11] Gc2p = __ralloc.v4[12] - tmp3205 = __ralloc.v4[13] - tmp3208 = __ralloc.v4[14] - tmp3210 = __ralloc.v4[15] - tmp3212 = __ralloc.v4[16] - tmp3213 = __ralloc.v4[17] - tmp3214 = __ralloc.v4[18] - tmp3217 = __ralloc.v4[19] - tmp3218 = __ralloc.v4[20] - tmp3219 = __ralloc.v4[21] - tmp3221 = __ralloc.v4[22] - tmp3225 = __ralloc.v4[23] - tmp3226 = __ralloc.v4[24] - tmp3230 = __ralloc.v4[25] - tmp3231 = __ralloc.v4[26] - tmp3233 = __ralloc.v4[27] - tmp3237 = __ralloc.v4[28] - tmp3238 = __ralloc.v4[29] - tmp3242 = __ralloc.v4[30] - tmp3243 = __ralloc.v4[31] - tmp3248 = __ralloc.v4[32] - tmp3252 = __ralloc.v4[33] - tmp3253 = __ralloc.v4[34] - tmp3259 = __ralloc.v4[35] - tmp3260 = __ralloc.v4[36] - tmp3261 = __ralloc.v4[37] - tmp3262 = __ralloc.v4[38] - tmp3264 = __ralloc.v4[39] - tmp3265 = __ralloc.v4[40] - tmp3266 = __ralloc.v4[41] - tmp3267 = __ralloc.v4[42] - tmp3269 = __ralloc.v4[43] - tmp3270 = __ralloc.v4[44] - tmp3271 = __ralloc.v4[45] - tmp3289 = __ralloc.v4[46] - tmp3290 = __ralloc.v4[47] - tmp3291 = __ralloc.v4[48] - tmp3292 = __ralloc.v4[49] - tmp3294 = __ralloc.v4[50] - tmp3295 = __ralloc.v4[51] - tmp3296 = __ralloc.v4[52] - tmp3297 = __ralloc.v4[53] - tmp3299 = __ralloc.v4[54] - tmp3300 = __ralloc.v4[55] - tmp3301 = __ralloc.v4[56] - tmp3302 = __ralloc.v4[57] - tmp3304 = __ralloc.v4[58] - tmp3305 = __ralloc.v4[59] - tmp3306 = __ralloc.v4[60] - tmp3307 = __ralloc.v4[61] - tmp3309 = __ralloc.v4[62] - tmp3310 = __ralloc.v4[63] - tmp3311 = __ralloc.v4[64] - tmp3312 = __ralloc.v4[65] - tmp3314 = __ralloc.v4[66] - tmp3315 = __ralloc.v4[67] - tmp3316 = __ralloc.v4[68] - tmp3317 = __ralloc.v4[69] - tmp3319 = __ralloc.v4[70] - tmp3320 = __ralloc.v4[71] - tmp3321 = __ralloc.v4[72] - tmp3322 = __ralloc.v4[73] - tmp3324 = __ralloc.v4[74] - tmp3325 = __ralloc.v4[75] - tmp3326 = __ralloc.v4[76] - tmp3327 = __ralloc.v4[77] - tmp3329 = __ralloc.v4[78] - tmp3330 = __ralloc.v4[79] - tmp3331 = __ralloc.v4[80] - tmp3332 = __ralloc.v4[81] - tmp3334 = __ralloc.v4[82] - tmp3335 = __ralloc.v4[83] - tmp3336 = __ralloc.v4[84] - tmp3337 = __ralloc.v4[85] - tmp3339 = __ralloc.v4[86] - tmp3340 = __ralloc.v4[87] - tmp3341 = __ralloc.v4[88] - tmp3342 = __ralloc.v4[89] - tmp3344 = __ralloc.v4[90] - tmp3345 = __ralloc.v4[91] - tmp3346 = __ralloc.v4[92] - tmp3347 = __ralloc.v4[93] + tmp3220 = __ralloc.v4[13] + tmp3223 = __ralloc.v4[14] + tmp3225 = __ralloc.v4[15] + tmp3227 = __ralloc.v4[16] + tmp3228 = __ralloc.v4[17] + tmp3229 = __ralloc.v4[18] + tmp3232 = __ralloc.v4[19] + tmp3233 = __ralloc.v4[20] + tmp3234 = __ralloc.v4[21] + tmp3236 = __ralloc.v4[22] + tmp3240 = __ralloc.v4[23] + tmp3241 = __ralloc.v4[24] + tmp3245 = __ralloc.v4[25] + tmp3246 = __ralloc.v4[26] + tmp3248 = __ralloc.v4[27] + tmp3252 = __ralloc.v4[28] + tmp3253 = __ralloc.v4[29] + tmp3257 = __ralloc.v4[30] + tmp3258 = __ralloc.v4[31] + tmp3263 = __ralloc.v4[32] + tmp3267 = __ralloc.v4[33] + tmp3268 = __ralloc.v4[34] + tmp3274 = __ralloc.v4[35] + tmp3275 = __ralloc.v4[36] + tmp3276 = __ralloc.v4[37] + tmp3277 = __ralloc.v4[38] + tmp3279 = __ralloc.v4[39] + tmp3280 = __ralloc.v4[40] + tmp3281 = __ralloc.v4[41] + tmp3282 = __ralloc.v4[42] + tmp3284 = __ralloc.v4[43] + tmp3285 = __ralloc.v4[44] + tmp3286 = __ralloc.v4[45] + tmp3304 = __ralloc.v4[46] + tmp3305 = __ralloc.v4[47] + tmp3306 = __ralloc.v4[48] + tmp3307 = __ralloc.v4[49] + tmp3309 = __ralloc.v4[50] + tmp3310 = __ralloc.v4[51] + tmp3311 = __ralloc.v4[52] + tmp3312 = __ralloc.v4[53] + tmp3314 = __ralloc.v4[54] + tmp3315 = __ralloc.v4[55] + tmp3316 = __ralloc.v4[56] + tmp3317 = __ralloc.v4[57] + tmp3319 = __ralloc.v4[58] + tmp3320 = __ralloc.v4[59] + tmp3321 = __ralloc.v4[60] + tmp3322 = __ralloc.v4[61] + tmp3324 = __ralloc.v4[62] + tmp3325 = __ralloc.v4[63] + tmp3326 = __ralloc.v4[64] + tmp3327 = __ralloc.v4[65] + tmp3329 = __ralloc.v4[66] + tmp3330 = __ralloc.v4[67] + tmp3331 = __ralloc.v4[68] + tmp3332 = __ralloc.v4[69] + tmp3334 = __ralloc.v4[70] + tmp3335 = __ralloc.v4[71] + tmp3336 = __ralloc.v4[72] + tmp3337 = __ralloc.v4[73] + tmp3339 = __ralloc.v4[74] + tmp3340 = __ralloc.v4[75] + tmp3341 = __ralloc.v4[76] + tmp3342 = __ralloc.v4[77] + tmp3344 = __ralloc.v4[78] + tmp3345 = __ralloc.v4[79] + tmp3346 = __ralloc.v4[80] + tmp3347 = __ralloc.v4[81] + tmp3349 = __ralloc.v4[82] + tmp3350 = __ralloc.v4[83] + tmp3351 = __ralloc.v4[84] + tmp3352 = __ralloc.v4[85] + tmp3354 = __ralloc.v4[86] + tmp3355 = __ralloc.v4[87] + tmp3356 = __ralloc.v4[88] + tmp3357 = __ralloc.v4[89] + tmp3359 = __ralloc.v4[90] + tmp3360 = __ralloc.v4[91] + tmp3361 = __ralloc.v4[92] + tmp3362 = __ralloc.v4[93] local (N, jd0) = params local __t = Taylor1(numtype(t), t.order) local S = eltype(q) @@ -8429,316 +6943,12 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract local I_c_t = I_c .* one_t local inv_I_c_t = inv(I_c_t) local I_M_t = I_m_t + I_c_t - TaylorSeries.zero!(N_MfigM[1]) - (N_MfigM[1]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(N_MfigM[2]) - (N_MfigM[2]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(N_MfigM[3]) - (N_MfigM[3]).coeffs[1] = identity(constant_term(zero_q_1)) local αs = deg2rad(α_p_sun * one_t) local δs = deg2rad(δ_p_sun * one_t) local RotM[:, :, ea] = c2t_jpl_de430(dsj2k) local RotM[:, :, su] = pole_rotation(αs, δs) - TaylorSeries.zero!(ϕ_m) - ϕ_m.coeffs[1] = identity(constant_term(q[6N + 1])) - TaylorSeries.zero!(θ_m) - θ_m.coeffs[1] = identity(constant_term(q[6N + 2])) - TaylorSeries.zero!(ψ_m) - ψ_m.coeffs[1] = identity(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp2961) - tmp2961.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp4031) - tmp4031.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp2962) - tmp2962.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp4032) - tmp4032.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp2963) - tmp2963.coeffs[1] = constant_term(tmp2961) * constant_term(tmp2962) - TaylorSeries.zero!(tmp2964) - tmp2964.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp4033) - tmp4033.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp2965) - tmp2965.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp4034) - tmp4034.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp2966) - tmp2966.coeffs[1] = constant_term(tmp2964) * constant_term(tmp2965) - TaylorSeries.zero!(tmp2967) - tmp2967.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp4035) - tmp4035.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp2968) - tmp2968.coeffs[1] = constant_term(tmp2966) * constant_term(tmp2967) - TaylorSeries.zero!(RotM[1, 1, mo]) - (RotM[1, 1, mo]).coeffs[1] = constant_term(tmp2963) - constant_term(tmp2968) - TaylorSeries.zero!(tmp2970) - tmp2970.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp4036) - tmp4036.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp2971) - tmp2971.coeffs[1] = -(constant_term(tmp2970)) - TaylorSeries.zero!(tmp2972) - tmp2972.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp4037) - tmp4037.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp2973) - tmp2973.coeffs[1] = constant_term(tmp2971) * constant_term(tmp2972) - TaylorSeries.zero!(tmp2974) - tmp2974.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp4038) - tmp4038.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp2975) - tmp2975.coeffs[1] = constant_term(tmp2973) * constant_term(tmp2974) - TaylorSeries.zero!(tmp2976) - tmp2976.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp4039) - tmp4039.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp2977) - tmp2977.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp4040) - tmp4040.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp2978) - tmp2978.coeffs[1] = constant_term(tmp2976) * constant_term(tmp2977) - TaylorSeries.zero!(RotM[2, 1, mo]) - (RotM[2, 1, mo]).coeffs[1] = constant_term(tmp2975) - constant_term(tmp2978) - TaylorSeries.zero!(tmp2980) - tmp2980.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp4041) - tmp4041.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp2981) - tmp2981.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp4042) - tmp4042.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(RotM[3, 1, mo]) - (RotM[3, 1, mo]).coeffs[1] = constant_term(tmp2980) * constant_term(tmp2981) - TaylorSeries.zero!(tmp2983) - tmp2983.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp4043) - tmp4043.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp2984) - tmp2984.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp4044) - tmp4044.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp2985) - tmp2985.coeffs[1] = constant_term(tmp2983) * constant_term(tmp2984) - TaylorSeries.zero!(tmp2986) - tmp2986.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp4045) - tmp4045.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp2987) - tmp2987.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp4046) - tmp4046.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp2988) - tmp2988.coeffs[1] = constant_term(tmp2986) * constant_term(tmp2987) - TaylorSeries.zero!(tmp2989) - tmp2989.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp4047) - tmp4047.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp2990) - tmp2990.coeffs[1] = constant_term(tmp2988) * constant_term(tmp2989) - TaylorSeries.zero!(RotM[1, 2, mo]) - (RotM[1, 2, mo]).coeffs[1] = constant_term(tmp2985) + constant_term(tmp2990) - TaylorSeries.zero!(tmp2992) - tmp2992.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp4048) - tmp4048.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp2993) - tmp2993.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp4049) - tmp4049.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp2994) - tmp2994.coeffs[1] = constant_term(tmp2992) * constant_term(tmp2993) - TaylorSeries.zero!(tmp2995) - tmp2995.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp4050) - tmp4050.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp2996) - tmp2996.coeffs[1] = constant_term(tmp2994) * constant_term(tmp2995) - TaylorSeries.zero!(tmp2997) - tmp2997.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp4051) - tmp4051.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp2998) - tmp2998.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp4052) - tmp4052.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp2999) - tmp2999.coeffs[1] = constant_term(tmp2997) * constant_term(tmp2998) - TaylorSeries.zero!(RotM[2, 2, mo]) - (RotM[2, 2, mo]).coeffs[1] = constant_term(tmp2996) - constant_term(tmp2999) - TaylorSeries.zero!(tmp3001) - tmp3001.coeffs[1] = cos(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp4053) - tmp4053.coeffs[1] = sin(constant_term(ϕ_m)) - TaylorSeries.zero!(tmp3002) - tmp3002.coeffs[1] = -(constant_term(tmp3001)) - TaylorSeries.zero!(tmp3003) - tmp3003.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp4054) - tmp4054.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(RotM[3, 2, mo]) - (RotM[3, 2, mo]).coeffs[1] = constant_term(tmp3002) * constant_term(tmp3003) - TaylorSeries.zero!(tmp3005) - tmp3005.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp4055) - tmp4055.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp3006) - tmp3006.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp4056) - tmp4056.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(RotM[1, 3, mo]) - (RotM[1, 3, mo]).coeffs[1] = constant_term(tmp3005) * constant_term(tmp3006) - TaylorSeries.zero!(tmp3008) - tmp3008.coeffs[1] = cos(constant_term(ψ_m)) - TaylorSeries.zero!(tmp4057) - tmp4057.coeffs[1] = sin(constant_term(ψ_m)) - TaylorSeries.zero!(tmp3009) - tmp3009.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(tmp4058) - tmp4058.coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(RotM[2, 3, mo]) - (RotM[2, 3, mo]).coeffs[1] = constant_term(tmp3008) * constant_term(tmp3009) - TaylorSeries.zero!(RotM[3, 3, mo]) - (RotM[3, 3, mo]).coeffs[1] = cos(constant_term(θ_m)) - TaylorSeries.zero!(tmp4059) - tmp4059.coeffs[1] = sin(constant_term(θ_m)) - TaylorSeries.zero!(ϕ_c) - ϕ_c.coeffs[1] = identity(constant_term(q[6N + 7])) - TaylorSeries.zero!(tmp3012) - tmp3012.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4060) - tmp4060.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3013) - tmp3013.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(tmp3012) - TaylorSeries.zero!(tmp3014) - tmp3014.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4061) - tmp4061.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3015) - tmp3015.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp3014) - TaylorSeries.zero!(mantlef2coref[1, 1]) - (mantlef2coref[1, 1]).coeffs[1] = constant_term(tmp3013) + constant_term(tmp3015) - TaylorSeries.zero!(tmp3017) - tmp3017.coeffs[1] = -(constant_term(RotM[1, 1, mo])) - TaylorSeries.zero!(tmp3018) - tmp3018.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4062) - tmp4062.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3019) - tmp3019.coeffs[1] = constant_term(tmp3017) * constant_term(tmp3018) - TaylorSeries.zero!(tmp3020) - tmp3020.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4063) - tmp4063.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3021) - tmp3021.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp3020) - TaylorSeries.zero!(mantlef2coref[2, 1]) - (mantlef2coref[2, 1]).coeffs[1] = constant_term(tmp3019) + constant_term(tmp3021) - TaylorSeries.zero!(mantlef2coref[3, 1]) - (mantlef2coref[3, 1]).coeffs[1] = identity(constant_term(RotM[1, 3, mo])) - TaylorSeries.zero!(tmp3023) - tmp3023.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4064) - tmp4064.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3024) - tmp3024.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(tmp3023) - TaylorSeries.zero!(tmp3025) - tmp3025.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4065) - tmp4065.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3026) - tmp3026.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp3025) - TaylorSeries.zero!(mantlef2coref[1, 2]) - (mantlef2coref[1, 2]).coeffs[1] = constant_term(tmp3024) + constant_term(tmp3026) - TaylorSeries.zero!(tmp3028) - tmp3028.coeffs[1] = -(constant_term(RotM[2, 1, mo])) - TaylorSeries.zero!(tmp3029) - tmp3029.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4066) - tmp4066.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3030) - tmp3030.coeffs[1] = constant_term(tmp3028) * constant_term(tmp3029) - TaylorSeries.zero!(tmp3031) - tmp3031.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4067) - tmp4067.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3032) - tmp3032.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp3031) - TaylorSeries.zero!(mantlef2coref[2, 2]) - (mantlef2coref[2, 2]).coeffs[1] = constant_term(tmp3030) + constant_term(tmp3032) - TaylorSeries.zero!(mantlef2coref[3, 2]) - (mantlef2coref[3, 2]).coeffs[1] = identity(constant_term(RotM[2, 3, mo])) - TaylorSeries.zero!(tmp3034) - tmp3034.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4068) - tmp4068.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3035) - tmp3035.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(tmp3034) - TaylorSeries.zero!(tmp3036) - tmp3036.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4069) - tmp4069.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3037) - tmp3037.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp3036) - TaylorSeries.zero!(mantlef2coref[1, 3]) - (mantlef2coref[1, 3]).coeffs[1] = constant_term(tmp3035) + constant_term(tmp3037) - TaylorSeries.zero!(tmp3039) - tmp3039.coeffs[1] = -(constant_term(RotM[3, 1, mo])) - TaylorSeries.zero!(tmp3040) - tmp3040.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4070) - tmp4070.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3041) - tmp3041.coeffs[1] = constant_term(tmp3039) * constant_term(tmp3040) - TaylorSeries.zero!(tmp3042) - tmp3042.coeffs[1] = cos(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp4071) - tmp4071.coeffs[1] = sin(constant_term(ϕ_c)) - TaylorSeries.zero!(tmp3043) - tmp3043.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp3042) - TaylorSeries.zero!(mantlef2coref[2, 3]) - (mantlef2coref[2, 3]).coeffs[1] = constant_term(tmp3041) + constant_term(tmp3043) - TaylorSeries.zero!(mantlef2coref[3, 3]) - (mantlef2coref[3, 3]).coeffs[1] = identity(constant_term(RotM[3, 3, mo])) - TaylorSeries.zero!(tmp3045) - tmp3045.coeffs[1] = constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]) - TaylorSeries.zero!(tmp3046) - tmp3046.coeffs[1] = constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]) - TaylorSeries.zero!(tmp3047) - tmp3047.coeffs[1] = constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp3048) - tmp3048.coeffs[1] = constant_term(tmp3046) + constant_term(tmp3047) - TaylorSeries.zero!(ω_c_CE_1) - ω_c_CE_1.coeffs[1] = constant_term(tmp3045) + constant_term(tmp3048) - TaylorSeries.zero!(tmp3050) - tmp3050.coeffs[1] = constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]) - TaylorSeries.zero!(tmp3051) - tmp3051.coeffs[1] = constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]) - TaylorSeries.zero!(tmp3052) - tmp3052.coeffs[1] = constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp3053) - tmp3053.coeffs[1] = constant_term(tmp3051) + constant_term(tmp3052) - TaylorSeries.zero!(ω_c_CE_2) - ω_c_CE_2.coeffs[1] = constant_term(tmp3050) + constant_term(tmp3053) - TaylorSeries.zero!(tmp3055) - tmp3055.coeffs[1] = constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]) - TaylorSeries.zero!(tmp3056) - tmp3056.coeffs[1] = constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]) - TaylorSeries.zero!(tmp3057) - tmp3057.coeffs[1] = constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp3058) - tmp3058.coeffs[1] = constant_term(tmp3056) + constant_term(tmp3057) - TaylorSeries.zero!(ω_c_CE_3) - ω_c_CE_3.coeffs[1] = constant_term(tmp3055) + constant_term(tmp3058) local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 local J2S_t = JSEM[su, 2] * one_t - TaylorSeries.zero!(J2_t[su]) - (J2_t[su]).coeffs[1] = identity(constant_term(J2S_t)) - TaylorSeries.zero!(J2_t[ea]) - (J2_t[ea]).coeffs[1] = identity(constant_term(J2E_t)) local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t local q_ME_τ_0 = q_del_τ_0[3mo - 2:3mo] .- q_del_τ_0[3 * ea - 2:3 * ea] local q_ME_τ_1 = q_del_τ_1[3mo - 2:3mo] .- q_del_τ_1[3 * ea - 2:3 * ea] @@ -8755,2009 +6965,7 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract local r_star_S_0 = R30 * q_SE_τ_0 local r_star_S_1 = R31 * q_SE_τ_1 local r_star_S_2 = R32 * q_SE_τ_2 - for j = 1:N - TaylorSeries.zero!(newtonX[j]) - (newtonX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(newtonY[j]) - (newtonY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(newtonZ[j]) - (newtonZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(newtonianNb_Potential[j]) - (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(dq[3j - 2]) - (dq[3j - 2]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 2])) - TaylorSeries.zero!(dq[3j - 1]) - (dq[3j - 1]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 1])) - TaylorSeries.zero!(dq[3j]) - (dq[3j]).coeffs[1] = identity(constant_term(q[3 * (N + j)])) - end - for j = 1:N_ext - TaylorSeries.zero!(accX[j]) - (accX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(accY[j]) - (accY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(accZ[j]) - (accZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - end - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1286 =# Threads.@threads for j = 1:N - for i = 1:N - if i == j - continue - else - TaylorSeries.zero!(X[i, j]) - (X[i, j]).coeffs[1] = constant_term(q[3i - 2]) - constant_term(q[3j - 2]) - TaylorSeries.zero!(Y[i, j]) - (Y[i, j]).coeffs[1] = constant_term(q[3i - 1]) - constant_term(q[3j - 1]) - TaylorSeries.zero!(Z[i, j]) - (Z[i, j]).coeffs[1] = constant_term(q[3i]) - constant_term(q[3j]) - TaylorSeries.zero!(U[i, j]) - (U[i, j]).coeffs[1] = constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]) - TaylorSeries.zero!(V[i, j]) - (V[i, j]).coeffs[1] = constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]) - TaylorSeries.zero!(W[i, j]) - (W[i, j]).coeffs[1] = constant_term(dq[3i]) - constant_term(dq[3j]) - TaylorSeries.zero!(tmp3067[3j - 2]) - (tmp3067[3j - 2]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 2]) - TaylorSeries.zero!(tmp3069[3i - 2]) - (tmp3069[3i - 2]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 2]) - TaylorSeries.zero!(_4U_m_3X[i, j]) - (_4U_m_3X[i, j]).coeffs[1] = constant_term(tmp3067[3j - 2]) - constant_term(tmp3069[3i - 2]) - TaylorSeries.zero!(tmp3072[3j - 1]) - (tmp3072[3j - 1]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 1]) - TaylorSeries.zero!(tmp3074[3i - 1]) - (tmp3074[3i - 1]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 1]) - TaylorSeries.zero!(_4V_m_3Y[i, j]) - (_4V_m_3Y[i, j]).coeffs[1] = constant_term(tmp3072[3j - 1]) - constant_term(tmp3074[3i - 1]) - TaylorSeries.zero!(tmp3077[3j]) - (tmp3077[3j]).coeffs[1] = constant_term(4) * constant_term(dq[3j]) - TaylorSeries.zero!(tmp3079[3i]) - (tmp3079[3i]).coeffs[1] = constant_term(3) * constant_term(dq[3i]) - TaylorSeries.zero!(_4W_m_3Z[i, j]) - (_4W_m_3Z[i, j]).coeffs[1] = constant_term(tmp3077[3j]) - constant_term(tmp3079[3i]) - TaylorSeries.zero!(pn2x[i, j]) - (pn2x[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]) - TaylorSeries.zero!(pn2y[i, j]) - (pn2y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]) - TaylorSeries.zero!(pn2z[i, j]) - (pn2z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]) - TaylorSeries.zero!(UU[i, j]) - (UU[i, j]).coeffs[1] = constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]) - TaylorSeries.zero!(VV[i, j]) - (VV[i, j]).coeffs[1] = constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]) - TaylorSeries.zero!(WW[i, j]) - (WW[i, j]).coeffs[1] = constant_term(dq[3i]) * constant_term(dq[3j]) - TaylorSeries.zero!(tmp3087[i, j]) - (tmp3087[i, j]).coeffs[1] = constant_term(UU[i, j]) + constant_term(VV[i, j]) - TaylorSeries.zero!(vi_dot_vj[i, j]) - (vi_dot_vj[i, j]).coeffs[1] = constant_term(tmp3087[i, j]) + constant_term(WW[i, j]) - TaylorSeries.zero!(tmp3090[i, j]) - (tmp3090[i, j]).coeffs[1] = constant_term(X[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3092[i, j]) - (tmp3092[i, j]).coeffs[1] = constant_term(Y[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3093[i, j]) - (tmp3093[i, j]).coeffs[1] = constant_term(tmp3090[i, j]) + constant_term(tmp3092[i, j]) - TaylorSeries.zero!(tmp3095[i, j]) - (tmp3095[i, j]).coeffs[1] = constant_term(Z[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(r_p2[i, j]) - (r_p2[i, j]).coeffs[1] = constant_term(tmp3093[i, j]) + constant_term(tmp3095[i, j]) - TaylorSeries.zero!(r_p1d2[i, j]) - (r_p1d2[i, j]).coeffs[1] = sqrt(constant_term(r_p2[i, j])) - TaylorSeries.zero!(r_p3d2[i, j]) - (r_p3d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(1.5)) - TaylorSeries.zero!(r_p7d2[i, j]) - (r_p7d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(3.5)) - TaylorSeries.zero!(newtonianCoeff[i, j]) - (newtonianCoeff[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p3d2[i, j]) - TaylorSeries.zero!(tmp3103[i, j]) - (tmp3103[i, j]).coeffs[1] = constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]) - TaylorSeries.zero!(tmp3104[i, j]) - (tmp3104[i, j]).coeffs[1] = constant_term(tmp3103[i, j]) + constant_term(pn2z[i, j]) - TaylorSeries.zero!(pn2[i, j]) - (pn2[i, j]).coeffs[1] = constant_term(newtonianCoeff[i, j]) * constant_term(tmp3104[i, j]) - TaylorSeries.zero!(newton_acc_X[i, j]) - (newton_acc_X[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(newton_acc_Y[i, j]) - (newton_acc_Y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(newton_acc_Z[i, j]) - (newton_acc_Z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(newtonian1b_Potential[i, j]) - (newtonian1b_Potential[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p1d2[i, j]) - TaylorSeries.zero!(pn3[i, j]) - (pn3[i, j]).coeffs[1] = constant_term(3.5) * constant_term(newtonian1b_Potential[i, j]) - TaylorSeries.zero!(U_t_pn2[i, j]) - (U_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(U[i, j]) - TaylorSeries.zero!(V_t_pn2[i, j]) - (V_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(V[i, j]) - TaylorSeries.zero!(W_t_pn2[i, j]) - (W_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(W[i, j]) - TaylorSeries.zero!(tmp3115[i, j]) - (tmp3115[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(temp_001[i, j]) - (temp_001[i, j]).coeffs[1] = constant_term(newtonX[j]) + constant_term(tmp3115[i, j]) - TaylorSeries.zero!(newtonX[j]) - (newtonX[j]).coeffs[1] = identity(constant_term(temp_001[i, j])) - TaylorSeries.zero!(tmp3117[i, j]) - (tmp3117[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(temp_002[i, j]) - (temp_002[i, j]).coeffs[1] = constant_term(newtonY[j]) + constant_term(tmp3117[i, j]) - TaylorSeries.zero!(newtonY[j]) - (newtonY[j]).coeffs[1] = identity(constant_term(temp_002[i, j])) - TaylorSeries.zero!(tmp3119[i, j]) - (tmp3119[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) - TaylorSeries.zero!(temp_003[i, j]) - (temp_003[i, j]).coeffs[1] = constant_term(newtonZ[j]) + constant_term(tmp3119[i, j]) - TaylorSeries.zero!(newtonZ[j]) - (newtonZ[j]).coeffs[1] = identity(constant_term(temp_003[i, j])) - TaylorSeries.zero!(temp_004[i, j]) - (temp_004[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]) - TaylorSeries.zero!(newtonianNb_Potential[j]) - (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(temp_004[i, j])) - end - end - TaylorSeries.zero!(tmp3123[3j - 2]) - (tmp3123[3j - 2]).coeffs[1] = constant_term(dq[3j - 2]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3125[3j - 1]) - (tmp3125[3j - 1]).coeffs[1] = constant_term(dq[3j - 1]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3126[3j - 2]) - (tmp3126[3j - 2]).coeffs[1] = constant_term(tmp3123[3j - 2]) + constant_term(tmp3125[3j - 1]) - TaylorSeries.zero!(tmp3128[3j]) - (tmp3128[3j]).coeffs[1] = constant_term(dq[3j]) ^ float(constant_term(2)) - TaylorSeries.zero!(v2[j]) - (v2[j]).coeffs[1] = constant_term(tmp3126[3j - 2]) + constant_term(tmp3128[3j]) - end - TaylorSeries.zero!(tmp3130) - tmp3130.coeffs[1] = constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]) - TaylorSeries.zero!(tmp3132) - tmp3132.coeffs[1] = constant_term(tmp3130) / constant_term(2) - TaylorSeries.zero!(tmp3133) - tmp3133.coeffs[1] = constant_term(I_M_t[3, 3]) - constant_term(tmp3132) - TaylorSeries.zero!(J2M_t) - J2M_t.coeffs[1] = constant_term(tmp3133) / constant_term(μ[mo]) - TaylorSeries.zero!(tmp3135) - tmp3135.coeffs[1] = constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]) - TaylorSeries.zero!(tmp3136) - tmp3136.coeffs[1] = constant_term(tmp3135) / constant_term(μ[mo]) - TaylorSeries.zero!(C22M_t) - C22M_t.coeffs[1] = constant_term(tmp3136) / constant_term(4) - TaylorSeries.zero!(tmp3139) - tmp3139.coeffs[1] = -(constant_term(I_M_t[1, 3])) - TaylorSeries.zero!(C21M_t) - C21M_t.coeffs[1] = constant_term(tmp3139) / constant_term(μ[mo]) - TaylorSeries.zero!(tmp3141) - tmp3141.coeffs[1] = -(constant_term(I_M_t[3, 2])) - TaylorSeries.zero!(S21M_t) - S21M_t.coeffs[1] = constant_term(tmp3141) / constant_term(μ[mo]) - TaylorSeries.zero!(tmp3143) - tmp3143.coeffs[1] = -(constant_term(I_M_t[2, 1])) - TaylorSeries.zero!(tmp3144) - tmp3144.coeffs[1] = constant_term(tmp3143) / constant_term(μ[mo]) - TaylorSeries.zero!(S22M_t) - S22M_t.coeffs[1] = constant_term(tmp3144) / constant_term(2) - TaylorSeries.zero!(J2_t[mo]) - (J2_t[mo]).coeffs[1] = identity(constant_term(J2M_t)) - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1380 =# Threads.@threads for j = 1:N_ext - for i = 1:N_ext - if i == j - continue - else - if UJ_interaction[i, j] - TaylorSeries.zero!(X_bf_1[i, j]) - (X_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[1, 1, j]) - TaylorSeries.zero!(X_bf_2[i, j]) - (X_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[1, 2, j]) - TaylorSeries.zero!(X_bf_3[i, j]) - (X_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[1, 3, j]) - TaylorSeries.zero!(Y_bf_1[i, j]) - (Y_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[2, 1, j]) - TaylorSeries.zero!(Y_bf_2[i, j]) - (Y_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[2, 2, j]) - TaylorSeries.zero!(Y_bf_3[i, j]) - (Y_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[2, 3, j]) - TaylorSeries.zero!(Z_bf_1[i, j]) - (Z_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[3, 1, j]) - TaylorSeries.zero!(Z_bf_2[i, j]) - (Z_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]) - TaylorSeries.zero!(Z_bf_3[i, j]) - (Z_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]) - TaylorSeries.zero!(tmp3156[i, j]) - (tmp3156[i, j]).coeffs[1] = constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]) - TaylorSeries.zero!(X_bf[i, j]) - (X_bf[i, j]).coeffs[1] = constant_term(tmp3156[i, j]) + constant_term(X_bf_3[i, j]) - TaylorSeries.zero!(tmp3158[i, j]) - (tmp3158[i, j]).coeffs[1] = constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]) - TaylorSeries.zero!(Y_bf[i, j]) - (Y_bf[i, j]).coeffs[1] = constant_term(tmp3158[i, j]) + constant_term(Y_bf_3[i, j]) - TaylorSeries.zero!(tmp3160[i, j]) - (tmp3160[i, j]).coeffs[1] = constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]) - TaylorSeries.zero!(Z_bf[i, j]) - (Z_bf[i, j]).coeffs[1] = constant_term(tmp3160[i, j]) + constant_term(Z_bf_3[i, j]) - TaylorSeries.zero!(sin_ϕ[i, j]) - (sin_ϕ[i, j]).coeffs[1] = constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]) - TaylorSeries.zero!(tmp3164[i, j]) - (tmp3164[i, j]).coeffs[1] = constant_term(X_bf[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3166[i, j]) - (tmp3166[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3167[i, j]) - (tmp3167[i, j]).coeffs[1] = constant_term(tmp3164[i, j]) + constant_term(tmp3166[i, j]) - TaylorSeries.zero!(r_xy[i, j]) - (r_xy[i, j]).coeffs[1] = sqrt(constant_term(tmp3167[i, j])) - TaylorSeries.zero!(cos_ϕ[i, j]) - (cos_ϕ[i, j]).coeffs[1] = constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]) - TaylorSeries.zero!(sin_λ[i, j]) - (sin_λ[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]) - TaylorSeries.zero!(cos_λ[i, j]) - (cos_λ[i, j]).coeffs[1] = constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]) - TaylorSeries.zero!(P_n[i, j, 1]) - (P_n[i, j, 1]).coeffs[1] = identity(constant_term(one_t)) - TaylorSeries.zero!(P_n[i, j, 2]) - (P_n[i, j, 2]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) - TaylorSeries.zero!(dP_n[i, j, 1]) - (dP_n[i, j, 1]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(dP_n[i, j, 2]) - (dP_n[i, j, 2]).coeffs[1] = identity(constant_term(one_t)) - for n = 2:n1SEM[j] - TaylorSeries.zero!(tmp3172[i, j, n]) - (tmp3172[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(tmp3173[i, j, n]) - (tmp3173[i, j, n]).coeffs[1] = constant_term(tmp3172[i, j, n]) * constant_term(fact1_jsem[n]) - TaylorSeries.zero!(tmp3174[i, j, n - 1]) - (tmp3174[i, j, n - 1]).coeffs[1] = constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]) - TaylorSeries.zero!(P_n[i, j, n + 1]) - (P_n[i, j, n + 1]).coeffs[1] = constant_term(tmp3173[i, j, n]) - constant_term(tmp3174[i, j, n - 1]) - TaylorSeries.zero!(tmp3176[i, j, n]) - (tmp3176[i, j, n]).coeffs[1] = constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(tmp3177[i, j, n]) - (tmp3177[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]) - TaylorSeries.zero!(dP_n[i, j, n + 1]) - (dP_n[i, j, n + 1]).coeffs[1] = constant_term(tmp3176[i, j, n]) + constant_term(tmp3177[i, j, n]) - TaylorSeries.zero!(temp_rn[i, j, n]) - (temp_rn[i, j, n]).coeffs[1] = constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])) - end - TaylorSeries.zero!(r_p4[i, j]) - (r_p4[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3182[i, j, 3]) - (tmp3182[i, j, 3]).coeffs[1] = constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]) - TaylorSeries.zero!(tmp3183[i, j, 3]) - (tmp3183[i, j, 3]).coeffs[1] = constant_term(tmp3182[i, j, 3]) * constant_term(J2_t[j]) - TaylorSeries.zero!(F_J_ξ[i, j]) - (F_J_ξ[i, j]).coeffs[1] = constant_term(tmp3183[i, j, 3]) / constant_term(r_p4[i, j]) - TaylorSeries.zero!(tmp3185[i, j, 3]) - (tmp3185[i, j, 3]).coeffs[1] = -(constant_term(dP_n[i, j, 3])) - TaylorSeries.zero!(tmp3186[i, j, 3]) - (tmp3186[i, j, 3]).coeffs[1] = constant_term(tmp3185[i, j, 3]) * constant_term(cos_ϕ[i, j]) - TaylorSeries.zero!(tmp3187[i, j, 3]) - (tmp3187[i, j, 3]).coeffs[1] = constant_term(tmp3186[i, j, 3]) * constant_term(J2_t[j]) - TaylorSeries.zero!(F_J_ζ[i, j]) - (F_J_ζ[i, j]).coeffs[1] = constant_term(tmp3187[i, j, 3]) / constant_term(r_p4[i, j]) - TaylorSeries.zero!(F_J_ξ_36[i, j]) - (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(F_J_ζ_36[i, j]) - (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - for n = 3:n1SEM[j] - TaylorSeries.zero!(tmp3189[i, j, n + 1]) - (tmp3189[i, j, n + 1]).coeffs[1] = constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]) - TaylorSeries.zero!(tmp3190[i, j, n + 1]) - (tmp3190[i, j, n + 1]).coeffs[1] = constant_term(tmp3189[i, j, n + 1]) * constant_term(JSEM[j, n]) - TaylorSeries.zero!(tmp3191[i, j, n + 1]) - (tmp3191[i, j, n + 1]).coeffs[1] = constant_term(tmp3190[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) - TaylorSeries.zero!(temp_fjξ[i, j, n]) - (temp_fjξ[i, j, n]).coeffs[1] = constant_term(tmp3191[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]) - TaylorSeries.zero!(tmp3193[i, j, n + 1]) - (tmp3193[i, j, n + 1]).coeffs[1] = -(constant_term(dP_n[i, j, n + 1])) - TaylorSeries.zero!(tmp3194[i, j, n + 1]) - (tmp3194[i, j, n + 1]).coeffs[1] = constant_term(tmp3193[i, j, n + 1]) * constant_term(cos_ϕ[i, j]) - TaylorSeries.zero!(tmp3195[i, j, n + 1]) - (tmp3195[i, j, n + 1]).coeffs[1] = constant_term(tmp3194[i, j, n + 1]) * constant_term(JSEM[j, n]) - TaylorSeries.zero!(tmp3196[i, j, n + 1]) - (tmp3196[i, j, n + 1]).coeffs[1] = constant_term(tmp3195[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) - TaylorSeries.zero!(temp_fjζ[i, j, n]) - (temp_fjζ[i, j, n]).coeffs[1] = constant_term(tmp3196[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]) - TaylorSeries.zero!(F_J_ξ_36[i, j]) - (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjξ[i, j, n])) - TaylorSeries.zero!(F_J_ζ_36[i, j]) - (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjζ[i, j, n])) - end - if j == mo - for m = 1:n1SEM[mo] - if m == 1 - TaylorSeries.zero!(sin_mλ[i, j, 1]) - (sin_mλ[i, j, 1]).coeffs[1] = identity(constant_term(sin_λ[i, j])) - TaylorSeries.zero!(cos_mλ[i, j, 1]) - (cos_mλ[i, j, 1]).coeffs[1] = identity(constant_term(cos_λ[i, j])) - TaylorSeries.zero!(secϕ_P_nm[i, j, 1, 1]) - (secϕ_P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(one_t)) - TaylorSeries.zero!(P_nm[i, j, 1, 1]) - (P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) - TaylorSeries.zero!(cosϕ_dP_nm[i, j, 1, 1]) - (cosϕ_dP_nm[i, j, 1, 1]).coeffs[1] = constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]) - else - TaylorSeries.zero!(tmp3199[i, j, m - 1]) - (tmp3199[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) - TaylorSeries.zero!(tmp3200[i, j, m - 1]) - (tmp3200[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) - TaylorSeries.zero!(sin_mλ[i, j, m]) - (sin_mλ[i, j, m]).coeffs[1] = constant_term(tmp3199[i, j, m - 1]) + constant_term(tmp3200[i, j, m - 1]) - TaylorSeries.zero!(tmp3202[i, j, m - 1]) - (tmp3202[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) - TaylorSeries.zero!(tmp3203[i, j, m - 1]) - (tmp3203[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) - TaylorSeries.zero!(cos_mλ[i, j, m]) - (cos_mλ[i, j, m]).coeffs[1] = constant_term(tmp3202[i, j, m - 1]) - constant_term(tmp3203[i, j, m - 1]) - TaylorSeries.zero!(tmp3205[i, j, m - 1, m - 1]) - (tmp3205[i, j, m - 1, m - 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]) - TaylorSeries.zero!(secϕ_P_nm[i, j, m, m]) - (secϕ_P_nm[i, j, m, m]).coeffs[1] = constant_term(tmp3205[i, j, m - 1, m - 1]) * constant_term(lnm5[m]) - TaylorSeries.zero!(P_nm[i, j, m, m]) - (P_nm[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]) - TaylorSeries.zero!(tmp3208[i, j, m, m]) - (tmp3208[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(cosϕ_dP_nm[i, j, m, m]) - (cosϕ_dP_nm[i, j, m, m]).coeffs[1] = constant_term(tmp3208[i, j, m, m]) * constant_term(lnm3[m]) - end - for n = m + 1:n1SEM[mo] - if n == m + 1 - TaylorSeries.zero!(tmp3210[i, j, n - 1, m]) - (tmp3210[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(secϕ_P_nm[i, j, n, m]) - (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3210[i, j, n - 1, m]) * constant_term(lnm1[n, m]) - else - TaylorSeries.zero!(tmp3212[i, j, n - 1, m]) - (tmp3212[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(tmp3213[i, j, n - 1, m]) - (tmp3213[i, j, n - 1, m]).coeffs[1] = constant_term(tmp3212[i, j, n - 1, m]) * constant_term(lnm1[n, m]) - TaylorSeries.zero!(tmp3214[i, j, n - 2, m]) - (tmp3214[i, j, n - 2, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]) - TaylorSeries.zero!(secϕ_P_nm[i, j, n, m]) - (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3213[i, j, n - 1, m]) + constant_term(tmp3214[i, j, n - 2, m]) - end - TaylorSeries.zero!(P_nm[i, j, n, m]) - (P_nm[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]) - TaylorSeries.zero!(tmp3217[i, j, n, m]) - (tmp3217[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]) - TaylorSeries.zero!(tmp3218[i, j, n, m]) - (tmp3218[i, j, n, m]).coeffs[1] = constant_term(tmp3217[i, j, n, m]) * constant_term(lnm3[n]) - TaylorSeries.zero!(tmp3219[i, j, n - 1, m]) - (tmp3219[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]) - TaylorSeries.zero!(cosϕ_dP_nm[i, j, n, m]) - (cosϕ_dP_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3218[i, j, n, m]) + constant_term(tmp3219[i, j, n - 1, m]) - end - end - TaylorSeries.zero!(tmp3221[i, j, 2, 1]) - (tmp3221[i, j, 2, 1]).coeffs[1] = constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]) - TaylorSeries.zero!(tmp3222[i, j, 1]) - (tmp3222[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) - TaylorSeries.zero!(tmp3223[i, j, 1]) - (tmp3223[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) - TaylorSeries.zero!(tmp3224[i, j, 1]) - (tmp3224[i, j, 1]).coeffs[1] = constant_term(tmp3222[i, j, 1]) + constant_term(tmp3223[i, j, 1]) - TaylorSeries.zero!(tmp3225[i, j, 2, 1]) - (tmp3225[i, j, 2, 1]).coeffs[1] = constant_term(tmp3221[i, j, 2, 1]) * constant_term(tmp3224[i, j, 1]) - TaylorSeries.zero!(tmp3226[i, j, 2, 2]) - (tmp3226[i, j, 2, 2]).coeffs[1] = constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]) - TaylorSeries.zero!(tmp3227[i, j, 2]) - (tmp3227[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) - TaylorSeries.zero!(tmp3228[i, j, 2]) - (tmp3228[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) - TaylorSeries.zero!(tmp3229[i, j, 2]) - (tmp3229[i, j, 2]).coeffs[1] = constant_term(tmp3227[i, j, 2]) + constant_term(tmp3228[i, j, 2]) - TaylorSeries.zero!(tmp3230[i, j, 2, 2]) - (tmp3230[i, j, 2, 2]).coeffs[1] = constant_term(tmp3226[i, j, 2, 2]) * constant_term(tmp3229[i, j, 2]) - TaylorSeries.zero!(tmp3231[i, j, 2, 1]) - (tmp3231[i, j, 2, 1]).coeffs[1] = constant_term(tmp3225[i, j, 2, 1]) + constant_term(tmp3230[i, j, 2, 2]) - TaylorSeries.zero!(F_CS_ξ[i, j]) - (F_CS_ξ[i, j]).coeffs[1] = constant_term(tmp3231[i, j, 2, 1]) / constant_term(r_p4[i, j]) - TaylorSeries.zero!(tmp3233[i, j, 2, 1]) - (tmp3233[i, j, 2, 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]) - TaylorSeries.zero!(tmp3234[i, j, 1]) - (tmp3234[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]) - TaylorSeries.zero!(tmp3235[i, j, 1]) - (tmp3235[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]) - TaylorSeries.zero!(tmp3236[i, j, 1]) - (tmp3236[i, j, 1]).coeffs[1] = constant_term(tmp3234[i, j, 1]) - constant_term(tmp3235[i, j, 1]) - TaylorSeries.zero!(tmp3237[i, j, 2, 1]) - (tmp3237[i, j, 2, 1]).coeffs[1] = constant_term(tmp3233[i, j, 2, 1]) * constant_term(tmp3236[i, j, 1]) - TaylorSeries.zero!(tmp3238[i, j, 2, 2]) - (tmp3238[i, j, 2, 2]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]) - TaylorSeries.zero!(tmp3239[i, j, 2]) - (tmp3239[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]) - TaylorSeries.zero!(tmp3240[i, j, 2]) - (tmp3240[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]) - TaylorSeries.zero!(tmp3241[i, j, 2]) - (tmp3241[i, j, 2]).coeffs[1] = constant_term(tmp3239[i, j, 2]) - constant_term(tmp3240[i, j, 2]) - TaylorSeries.zero!(tmp3242[i, j, 2, 2]) - (tmp3242[i, j, 2, 2]).coeffs[1] = constant_term(tmp3238[i, j, 2, 2]) * constant_term(tmp3241[i, j, 2]) - TaylorSeries.zero!(tmp3243[i, j, 2, 1]) - (tmp3243[i, j, 2, 1]).coeffs[1] = constant_term(tmp3237[i, j, 2, 1]) + constant_term(tmp3242[i, j, 2, 2]) - TaylorSeries.zero!(F_CS_η[i, j]) - (F_CS_η[i, j]).coeffs[1] = constant_term(tmp3243[i, j, 2, 1]) / constant_term(r_p4[i, j]) - TaylorSeries.zero!(tmp3245[i, j, 1]) - (tmp3245[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) - TaylorSeries.zero!(tmp3246[i, j, 1]) - (tmp3246[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) - TaylorSeries.zero!(tmp3247[i, j, 1]) - (tmp3247[i, j, 1]).coeffs[1] = constant_term(tmp3245[i, j, 1]) + constant_term(tmp3246[i, j, 1]) - TaylorSeries.zero!(tmp3248[i, j, 2, 1]) - (tmp3248[i, j, 2, 1]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3247[i, j, 1]) - TaylorSeries.zero!(tmp3249[i, j, 2]) - (tmp3249[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) - TaylorSeries.zero!(tmp3250[i, j, 2]) - (tmp3250[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) - TaylorSeries.zero!(tmp3251[i, j, 2]) - (tmp3251[i, j, 2]).coeffs[1] = constant_term(tmp3249[i, j, 2]) + constant_term(tmp3250[i, j, 2]) - TaylorSeries.zero!(tmp3252[i, j, 2, 2]) - (tmp3252[i, j, 2, 2]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3251[i, j, 2]) - TaylorSeries.zero!(tmp3253[i, j, 2, 1]) - (tmp3253[i, j, 2, 1]).coeffs[1] = constant_term(tmp3248[i, j, 2, 1]) + constant_term(tmp3252[i, j, 2, 2]) - TaylorSeries.zero!(F_CS_ζ[i, j]) - (F_CS_ζ[i, j]).coeffs[1] = constant_term(tmp3253[i, j, 2, 1]) / constant_term(r_p4[i, j]) - TaylorSeries.zero!(F_CS_ξ_36[i, j]) - (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(F_CS_η_36[i, j]) - (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(F_CS_ζ_36[i, j]) - (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - for n = 3:n2M - for m = 1:n - TaylorSeries.zero!(Cnm_cosmλ[i, j, n, m]) - (Cnm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(cos_mλ[i, j, m]) - TaylorSeries.zero!(Cnm_sinmλ[i, j, n, m]) - (Cnm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]) - TaylorSeries.zero!(Snm_cosmλ[i, j, n, m]) - (Snm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]) - TaylorSeries.zero!(Snm_sinmλ[i, j, n, m]) - (Snm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]) - TaylorSeries.zero!(tmp3259[i, j, n, m]) - (tmp3259[i, j, n, m]).coeffs[1] = constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]) - TaylorSeries.zero!(tmp3260[i, j, n, m]) - (tmp3260[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) - TaylorSeries.zero!(tmp3261[i, j, n, m]) - (tmp3261[i, j, n, m]).coeffs[1] = constant_term(tmp3259[i, j, n, m]) * constant_term(tmp3260[i, j, n, m]) - TaylorSeries.zero!(tmp3262[i, j, n, m]) - (tmp3262[i, j, n, m]).coeffs[1] = constant_term(tmp3261[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - TaylorSeries.zero!(temp_CS_ξ[i, j, n, m]) - (temp_CS_ξ[i, j, n, m]).coeffs[1] = constant_term(tmp3262[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]) - TaylorSeries.zero!(tmp3264[i, j, n, m]) - (tmp3264[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]) - TaylorSeries.zero!(tmp3265[i, j, n, m]) - (tmp3265[i, j, n, m]).coeffs[1] = constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]) - TaylorSeries.zero!(tmp3266[i, j, n, m]) - (tmp3266[i, j, n, m]).coeffs[1] = constant_term(tmp3264[i, j, n, m]) * constant_term(tmp3265[i, j, n, m]) - TaylorSeries.zero!(tmp3267[i, j, n, m]) - (tmp3267[i, j, n, m]).coeffs[1] = constant_term(tmp3266[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - TaylorSeries.zero!(temp_CS_η[i, j, n, m]) - (temp_CS_η[i, j, n, m]).coeffs[1] = constant_term(tmp3267[i, j, n, m]) + constant_term(F_CS_η_36[i, j]) - TaylorSeries.zero!(tmp3269[i, j, n, m]) - (tmp3269[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) - TaylorSeries.zero!(tmp3270[i, j, n, m]) - (tmp3270[i, j, n, m]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3269[i, j, n, m]) - TaylorSeries.zero!(tmp3271[i, j, n, m]) - (tmp3271[i, j, n, m]).coeffs[1] = constant_term(tmp3270[i, j, n, m]) / constant_term(temp_rn[i, j, n]) - TaylorSeries.zero!(temp_CS_ζ[i, j, n, m]) - (temp_CS_ζ[i, j, n, m]).coeffs[1] = constant_term(tmp3271[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]) - TaylorSeries.zero!(F_CS_ξ_36[i, j]) - (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ξ[i, j, n, m])) - TaylorSeries.zero!(F_CS_η_36[i, j]) - (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_η[i, j, n, m])) - TaylorSeries.zero!(F_CS_ζ_36[i, j]) - (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ζ[i, j, n, m])) - end - end - TaylorSeries.zero!(tmp3273[i, j]) - (tmp3273[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) - TaylorSeries.zero!(tmp3274[i, j]) - (tmp3274[i, j]).coeffs[1] = constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]) - TaylorSeries.zero!(F_JCS_ξ[i, j]) - (F_JCS_ξ[i, j]).coeffs[1] = constant_term(tmp3273[i, j]) + constant_term(tmp3274[i, j]) - TaylorSeries.zero!(F_JCS_η[i, j]) - (F_JCS_η[i, j]).coeffs[1] = constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]) - TaylorSeries.zero!(tmp3277[i, j]) - (tmp3277[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) - TaylorSeries.zero!(tmp3278[i, j]) - (tmp3278[i, j]).coeffs[1] = constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]) - TaylorSeries.zero!(F_JCS_ζ[i, j]) - (F_JCS_ζ[i, j]).coeffs[1] = constant_term(tmp3277[i, j]) + constant_term(tmp3278[i, j]) - else - TaylorSeries.zero!(F_JCS_ξ[i, j]) - (F_JCS_ξ[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) - TaylorSeries.zero!(F_JCS_η[i, j]) - (F_JCS_η[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(F_JCS_ζ[i, j]) - (F_JCS_ζ[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) - end - TaylorSeries.zero!(Rb2p[i, j, 1, 1]) - (Rb2p[i, j, 1, 1]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]) - TaylorSeries.zero!(Rb2p[i, j, 2, 1]) - (Rb2p[i, j, 2, 1]).coeffs[1] = -(constant_term(sin_λ[i, j])) - TaylorSeries.zero!(tmp3284[i, j]) - (tmp3284[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) - TaylorSeries.zero!(Rb2p[i, j, 3, 1]) - (Rb2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp3284[i, j]) * constant_term(cos_λ[i, j]) - TaylorSeries.zero!(Rb2p[i, j, 1, 2]) - (Rb2p[i, j, 1, 2]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]) - TaylorSeries.zero!(Rb2p[i, j, 2, 2]) - (Rb2p[i, j, 2, 2]).coeffs[1] = identity(constant_term(cos_λ[i, j])) - TaylorSeries.zero!(tmp3287[i, j]) - (tmp3287[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) - TaylorSeries.zero!(Rb2p[i, j, 3, 2]) - (Rb2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp3287[i, j]) * constant_term(sin_λ[i, j]) - TaylorSeries.zero!(Rb2p[i, j, 1, 3]) - (Rb2p[i, j, 1, 3]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) - TaylorSeries.zero!(Rb2p[i, j, 2, 3]) - (Rb2p[i, j, 2, 3]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(Rb2p[i, j, 3, 3]) - (Rb2p[i, j, 3, 3]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) - TaylorSeries.zero!(tmp3289[i, j, 1, 1]) - (tmp3289[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]) - TaylorSeries.zero!(tmp3290[i, j, 1, 2]) - (tmp3290[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]) - TaylorSeries.zero!(tmp3291[i, j, 1, 1]) - (tmp3291[i, j, 1, 1]).coeffs[1] = constant_term(tmp3289[i, j, 1, 1]) + constant_term(tmp3290[i, j, 1, 2]) - TaylorSeries.zero!(tmp3292[i, j, 1, 3]) - (tmp3292[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]) - TaylorSeries.zero!(Gc2p[i, j, 1, 1]) - (Gc2p[i, j, 1, 1]).coeffs[1] = constant_term(tmp3291[i, j, 1, 1]) + constant_term(tmp3292[i, j, 1, 3]) - TaylorSeries.zero!(tmp3294[i, j, 2, 1]) - (tmp3294[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]) - TaylorSeries.zero!(tmp3295[i, j, 2, 2]) - (tmp3295[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]) - TaylorSeries.zero!(tmp3296[i, j, 2, 1]) - (tmp3296[i, j, 2, 1]).coeffs[1] = constant_term(tmp3294[i, j, 2, 1]) + constant_term(tmp3295[i, j, 2, 2]) - TaylorSeries.zero!(tmp3297[i, j, 2, 3]) - (tmp3297[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]) - TaylorSeries.zero!(Gc2p[i, j, 2, 1]) - (Gc2p[i, j, 2, 1]).coeffs[1] = constant_term(tmp3296[i, j, 2, 1]) + constant_term(tmp3297[i, j, 2, 3]) - TaylorSeries.zero!(tmp3299[i, j, 3, 1]) - (tmp3299[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]) - TaylorSeries.zero!(tmp3300[i, j, 3, 2]) - (tmp3300[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]) - TaylorSeries.zero!(tmp3301[i, j, 3, 1]) - (tmp3301[i, j, 3, 1]).coeffs[1] = constant_term(tmp3299[i, j, 3, 1]) + constant_term(tmp3300[i, j, 3, 2]) - TaylorSeries.zero!(tmp3302[i, j, 3, 3]) - (tmp3302[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]) - TaylorSeries.zero!(Gc2p[i, j, 3, 1]) - (Gc2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp3301[i, j, 3, 1]) + constant_term(tmp3302[i, j, 3, 3]) - TaylorSeries.zero!(tmp3304[i, j, 1, 1]) - (tmp3304[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]) - TaylorSeries.zero!(tmp3305[i, j, 1, 2]) - (tmp3305[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]) - TaylorSeries.zero!(tmp3306[i, j, 1, 1]) - (tmp3306[i, j, 1, 1]).coeffs[1] = constant_term(tmp3304[i, j, 1, 1]) + constant_term(tmp3305[i, j, 1, 2]) - TaylorSeries.zero!(tmp3307[i, j, 1, 3]) - (tmp3307[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]) - TaylorSeries.zero!(Gc2p[i, j, 1, 2]) - (Gc2p[i, j, 1, 2]).coeffs[1] = constant_term(tmp3306[i, j, 1, 1]) + constant_term(tmp3307[i, j, 1, 3]) - TaylorSeries.zero!(tmp3309[i, j, 2, 1]) - (tmp3309[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]) - TaylorSeries.zero!(tmp3310[i, j, 2, 2]) - (tmp3310[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]) - TaylorSeries.zero!(tmp3311[i, j, 2, 1]) - (tmp3311[i, j, 2, 1]).coeffs[1] = constant_term(tmp3309[i, j, 2, 1]) + constant_term(tmp3310[i, j, 2, 2]) - TaylorSeries.zero!(tmp3312[i, j, 2, 3]) - (tmp3312[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]) - TaylorSeries.zero!(Gc2p[i, j, 2, 2]) - (Gc2p[i, j, 2, 2]).coeffs[1] = constant_term(tmp3311[i, j, 2, 1]) + constant_term(tmp3312[i, j, 2, 3]) - TaylorSeries.zero!(tmp3314[i, j, 3, 1]) - (tmp3314[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]) - TaylorSeries.zero!(tmp3315[i, j, 3, 2]) - (tmp3315[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]) - TaylorSeries.zero!(tmp3316[i, j, 3, 1]) - (tmp3316[i, j, 3, 1]).coeffs[1] = constant_term(tmp3314[i, j, 3, 1]) + constant_term(tmp3315[i, j, 3, 2]) - TaylorSeries.zero!(tmp3317[i, j, 3, 3]) - (tmp3317[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]) - TaylorSeries.zero!(Gc2p[i, j, 3, 2]) - (Gc2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp3316[i, j, 3, 1]) + constant_term(tmp3317[i, j, 3, 3]) - TaylorSeries.zero!(tmp3319[i, j, 1, 1]) - (tmp3319[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]) - TaylorSeries.zero!(tmp3320[i, j, 1, 2]) - (tmp3320[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]) - TaylorSeries.zero!(tmp3321[i, j, 1, 1]) - (tmp3321[i, j, 1, 1]).coeffs[1] = constant_term(tmp3319[i, j, 1, 1]) + constant_term(tmp3320[i, j, 1, 2]) - TaylorSeries.zero!(tmp3322[i, j, 1, 3]) - (tmp3322[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]) - TaylorSeries.zero!(Gc2p[i, j, 1, 3]) - (Gc2p[i, j, 1, 3]).coeffs[1] = constant_term(tmp3321[i, j, 1, 1]) + constant_term(tmp3322[i, j, 1, 3]) - TaylorSeries.zero!(tmp3324[i, j, 2, 1]) - (tmp3324[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]) - TaylorSeries.zero!(tmp3325[i, j, 2, 2]) - (tmp3325[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]) - TaylorSeries.zero!(tmp3326[i, j, 2, 1]) - (tmp3326[i, j, 2, 1]).coeffs[1] = constant_term(tmp3324[i, j, 2, 1]) + constant_term(tmp3325[i, j, 2, 2]) - TaylorSeries.zero!(tmp3327[i, j, 2, 3]) - (tmp3327[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]) - TaylorSeries.zero!(Gc2p[i, j, 2, 3]) - (Gc2p[i, j, 2, 3]).coeffs[1] = constant_term(tmp3326[i, j, 2, 1]) + constant_term(tmp3327[i, j, 2, 3]) - TaylorSeries.zero!(tmp3329[i, j, 3, 1]) - (tmp3329[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]) - TaylorSeries.zero!(tmp3330[i, j, 3, 2]) - (tmp3330[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]) - TaylorSeries.zero!(tmp3331[i, j, 3, 1]) - (tmp3331[i, j, 3, 1]).coeffs[1] = constant_term(tmp3329[i, j, 3, 1]) + constant_term(tmp3330[i, j, 3, 2]) - TaylorSeries.zero!(tmp3332[i, j, 3, 3]) - (tmp3332[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]) - TaylorSeries.zero!(Gc2p[i, j, 3, 3]) - (Gc2p[i, j, 3, 3]).coeffs[1] = constant_term(tmp3331[i, j, 3, 1]) + constant_term(tmp3332[i, j, 3, 3]) - TaylorSeries.zero!(tmp3334[i, j, 1, 1]) - (tmp3334[i, j, 1, 1]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]) - TaylorSeries.zero!(tmp3335[i, j, 2, 1]) - (tmp3335[i, j, 2, 1]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]) - TaylorSeries.zero!(tmp3336[i, j, 1, 1]) - (tmp3336[i, j, 1, 1]).coeffs[1] = constant_term(tmp3334[i, j, 1, 1]) + constant_term(tmp3335[i, j, 2, 1]) - TaylorSeries.zero!(tmp3337[i, j, 3, 1]) - (tmp3337[i, j, 3, 1]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]) - TaylorSeries.zero!(F_JCS_x[i, j]) - (F_JCS_x[i, j]).coeffs[1] = constant_term(tmp3336[i, j, 1, 1]) + constant_term(tmp3337[i, j, 3, 1]) - TaylorSeries.zero!(tmp3339[i, j, 1, 2]) - (tmp3339[i, j, 1, 2]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]) - TaylorSeries.zero!(tmp3340[i, j, 2, 2]) - (tmp3340[i, j, 2, 2]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]) - TaylorSeries.zero!(tmp3341[i, j, 1, 2]) - (tmp3341[i, j, 1, 2]).coeffs[1] = constant_term(tmp3339[i, j, 1, 2]) + constant_term(tmp3340[i, j, 2, 2]) - TaylorSeries.zero!(tmp3342[i, j, 3, 2]) - (tmp3342[i, j, 3, 2]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]) - TaylorSeries.zero!(F_JCS_y[i, j]) - (F_JCS_y[i, j]).coeffs[1] = constant_term(tmp3341[i, j, 1, 2]) + constant_term(tmp3342[i, j, 3, 2]) - TaylorSeries.zero!(tmp3344[i, j, 1, 3]) - (tmp3344[i, j, 1, 3]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]) - TaylorSeries.zero!(tmp3345[i, j, 2, 3]) - (tmp3345[i, j, 2, 3]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]) - TaylorSeries.zero!(tmp3346[i, j, 1, 3]) - (tmp3346[i, j, 1, 3]).coeffs[1] = constant_term(tmp3344[i, j, 1, 3]) + constant_term(tmp3345[i, j, 2, 3]) - TaylorSeries.zero!(tmp3347[i, j, 3, 3]) - (tmp3347[i, j, 3, 3]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]) - TaylorSeries.zero!(F_JCS_z[i, j]) - (F_JCS_z[i, j]).coeffs[1] = constant_term(tmp3346[i, j, 1, 3]) + constant_term(tmp3347[i, j, 3, 3]) - end - end - end - end - for j = 1:N_ext - for i = 1:N_ext - if i == j - continue - else - if UJ_interaction[i, j] - TaylorSeries.zero!(tmp3349[i, j]) - (tmp3349[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_x[i, j]) - TaylorSeries.zero!(temp_accX_j[i, j]) - (temp_accX_j[i, j]).coeffs[1] = constant_term(accX[j]) - constant_term(tmp3349[i, j]) - TaylorSeries.zero!(accX[j]) - (accX[j]).coeffs[1] = identity(constant_term(temp_accX_j[i, j])) - TaylorSeries.zero!(tmp3351[i, j]) - (tmp3351[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_y[i, j]) - TaylorSeries.zero!(temp_accY_j[i, j]) - (temp_accY_j[i, j]).coeffs[1] = constant_term(accY[j]) - constant_term(tmp3351[i, j]) - TaylorSeries.zero!(accY[j]) - (accY[j]).coeffs[1] = identity(constant_term(temp_accY_j[i, j])) - TaylorSeries.zero!(tmp3353[i, j]) - (tmp3353[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_z[i, j]) - TaylorSeries.zero!(temp_accZ_j[i, j]) - (temp_accZ_j[i, j]).coeffs[1] = constant_term(accZ[j]) - constant_term(tmp3353[i, j]) - TaylorSeries.zero!(accZ[j]) - (accZ[j]).coeffs[1] = identity(constant_term(temp_accZ_j[i, j])) - TaylorSeries.zero!(tmp3355[i, j]) - (tmp3355[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_x[i, j]) - TaylorSeries.zero!(temp_accX_i[i, j]) - (temp_accX_i[i, j]).coeffs[1] = constant_term(accX[i]) + constant_term(tmp3355[i, j]) - TaylorSeries.zero!(accX[i]) - (accX[i]).coeffs[1] = identity(constant_term(temp_accX_i[i, j])) - TaylorSeries.zero!(tmp3357[i, j]) - (tmp3357[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_y[i, j]) - TaylorSeries.zero!(temp_accY_i[i, j]) - (temp_accY_i[i, j]).coeffs[1] = constant_term(accY[i]) + constant_term(tmp3357[i, j]) - TaylorSeries.zero!(accY[i]) - (accY[i]).coeffs[1] = identity(constant_term(temp_accY_i[i, j])) - TaylorSeries.zero!(tmp3359[i, j]) - (tmp3359[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_z[i, j]) - TaylorSeries.zero!(temp_accZ_i[i, j]) - (temp_accZ_i[i, j]).coeffs[1] = constant_term(accZ[i]) + constant_term(tmp3359[i, j]) - TaylorSeries.zero!(accZ[i]) - (accZ[i]).coeffs[1] = identity(constant_term(temp_accZ_i[i, j])) - if j == mo - TaylorSeries.zero!(tmp3361[i, j]) - (tmp3361[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]) - TaylorSeries.zero!(tmp3362[i, j]) - (tmp3362[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]) - TaylorSeries.zero!(tmp3363[i, j]) - (tmp3363[i, j]).coeffs[1] = constant_term(tmp3361[i, j]) - constant_term(tmp3362[i, j]) - TaylorSeries.zero!(N_MfigM_pmA_x[i]) - (N_MfigM_pmA_x[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3363[i, j]) - TaylorSeries.zero!(tmp3365[i, j]) - (tmp3365[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]) - TaylorSeries.zero!(tmp3366[i, j]) - (tmp3366[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]) - TaylorSeries.zero!(tmp3367[i, j]) - (tmp3367[i, j]).coeffs[1] = constant_term(tmp3365[i, j]) - constant_term(tmp3366[i, j]) - TaylorSeries.zero!(N_MfigM_pmA_y[i]) - (N_MfigM_pmA_y[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3367[i, j]) - TaylorSeries.zero!(tmp3369[i, j]) - (tmp3369[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]) - TaylorSeries.zero!(tmp3370[i, j]) - (tmp3370[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]) - TaylorSeries.zero!(tmp3371[i, j]) - (tmp3371[i, j]).coeffs[1] = constant_term(tmp3369[i, j]) - constant_term(tmp3370[i, j]) - TaylorSeries.zero!(N_MfigM_pmA_z[i]) - (N_MfigM_pmA_z[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3371[i, j]) - TaylorSeries.zero!(temp_N_M_x[i]) - (temp_N_M_x[i]).coeffs[1] = constant_term(N_MfigM[1]) - constant_term(N_MfigM_pmA_x[i]) - TaylorSeries.zero!(N_MfigM[1]) - (N_MfigM[1]).coeffs[1] = identity(constant_term(temp_N_M_x[i])) - TaylorSeries.zero!(temp_N_M_y[i]) - (temp_N_M_y[i]).coeffs[1] = constant_term(N_MfigM[2]) - constant_term(N_MfigM_pmA_y[i]) - TaylorSeries.zero!(N_MfigM[2]) - (N_MfigM[2]).coeffs[1] = identity(constant_term(temp_N_M_y[i])) - TaylorSeries.zero!(temp_N_M_z[i]) - (temp_N_M_z[i]).coeffs[1] = constant_term(N_MfigM[3]) - constant_term(N_MfigM_pmA_z[i]) - TaylorSeries.zero!(N_MfigM[3]) - (N_MfigM[3]).coeffs[1] = identity(constant_term(temp_N_M_z[i])) - end - end - end - end - end - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1619 =# Threads.@threads for j = 1:N - for i = 1:N - if i == j - continue - else - TaylorSeries.zero!(_4ϕj[i, j]) - (_4ϕj[i, j]).coeffs[1] = constant_term(4) * constant_term(newtonianNb_Potential[j]) - TaylorSeries.zero!(ϕi_plus_4ϕj[i, j]) - (ϕi_plus_4ϕj[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]) - TaylorSeries.zero!(_2v2[i, j]) - (_2v2[i, j]).coeffs[1] = constant_term(2) * constant_term(v2[i]) - TaylorSeries.zero!(sj2_plus_2si2[i, j]) - (sj2_plus_2si2[i, j]).coeffs[1] = constant_term(v2[j]) + constant_term(_2v2[i, j]) - TaylorSeries.zero!(tmp3383[i, j]) - (tmp3383[i, j]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, j]) - TaylorSeries.zero!(sj2_plus_2si2_minus_4vivj[i, j]) - (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1] = constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3383[i, j]) - TaylorSeries.zero!(ϕs_and_vs[i, j]) - (ϕs_and_vs[i, j]).coeffs[1] = constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]) - TaylorSeries.zero!(Xij_t_Ui[i, j]) - (Xij_t_Ui[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(dq[3i - 2]) - TaylorSeries.zero!(Yij_t_Vi[i, j]) - (Yij_t_Vi[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(dq[3i - 1]) - TaylorSeries.zero!(Zij_t_Wi[i, j]) - (Zij_t_Wi[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(dq[3i]) - TaylorSeries.zero!(tmp3389[i, j]) - (tmp3389[i, j]).coeffs[1] = constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]) - TaylorSeries.zero!(Rij_dot_Vi[i, j]) - (Rij_dot_Vi[i, j]).coeffs[1] = constant_term(tmp3389[i, j]) + constant_term(Zij_t_Wi[i, j]) - TaylorSeries.zero!(tmp3392[i, j]) - (tmp3392[i, j]).coeffs[1] = constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)) - TaylorSeries.zero!(rij_dot_vi_div_rij_sq[i, j]) - (rij_dot_vi_div_rij_sq[i, j]).coeffs[1] = constant_term(tmp3392[i, j]) / constant_term(r_p2[i, j]) - TaylorSeries.zero!(tmp3395[i, j]) - (tmp3395[i, j]).coeffs[1] = constant_term(1.5) * constant_term(rij_dot_vi_div_rij_sq[i, j]) - TaylorSeries.zero!(pn1t2_7[i, j]) - (pn1t2_7[i, j]).coeffs[1] = constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3395[i, j]) - TaylorSeries.zero!(pn1t1_7[i, j]) - (pn1t1_7[i, j]).coeffs[1] = constant_term(c_p2) + constant_term(pn1t2_7[i, j]) - end - end - TaylorSeries.zero!(pntempX[j]) - (pntempX[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(pntempY[j]) - (pntempY[j]).coeffs[1] = identity(constant_term(zero_q_1)) - TaylorSeries.zero!(pntempZ[j]) - (pntempZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) - end - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1658 =# Threads.@threads for j = 1:N - for i = 1:N - if i == j - continue - else - TaylorSeries.zero!(pNX_t_X[i, j]) - (pNX_t_X[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(X[i, j]) - TaylorSeries.zero!(pNY_t_Y[i, j]) - (pNY_t_Y[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(Y[i, j]) - TaylorSeries.zero!(pNZ_t_Z[i, j]) - (pNZ_t_Z[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(Z[i, j]) - TaylorSeries.zero!(tmp3402[i, j]) - (tmp3402[i, j]).coeffs[1] = constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]) - TaylorSeries.zero!(tmp3403[i, j]) - (tmp3403[i, j]).coeffs[1] = constant_term(tmp3402[i, j]) + constant_term(pNZ_t_Z[i, j]) - TaylorSeries.zero!(tmp3404[i, j]) - (tmp3404[i, j]).coeffs[1] = constant_term(0.5) * constant_term(tmp3403[i, j]) - TaylorSeries.zero!(pn1[i, j]) - (pn1[i, j]).coeffs[1] = constant_term(pn1t1_7[i, j]) + constant_term(tmp3404[i, j]) - TaylorSeries.zero!(X_t_pn1[i, j]) - (X_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]) - TaylorSeries.zero!(Y_t_pn1[i, j]) - (Y_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]) - TaylorSeries.zero!(Z_t_pn1[i, j]) - (Z_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]) - TaylorSeries.zero!(pNX_t_pn3[i, j]) - (pNX_t_pn3[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(pn3[i, j]) - TaylorSeries.zero!(pNY_t_pn3[i, j]) - (pNY_t_pn3[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(pn3[i, j]) - TaylorSeries.zero!(pNZ_t_pn3[i, j]) - (pNZ_t_pn3[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(pn3[i, j]) - TaylorSeries.zero!(tmp3412[i, j]) - (tmp3412[i, j]).coeffs[1] = constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]) - TaylorSeries.zero!(termpnx[i, j]) - (termpnx[i, j]).coeffs[1] = constant_term(X_t_pn1[i, j]) + constant_term(tmp3412[i, j]) - TaylorSeries.zero!(sumpnx[i, j]) - (sumpnx[i, j]).coeffs[1] = constant_term(pntempX[j]) + constant_term(termpnx[i, j]) - TaylorSeries.zero!(pntempX[j]) - (pntempX[j]).coeffs[1] = identity(constant_term(sumpnx[i, j])) - TaylorSeries.zero!(tmp3415[i, j]) - (tmp3415[i, j]).coeffs[1] = constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]) - TaylorSeries.zero!(termpny[i, j]) - (termpny[i, j]).coeffs[1] = constant_term(Y_t_pn1[i, j]) + constant_term(tmp3415[i, j]) - TaylorSeries.zero!(sumpny[i, j]) - (sumpny[i, j]).coeffs[1] = constant_term(pntempY[j]) + constant_term(termpny[i, j]) - TaylorSeries.zero!(pntempY[j]) - (pntempY[j]).coeffs[1] = identity(constant_term(sumpny[i, j])) - TaylorSeries.zero!(tmp3418[i, j]) - (tmp3418[i, j]).coeffs[1] = constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]) - TaylorSeries.zero!(termpnz[i, j]) - (termpnz[i, j]).coeffs[1] = constant_term(Z_t_pn1[i, j]) + constant_term(tmp3418[i, j]) - TaylorSeries.zero!(sumpnz[i, j]) - (sumpnz[i, j]).coeffs[1] = constant_term(pntempZ[j]) + constant_term(termpnz[i, j]) - TaylorSeries.zero!(pntempZ[j]) - (pntempZ[j]).coeffs[1] = identity(constant_term(sumpnz[i, j])) - end - end - TaylorSeries.zero!(postNewtonX[j]) - (postNewtonX[j]).coeffs[1] = constant_term(pntempX[j]) * constant_term(c_m2) - TaylorSeries.zero!(postNewtonY[j]) - (postNewtonY[j]).coeffs[1] = constant_term(pntempY[j]) * constant_term(c_m2) - TaylorSeries.zero!(postNewtonZ[j]) - (postNewtonZ[j]).coeffs[1] = constant_term(pntempZ[j]) * constant_term(c_m2) - end - TaylorSeries.zero!(x0s_M) - x0s_M.coeffs[1] = identity(constant_term(r_star_M_0[1])) - TaylorSeries.zero!(y0s_M) - y0s_M.coeffs[1] = identity(constant_term(r_star_M_0[2])) - TaylorSeries.zero!(z0s_M) - z0s_M.coeffs[1] = identity(constant_term(r_star_M_0[3])) - TaylorSeries.zero!(tmp3425) - tmp3425.coeffs[1] = constant_term(x0s_M) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3427) - tmp3427.coeffs[1] = constant_term(y0s_M) ^ float(constant_term(2)) - TaylorSeries.zero!(ρ0s2_M) - ρ0s2_M.coeffs[1] = constant_term(tmp3425) + constant_term(tmp3427) - TaylorSeries.zero!(ρ0s_M) - ρ0s_M.coeffs[1] = sqrt(constant_term(ρ0s2_M)) - TaylorSeries.zero!(z0s2_M) - z0s2_M.coeffs[1] = constant_term(z0s_M) ^ float(constant_term(2)) - TaylorSeries.zero!(r0s2_M) - r0s2_M.coeffs[1] = constant_term(ρ0s2_M) + constant_term(z0s2_M) - TaylorSeries.zero!(r0s_M) - r0s_M.coeffs[1] = sqrt(constant_term(r0s2_M)) - TaylorSeries.zero!(r0s5_M) - r0s5_M.coeffs[1] = constant_term(r0s_M) ^ float(constant_term(5)) - TaylorSeries.zero!(x0s_S) - x0s_S.coeffs[1] = identity(constant_term(r_star_S_0[1])) - TaylorSeries.zero!(y0s_S) - y0s_S.coeffs[1] = identity(constant_term(r_star_S_0[2])) - TaylorSeries.zero!(z0s_S) - z0s_S.coeffs[1] = identity(constant_term(r_star_S_0[3])) - TaylorSeries.zero!(tmp3437) - tmp3437.coeffs[1] = constant_term(x0s_S) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3439) - tmp3439.coeffs[1] = constant_term(y0s_S) ^ float(constant_term(2)) - TaylorSeries.zero!(ρ0s2_S) - ρ0s2_S.coeffs[1] = constant_term(tmp3437) + constant_term(tmp3439) - TaylorSeries.zero!(ρ0s_S) - ρ0s_S.coeffs[1] = sqrt(constant_term(ρ0s2_S)) - TaylorSeries.zero!(z0s2_S) - z0s2_S.coeffs[1] = constant_term(z0s_S) ^ float(constant_term(2)) - TaylorSeries.zero!(r0s2_S) - r0s2_S.coeffs[1] = constant_term(ρ0s2_S) + constant_term(z0s2_S) - TaylorSeries.zero!(r0s_S) - r0s_S.coeffs[1] = sqrt(constant_term(r0s2_S)) - TaylorSeries.zero!(r0s5_S) - r0s5_S.coeffs[1] = constant_term(r0s_S) ^ float(constant_term(5)) - TaylorSeries.zero!(tmp3449) - tmp3449.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_0[3]) - TaylorSeries.zero!(tmp3451) - tmp3451.coeffs[1] = constant_term(tmp3449) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3453) - tmp3453.coeffs[1] = constant_term(r_xy[mo, ea]) * constant_term(ρ0s_M) - TaylorSeries.zero!(tmp3455) - tmp3455.coeffs[1] = constant_term(tmp3453) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3456) - tmp3456.coeffs[1] = constant_term(0.5) * constant_term(tmp3455) - TaylorSeries.zero!(tmp3457) - tmp3457.coeffs[1] = constant_term(tmp3451) + constant_term(tmp3456) - TaylorSeries.zero!(tmp3458) - tmp3458.coeffs[1] = constant_term(tmp3457) / constant_term(r_p2[mo, ea]) - TaylorSeries.zero!(tmp3459) - tmp3459.coeffs[1] = constant_term(5) * constant_term(tmp3458) - TaylorSeries.zero!(coeff0_M) - coeff0_M.coeffs[1] = constant_term(r0s2_M) - constant_term(tmp3459) - TaylorSeries.zero!(tmp3462) - tmp3462.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_0[3]) - TaylorSeries.zero!(tmp3464) - tmp3464.coeffs[1] = constant_term(tmp3462) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3466) - tmp3466.coeffs[1] = constant_term(r_xy[mo, ea]) * constant_term(ρ0s_S) - TaylorSeries.zero!(tmp3468) - tmp3468.coeffs[1] = constant_term(tmp3466) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3469) - tmp3469.coeffs[1] = constant_term(0.5) * constant_term(tmp3468) - TaylorSeries.zero!(tmp3470) - tmp3470.coeffs[1] = constant_term(tmp3464) + constant_term(tmp3469) - TaylorSeries.zero!(tmp3471) - tmp3471.coeffs[1] = constant_term(tmp3470) / constant_term(r_p2[mo, ea]) - TaylorSeries.zero!(tmp3472) - tmp3472.coeffs[1] = constant_term(5) * constant_term(tmp3471) - TaylorSeries.zero!(coeff0_S) - coeff0_S.coeffs[1] = constant_term(r0s2_S) - constant_term(tmp3472) - TaylorSeries.zero!(k_20E_div_r0s5_M) - k_20E_div_r0s5_M.coeffs[1] = constant_term(k_20E) / constant_term(r0s5_M) - TaylorSeries.zero!(k_20E_div_r0s5_S) - k_20E_div_r0s5_S.coeffs[1] = constant_term(k_20E) / constant_term(r0s5_S) - TaylorSeries.zero!(tmp3476) - tmp3476.coeffs[1] = constant_term(ρ0s2_M) + constant_term(coeff0_M) - TaylorSeries.zero!(tmp3477) - tmp3477.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp3476) - TaylorSeries.zero!(a_tid_0_M_x) - a_tid_0_M_x.coeffs[1] = constant_term(tmp3477) * constant_term(X_bf[mo, ea]) - TaylorSeries.zero!(tmp3479) - tmp3479.coeffs[1] = constant_term(ρ0s2_M) + constant_term(coeff0_M) - TaylorSeries.zero!(tmp3480) - tmp3480.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp3479) - TaylorSeries.zero!(a_tid_0_M_y) - a_tid_0_M_y.coeffs[1] = constant_term(tmp3480) * constant_term(Y_bf[mo, ea]) - TaylorSeries.zero!(tmp3483) - tmp3483.coeffs[1] = constant_term(2) * constant_term(z0s2_M) - TaylorSeries.zero!(tmp3484) - tmp3484.coeffs[1] = constant_term(tmp3483) + constant_term(coeff0_M) - TaylorSeries.zero!(tmp3485) - tmp3485.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp3484) - TaylorSeries.zero!(a_tid_0_M_z) - a_tid_0_M_z.coeffs[1] = constant_term(tmp3485) * constant_term(Z_bf[mo, ea]) - TaylorSeries.zero!(tmp3487) - tmp3487.coeffs[1] = constant_term(ρ0s2_S) + constant_term(coeff0_S) - TaylorSeries.zero!(tmp3488) - tmp3488.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp3487) - TaylorSeries.zero!(a_tid_0_S_x) - a_tid_0_S_x.coeffs[1] = constant_term(tmp3488) * constant_term(X_bf[mo, ea]) - TaylorSeries.zero!(tmp3490) - tmp3490.coeffs[1] = constant_term(ρ0s2_S) + constant_term(coeff0_S) - TaylorSeries.zero!(tmp3491) - tmp3491.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp3490) - TaylorSeries.zero!(a_tid_0_S_y) - a_tid_0_S_y.coeffs[1] = constant_term(tmp3491) * constant_term(Y_bf[mo, ea]) - TaylorSeries.zero!(tmp3494) - tmp3494.coeffs[1] = constant_term(2) * constant_term(z0s2_S) - TaylorSeries.zero!(tmp3495) - tmp3495.coeffs[1] = constant_term(tmp3494) + constant_term(coeff0_S) - TaylorSeries.zero!(tmp3496) - tmp3496.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp3495) - TaylorSeries.zero!(a_tid_0_S_z) - a_tid_0_S_z.coeffs[1] = constant_term(tmp3496) * constant_term(Z_bf[mo, ea]) - TaylorSeries.zero!(x1s_M) - x1s_M.coeffs[1] = identity(constant_term(r_star_M_1[1])) - TaylorSeries.zero!(y1s_M) - y1s_M.coeffs[1] = identity(constant_term(r_star_M_1[2])) - TaylorSeries.zero!(z1s_M) - z1s_M.coeffs[1] = identity(constant_term(r_star_M_1[3])) - TaylorSeries.zero!(tmp3499) - tmp3499.coeffs[1] = constant_term(x1s_M) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3501) - tmp3501.coeffs[1] = constant_term(y1s_M) ^ float(constant_term(2)) - TaylorSeries.zero!(ρ1s2_M) - ρ1s2_M.coeffs[1] = constant_term(tmp3499) + constant_term(tmp3501) - TaylorSeries.zero!(ρ1s_M) - ρ1s_M.coeffs[1] = sqrt(constant_term(ρ1s2_M)) - TaylorSeries.zero!(z1s2_M) - z1s2_M.coeffs[1] = constant_term(z1s_M) ^ float(constant_term(2)) - TaylorSeries.zero!(r1s2_M) - r1s2_M.coeffs[1] = constant_term(ρ1s2_M) + constant_term(z1s2_M) - TaylorSeries.zero!(r1s_M) - r1s_M.coeffs[1] = sqrt(constant_term(r1s2_M)) - TaylorSeries.zero!(r1s5_M) - r1s5_M.coeffs[1] = constant_term(r1s_M) ^ float(constant_term(5)) - TaylorSeries.zero!(x1s_S) - x1s_S.coeffs[1] = identity(constant_term(r_star_S_1[1])) - TaylorSeries.zero!(y1s_S) - y1s_S.coeffs[1] = identity(constant_term(r_star_S_1[2])) - TaylorSeries.zero!(z1s_S) - z1s_S.coeffs[1] = identity(constant_term(r_star_S_1[3])) - TaylorSeries.zero!(tmp3511) - tmp3511.coeffs[1] = constant_term(x1s_S) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3513) - tmp3513.coeffs[1] = constant_term(y1s_S) ^ float(constant_term(2)) - TaylorSeries.zero!(ρ1s2_S) - ρ1s2_S.coeffs[1] = constant_term(tmp3511) + constant_term(tmp3513) - TaylorSeries.zero!(ρ1s_S) - ρ1s_S.coeffs[1] = sqrt(constant_term(ρ1s2_S)) - TaylorSeries.zero!(z1s2_S) - z1s2_S.coeffs[1] = constant_term(z1s_S) ^ float(constant_term(2)) - TaylorSeries.zero!(r1s2_S) - r1s2_S.coeffs[1] = constant_term(ρ1s2_S) + constant_term(z1s2_S) - TaylorSeries.zero!(r1s_S) - r1s_S.coeffs[1] = sqrt(constant_term(r1s2_S)) - TaylorSeries.zero!(r1s5_S) - r1s5_S.coeffs[1] = constant_term(r1s_S) ^ float(constant_term(5)) - TaylorSeries.zero!(tmp3522) - tmp3522.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_M_1[1]) - TaylorSeries.zero!(tmp3523) - tmp3523.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_1[2]) - TaylorSeries.zero!(coeff1_1_M) - coeff1_1_M.coeffs[1] = constant_term(tmp3522) + constant_term(tmp3523) - TaylorSeries.zero!(tmp3525) - tmp3525.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_S_1[1]) - TaylorSeries.zero!(tmp3526) - tmp3526.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_1[2]) - TaylorSeries.zero!(coeff1_1_S) - coeff1_1_S.coeffs[1] = constant_term(tmp3525) + constant_term(tmp3526) - TaylorSeries.zero!(coeff2_1_M) - coeff2_1_M.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_1[3]) - TaylorSeries.zero!(coeff2_1_S) - coeff2_1_S.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_1[3]) - TaylorSeries.zero!(tmp3531) - tmp3531.coeffs[1] = constant_term(10) * constant_term(coeff1_1_M) - TaylorSeries.zero!(tmp3532) - tmp3532.coeffs[1] = constant_term(tmp3531) * constant_term(coeff2_1_M) - TaylorSeries.zero!(coeff3_1_M) - coeff3_1_M.coeffs[1] = constant_term(tmp3532) / constant_term(r_p2[mo, ea]) - TaylorSeries.zero!(tmp3535) - tmp3535.coeffs[1] = constant_term(10) * constant_term(coeff1_1_S) - TaylorSeries.zero!(tmp3536) - tmp3536.coeffs[1] = constant_term(tmp3535) * constant_term(coeff2_1_S) - TaylorSeries.zero!(coeff3_1_S) - coeff3_1_S.coeffs[1] = constant_term(tmp3536) / constant_term(r_p2[mo, ea]) - TaylorSeries.zero!(k_21E_div_r1s5_M) - k_21E_div_r1s5_M.coeffs[1] = constant_term(k_21E) / constant_term(r1s5_M) - TaylorSeries.zero!(k_21E_div_r1s5_S) - k_21E_div_r1s5_S.coeffs[1] = constant_term(k_21E) / constant_term(r1s5_S) - TaylorSeries.zero!(tmp3541) - tmp3541.coeffs[1] = constant_term(2) * constant_term(coeff2_1_M) - TaylorSeries.zero!(tmp3542) - tmp3542.coeffs[1] = constant_term(tmp3541) * constant_term(r_star_M_1[1]) - TaylorSeries.zero!(tmp3543) - tmp3543.coeffs[1] = constant_term(coeff3_1_M) * constant_term(X_bf[mo, ea]) - TaylorSeries.zero!(tmp3544) - tmp3544.coeffs[1] = constant_term(tmp3542) - constant_term(tmp3543) - TaylorSeries.zero!(a_tid_1_M_x) - a_tid_1_M_x.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp3544) - TaylorSeries.zero!(tmp3547) - tmp3547.coeffs[1] = constant_term(2) * constant_term(coeff2_1_M) - TaylorSeries.zero!(tmp3548) - tmp3548.coeffs[1] = constant_term(tmp3547) * constant_term(r_star_M_1[2]) - TaylorSeries.zero!(tmp3549) - tmp3549.coeffs[1] = constant_term(coeff3_1_M) * constant_term(Y_bf[mo, ea]) - TaylorSeries.zero!(tmp3550) - tmp3550.coeffs[1] = constant_term(tmp3548) - constant_term(tmp3549) - TaylorSeries.zero!(a_tid_1_M_y) - a_tid_1_M_y.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp3550) - TaylorSeries.zero!(tmp3553) - tmp3553.coeffs[1] = constant_term(2) * constant_term(coeff1_1_M) - TaylorSeries.zero!(tmp3554) - tmp3554.coeffs[1] = constant_term(tmp3553) * constant_term(r_star_M_1[3]) - TaylorSeries.zero!(tmp3555) - tmp3555.coeffs[1] = constant_term(coeff3_1_M) * constant_term(Z_bf[mo, ea]) - TaylorSeries.zero!(tmp3556) - tmp3556.coeffs[1] = constant_term(tmp3554) - constant_term(tmp3555) - TaylorSeries.zero!(a_tid_1_M_z) - a_tid_1_M_z.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp3556) - TaylorSeries.zero!(tmp3559) - tmp3559.coeffs[1] = constant_term(2) * constant_term(coeff2_1_S) - TaylorSeries.zero!(tmp3560) - tmp3560.coeffs[1] = constant_term(tmp3559) * constant_term(r_star_S_1[1]) - TaylorSeries.zero!(tmp3561) - tmp3561.coeffs[1] = constant_term(coeff3_1_S) * constant_term(X_bf[mo, ea]) - TaylorSeries.zero!(tmp3562) - tmp3562.coeffs[1] = constant_term(tmp3560) - constant_term(tmp3561) - TaylorSeries.zero!(a_tid_1_S_x) - a_tid_1_S_x.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp3562) - TaylorSeries.zero!(tmp3565) - tmp3565.coeffs[1] = constant_term(2) * constant_term(coeff2_1_S) - TaylorSeries.zero!(tmp3566) - tmp3566.coeffs[1] = constant_term(tmp3565) * constant_term(r_star_S_1[2]) - TaylorSeries.zero!(tmp3567) - tmp3567.coeffs[1] = constant_term(coeff3_1_S) * constant_term(Y_bf[mo, ea]) - TaylorSeries.zero!(tmp3568) - tmp3568.coeffs[1] = constant_term(tmp3566) - constant_term(tmp3567) - TaylorSeries.zero!(a_tid_1_S_y) - a_tid_1_S_y.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp3568) - TaylorSeries.zero!(tmp3571) - tmp3571.coeffs[1] = constant_term(2) * constant_term(coeff1_1_S) - TaylorSeries.zero!(tmp3572) - tmp3572.coeffs[1] = constant_term(tmp3571) * constant_term(r_star_S_1[3]) - TaylorSeries.zero!(tmp3573) - tmp3573.coeffs[1] = constant_term(coeff3_1_S) * constant_term(Z_bf[mo, ea]) - TaylorSeries.zero!(tmp3574) - tmp3574.coeffs[1] = constant_term(tmp3572) - constant_term(tmp3573) - TaylorSeries.zero!(a_tid_1_S_z) - a_tid_1_S_z.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp3574) - TaylorSeries.zero!(x2s_M) - x2s_M.coeffs[1] = identity(constant_term(r_star_M_2[1])) - TaylorSeries.zero!(y2s_M) - y2s_M.coeffs[1] = identity(constant_term(r_star_M_2[2])) - TaylorSeries.zero!(z2s_M) - z2s_M.coeffs[1] = identity(constant_term(r_star_M_2[3])) - TaylorSeries.zero!(tmp3577) - tmp3577.coeffs[1] = constant_term(x2s_M) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3579) - tmp3579.coeffs[1] = constant_term(y2s_M) ^ float(constant_term(2)) - TaylorSeries.zero!(ρ2s2_M) - ρ2s2_M.coeffs[1] = constant_term(tmp3577) + constant_term(tmp3579) - TaylorSeries.zero!(ρ2s_M) - ρ2s_M.coeffs[1] = sqrt(constant_term(ρ2s2_M)) - TaylorSeries.zero!(z2s2_M) - z2s2_M.coeffs[1] = constant_term(z2s_M) ^ float(constant_term(2)) - TaylorSeries.zero!(r2s2_M) - r2s2_M.coeffs[1] = constant_term(ρ2s2_M) + constant_term(z2s2_M) - TaylorSeries.zero!(r2s_M) - r2s_M.coeffs[1] = sqrt(constant_term(r2s2_M)) - TaylorSeries.zero!(r2s5_M) - r2s5_M.coeffs[1] = constant_term(r2s_M) ^ float(constant_term(5)) - TaylorSeries.zero!(x2s_S) - x2s_S.coeffs[1] = identity(constant_term(r_star_S_2[1])) - TaylorSeries.zero!(y2s_S) - y2s_S.coeffs[1] = identity(constant_term(r_star_S_2[2])) - TaylorSeries.zero!(z2s_S) - z2s_S.coeffs[1] = identity(constant_term(r_star_S_2[3])) - TaylorSeries.zero!(tmp3589) - tmp3589.coeffs[1] = constant_term(x2s_S) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3591) - tmp3591.coeffs[1] = constant_term(y2s_S) ^ float(constant_term(2)) - TaylorSeries.zero!(ρ2s2_S) - ρ2s2_S.coeffs[1] = constant_term(tmp3589) + constant_term(tmp3591) - TaylorSeries.zero!(ρ2s_S) - ρ2s_S.coeffs[1] = sqrt(constant_term(ρ2s2_S)) - TaylorSeries.zero!(z2s2_S) - z2s2_S.coeffs[1] = constant_term(z2s_S) ^ float(constant_term(2)) - TaylorSeries.zero!(r2s2_S) - r2s2_S.coeffs[1] = constant_term(ρ2s2_S) + constant_term(z2s2_S) - TaylorSeries.zero!(r2s_S) - r2s_S.coeffs[1] = sqrt(constant_term(r2s2_S)) - TaylorSeries.zero!(r2s5_S) - r2s5_S.coeffs[1] = constant_term(r2s_S) ^ float(constant_term(5)) - TaylorSeries.zero!(tmp3600) - tmp3600.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_M_2[1]) - TaylorSeries.zero!(tmp3601) - tmp3601.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_2[2]) - TaylorSeries.zero!(coeff1_2_M) - coeff1_2_M.coeffs[1] = constant_term(tmp3600) + constant_term(tmp3601) - TaylorSeries.zero!(tmp3603) - tmp3603.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_S_2[1]) - TaylorSeries.zero!(tmp3604) - tmp3604.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_2[2]) - TaylorSeries.zero!(coeff1_2_S) - coeff1_2_S.coeffs[1] = constant_term(tmp3603) + constant_term(tmp3604) - TaylorSeries.zero!(tmp3608) - tmp3608.coeffs[1] = constant_term(coeff1_2_M) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3611) - tmp3611.coeffs[1] = constant_term(r_xy[mo, ea]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3612) - tmp3612.coeffs[1] = constant_term(0.5) * constant_term(tmp3611) - TaylorSeries.zero!(tmp3613) - tmp3613.coeffs[1] = constant_term(tmp3612) * constant_term(ρ2s2_M) - TaylorSeries.zero!(tmp3614) - tmp3614.coeffs[1] = constant_term(tmp3608) - constant_term(tmp3613) - TaylorSeries.zero!(tmp3615) - tmp3615.coeffs[1] = constant_term(5) * constant_term(tmp3614) - TaylorSeries.zero!(coeff3_2_M) - coeff3_2_M.coeffs[1] = constant_term(tmp3615) / constant_term(r_p2[mo, ea]) - TaylorSeries.zero!(tmp3619) - tmp3619.coeffs[1] = constant_term(coeff1_2_S) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3622) - tmp3622.coeffs[1] = constant_term(r_xy[mo, ea]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3623) - tmp3623.coeffs[1] = constant_term(0.5) * constant_term(tmp3622) - TaylorSeries.zero!(tmp3624) - tmp3624.coeffs[1] = constant_term(tmp3623) * constant_term(ρ2s2_S) - TaylorSeries.zero!(tmp3625) - tmp3625.coeffs[1] = constant_term(tmp3619) - constant_term(tmp3624) - TaylorSeries.zero!(tmp3626) - tmp3626.coeffs[1] = constant_term(5) * constant_term(tmp3625) - TaylorSeries.zero!(coeff3_2_S) - coeff3_2_S.coeffs[1] = constant_term(tmp3626) / constant_term(r_p2[mo, ea]) - TaylorSeries.zero!(k_22E_div_r2s5_M) - k_22E_div_r2s5_M.coeffs[1] = constant_term(k_22E) / constant_term(r2s5_M) - TaylorSeries.zero!(k_22E_div_r2s5_S) - k_22E_div_r2s5_S.coeffs[1] = constant_term(k_22E) / constant_term(r2s5_S) - TaylorSeries.zero!(tmp3631) - tmp3631.coeffs[1] = constant_term(2) * constant_term(coeff1_2_M) - TaylorSeries.zero!(tmp3632) - tmp3632.coeffs[1] = constant_term(tmp3631) * constant_term(r_star_M_2[1]) - TaylorSeries.zero!(tmp3633) - tmp3633.coeffs[1] = constant_term(ρ2s2_M) + constant_term(coeff3_2_M) - TaylorSeries.zero!(tmp3634) - tmp3634.coeffs[1] = constant_term(tmp3633) * constant_term(X_bf[mo, ea]) - TaylorSeries.zero!(tmp3635) - tmp3635.coeffs[1] = constant_term(tmp3632) - constant_term(tmp3634) - TaylorSeries.zero!(a_tid_2_M_x) - a_tid_2_M_x.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp3635) - TaylorSeries.zero!(tmp3638) - tmp3638.coeffs[1] = constant_term(2) * constant_term(coeff1_2_M) - TaylorSeries.zero!(tmp3639) - tmp3639.coeffs[1] = constant_term(tmp3638) * constant_term(r_star_M_2[2]) - TaylorSeries.zero!(tmp3640) - tmp3640.coeffs[1] = constant_term(ρ2s2_M) + constant_term(coeff3_2_M) - TaylorSeries.zero!(tmp3641) - tmp3641.coeffs[1] = constant_term(tmp3640) * constant_term(Y_bf[mo, ea]) - TaylorSeries.zero!(tmp3642) - tmp3642.coeffs[1] = constant_term(tmp3639) - constant_term(tmp3641) - TaylorSeries.zero!(a_tid_2_M_y) - a_tid_2_M_y.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp3642) - TaylorSeries.zero!(tmp3644) - tmp3644.coeffs[1] = -(constant_term(coeff3_2_M)) - TaylorSeries.zero!(tmp3645) - tmp3645.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp3644) - TaylorSeries.zero!(a_tid_2_M_z) - a_tid_2_M_z.coeffs[1] = constant_term(tmp3645) * constant_term(Z_bf[mo, ea]) - TaylorSeries.zero!(tmp3648) - tmp3648.coeffs[1] = constant_term(2) * constant_term(coeff1_2_S) - TaylorSeries.zero!(tmp3649) - tmp3649.coeffs[1] = constant_term(tmp3648) * constant_term(r_star_S_2[1]) - TaylorSeries.zero!(tmp3650) - tmp3650.coeffs[1] = constant_term(ρ2s2_S) + constant_term(coeff3_2_S) - TaylorSeries.zero!(tmp3651) - tmp3651.coeffs[1] = constant_term(tmp3650) * constant_term(X_bf[mo, ea]) - TaylorSeries.zero!(tmp3652) - tmp3652.coeffs[1] = constant_term(tmp3649) - constant_term(tmp3651) - TaylorSeries.zero!(a_tid_2_S_x) - a_tid_2_S_x.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp3652) - TaylorSeries.zero!(tmp3655) - tmp3655.coeffs[1] = constant_term(2) * constant_term(coeff1_2_S) - TaylorSeries.zero!(tmp3656) - tmp3656.coeffs[1] = constant_term(tmp3655) * constant_term(r_star_S_2[2]) - TaylorSeries.zero!(tmp3657) - tmp3657.coeffs[1] = constant_term(ρ2s2_S) + constant_term(coeff3_2_S) - TaylorSeries.zero!(tmp3658) - tmp3658.coeffs[1] = constant_term(tmp3657) * constant_term(Y_bf[mo, ea]) - TaylorSeries.zero!(tmp3659) - tmp3659.coeffs[1] = constant_term(tmp3656) - constant_term(tmp3658) - TaylorSeries.zero!(a_tid_2_S_y) - a_tid_2_S_y.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp3659) - TaylorSeries.zero!(tmp3661) - tmp3661.coeffs[1] = -(constant_term(coeff3_2_S)) - TaylorSeries.zero!(tmp3662) - tmp3662.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp3661) - TaylorSeries.zero!(a_tid_2_S_z) - a_tid_2_S_z.coeffs[1] = constant_term(tmp3662) * constant_term(Z_bf[mo, ea]) - TaylorSeries.zero!(tmp3664) - tmp3664.coeffs[1] = constant_term(RE_au) / constant_term(r_p1d2[mo, ea]) - TaylorSeries.zero!(RE_div_r_p5) - RE_div_r_p5.coeffs[1] = constant_term(tmp3664) ^ float(constant_term(5)) - TaylorSeries.zero!(aux_tidacc) - aux_tidacc.coeffs[1] = constant_term(tid_num_coeff) * constant_term(RE_div_r_p5) - TaylorSeries.zero!(a_tidal_coeff_M) - a_tidal_coeff_M.coeffs[1] = constant_term(μ[mo]) * constant_term(aux_tidacc) - TaylorSeries.zero!(a_tidal_coeff_S) - a_tidal_coeff_S.coeffs[1] = constant_term(μ[su]) * constant_term(aux_tidacc) - TaylorSeries.zero!(tmp3670) - tmp3670.coeffs[1] = constant_term(a_tid_0_M_x) + constant_term(a_tid_1_M_x) - TaylorSeries.zero!(tmp3671) - tmp3671.coeffs[1] = constant_term(tmp3670) + constant_term(a_tid_2_M_x) - TaylorSeries.zero!(tmp3672) - tmp3672.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp3671) - TaylorSeries.zero!(tmp3673) - tmp3673.coeffs[1] = constant_term(a_tid_0_S_x) + constant_term(a_tid_1_S_x) - TaylorSeries.zero!(tmp3674) - tmp3674.coeffs[1] = constant_term(tmp3673) + constant_term(a_tid_2_S_x) - TaylorSeries.zero!(tmp3675) - tmp3675.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp3674) - TaylorSeries.zero!(a_tidal_tod_x) - a_tidal_tod_x.coeffs[1] = constant_term(tmp3672) + constant_term(tmp3675) - TaylorSeries.zero!(tmp3677) - tmp3677.coeffs[1] = constant_term(a_tid_0_M_y) + constant_term(a_tid_1_M_y) - TaylorSeries.zero!(tmp3678) - tmp3678.coeffs[1] = constant_term(tmp3677) + constant_term(a_tid_2_M_y) - TaylorSeries.zero!(tmp3679) - tmp3679.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp3678) - TaylorSeries.zero!(tmp3680) - tmp3680.coeffs[1] = constant_term(a_tid_0_S_y) + constant_term(a_tid_1_S_y) - TaylorSeries.zero!(tmp3681) - tmp3681.coeffs[1] = constant_term(tmp3680) + constant_term(a_tid_2_S_y) - TaylorSeries.zero!(tmp3682) - tmp3682.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp3681) - TaylorSeries.zero!(a_tidal_tod_y) - a_tidal_tod_y.coeffs[1] = constant_term(tmp3679) + constant_term(tmp3682) - TaylorSeries.zero!(tmp3684) - tmp3684.coeffs[1] = constant_term(a_tid_0_M_z) + constant_term(a_tid_1_M_z) - TaylorSeries.zero!(tmp3685) - tmp3685.coeffs[1] = constant_term(tmp3684) + constant_term(a_tid_2_M_z) - TaylorSeries.zero!(tmp3686) - tmp3686.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp3685) - TaylorSeries.zero!(tmp3687) - tmp3687.coeffs[1] = constant_term(a_tid_0_S_z) + constant_term(a_tid_1_S_z) - TaylorSeries.zero!(tmp3688) - tmp3688.coeffs[1] = constant_term(tmp3687) + constant_term(a_tid_2_S_z) - TaylorSeries.zero!(tmp3689) - tmp3689.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp3688) - TaylorSeries.zero!(a_tidal_tod_z) - a_tidal_tod_z.coeffs[1] = constant_term(tmp3686) + constant_term(tmp3689) - TaylorSeries.zero!(tmp3691) - tmp3691.coeffs[1] = constant_term(RotM[1, 1, ea]) * constant_term(a_tidal_tod_x) - TaylorSeries.zero!(tmp3692) - tmp3692.coeffs[1] = constant_term(RotM[2, 1, ea]) * constant_term(a_tidal_tod_y) - TaylorSeries.zero!(tmp3693) - tmp3693.coeffs[1] = constant_term(tmp3691) + constant_term(tmp3692) - TaylorSeries.zero!(tmp3694) - tmp3694.coeffs[1] = constant_term(RotM[3, 1, ea]) * constant_term(a_tidal_tod_z) - TaylorSeries.zero!(a_tidal_x) - a_tidal_x.coeffs[1] = constant_term(tmp3693) + constant_term(tmp3694) - TaylorSeries.zero!(tmp3696) - tmp3696.coeffs[1] = constant_term(RotM[1, 2, ea]) * constant_term(a_tidal_tod_x) - TaylorSeries.zero!(tmp3697) - tmp3697.coeffs[1] = constant_term(RotM[2, 2, ea]) * constant_term(a_tidal_tod_y) - TaylorSeries.zero!(tmp3698) - tmp3698.coeffs[1] = constant_term(tmp3696) + constant_term(tmp3697) - TaylorSeries.zero!(tmp3699) - tmp3699.coeffs[1] = constant_term(RotM[3, 2, ea]) * constant_term(a_tidal_tod_z) - TaylorSeries.zero!(a_tidal_y) - a_tidal_y.coeffs[1] = constant_term(tmp3698) + constant_term(tmp3699) - TaylorSeries.zero!(tmp3701) - tmp3701.coeffs[1] = constant_term(RotM[1, 3, ea]) * constant_term(a_tidal_tod_x) - TaylorSeries.zero!(tmp3702) - tmp3702.coeffs[1] = constant_term(RotM[2, 3, ea]) * constant_term(a_tidal_tod_y) - TaylorSeries.zero!(tmp3703) - tmp3703.coeffs[1] = constant_term(tmp3701) + constant_term(tmp3702) - TaylorSeries.zero!(tmp3704) - tmp3704.coeffs[1] = constant_term(RotM[3, 3, ea]) * constant_term(a_tidal_tod_z) - TaylorSeries.zero!(a_tidal_z) - a_tidal_z.coeffs[1] = constant_term(tmp3703) + constant_term(tmp3704) - TaylorSeries.zero!(accX_mo_tides) - accX_mo_tides.coeffs[1] = constant_term(accX[mo]) + constant_term(a_tidal_x) - TaylorSeries.zero!(accY_mo_tides) - accY_mo_tides.coeffs[1] = constant_term(accY[mo]) + constant_term(a_tidal_y) - TaylorSeries.zero!(accZ_mo_tides) - accZ_mo_tides.coeffs[1] = constant_term(accZ[mo]) + constant_term(a_tidal_z) - TaylorSeries.zero!(accX[mo]) - (accX[mo]).coeffs[1] = identity(constant_term(accX_mo_tides)) - TaylorSeries.zero!(accY[mo]) - (accY[mo]).coeffs[1] = identity(constant_term(accY_mo_tides)) - TaylorSeries.zero!(accZ[mo]) - (accZ[mo]).coeffs[1] = identity(constant_term(accZ_mo_tides)) - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1896 =# Threads.@threads for i = 1:N_ext - TaylorSeries.zero!(dq[3 * (N + i) - 2]) - (dq[3 * (N + i) - 2]).coeffs[1] = constant_term(postNewtonX[i]) + constant_term(accX[i]) - TaylorSeries.zero!(dq[3 * (N + i) - 1]) - (dq[3 * (N + i) - 1]).coeffs[1] = constant_term(postNewtonY[i]) + constant_term(accY[i]) - TaylorSeries.zero!(dq[3 * (N + i)]) - (dq[3 * (N + i)]).coeffs[1] = constant_term(postNewtonZ[i]) + constant_term(accZ[i]) - end - #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1901 =# Threads.@threads for i = N_ext + 1:N - TaylorSeries.zero!(dq[3 * (N + i) - 2]) - (dq[3 * (N + i) - 2]).coeffs[1] = identity(constant_term(postNewtonX[i])) - TaylorSeries.zero!(dq[3 * (N + i) - 1]) - (dq[3 * (N + i) - 1]).coeffs[1] = identity(constant_term(postNewtonY[i])) - TaylorSeries.zero!(dq[3 * (N + i)]) - (dq[3 * (N + i)]).coeffs[1] = identity(constant_term(postNewtonZ[i])) - end - TaylorSeries.zero!(tmp3712) - tmp3712.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp3713) - tmp3713.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp3714) - tmp3714.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp3715) - tmp3715.coeffs[1] = constant_term(tmp3713) + constant_term(tmp3714) - TaylorSeries.zero!(Iω_x) - Iω_x.coeffs[1] = constant_term(tmp3712) + constant_term(tmp3715) - TaylorSeries.zero!(tmp3717) - tmp3717.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp3718) - tmp3718.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp3719) - tmp3719.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp3720) - tmp3720.coeffs[1] = constant_term(tmp3718) + constant_term(tmp3719) - TaylorSeries.zero!(Iω_y) - Iω_y.coeffs[1] = constant_term(tmp3717) + constant_term(tmp3720) - TaylorSeries.zero!(tmp3722) - tmp3722.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp3723) - tmp3723.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp3724) - tmp3724.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp3725) - tmp3725.coeffs[1] = constant_term(tmp3723) + constant_term(tmp3724) - TaylorSeries.zero!(Iω_z) - Iω_z.coeffs[1] = constant_term(tmp3722) + constant_term(tmp3725) - TaylorSeries.zero!(tmp3727) - tmp3727.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_z) - TaylorSeries.zero!(tmp3728) - tmp3728.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_y) - TaylorSeries.zero!(ωxIω_x) - ωxIω_x.coeffs[1] = constant_term(tmp3727) - constant_term(tmp3728) - TaylorSeries.zero!(tmp3730) - tmp3730.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_x) - TaylorSeries.zero!(tmp3731) - tmp3731.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_z) - TaylorSeries.zero!(ωxIω_y) - ωxIω_y.coeffs[1] = constant_term(tmp3730) - constant_term(tmp3731) - TaylorSeries.zero!(tmp3733) - tmp3733.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_y) - TaylorSeries.zero!(tmp3734) - tmp3734.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_x) - TaylorSeries.zero!(ωxIω_z) - ωxIω_z.coeffs[1] = constant_term(tmp3733) - constant_term(tmp3734) - TaylorSeries.zero!(tmp3736) - tmp3736.coeffs[1] = constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp3737) - tmp3737.coeffs[1] = constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp3738) - tmp3738.coeffs[1] = constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp3739) - tmp3739.coeffs[1] = constant_term(tmp3737) + constant_term(tmp3738) - TaylorSeries.zero!(dIω_x) - dIω_x.coeffs[1] = constant_term(tmp3736) + constant_term(tmp3739) - TaylorSeries.zero!(tmp3741) - tmp3741.coeffs[1] = constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp3742) - tmp3742.coeffs[1] = constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp3743) - tmp3743.coeffs[1] = constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp3744) - tmp3744.coeffs[1] = constant_term(tmp3742) + constant_term(tmp3743) - TaylorSeries.zero!(dIω_y) - dIω_y.coeffs[1] = constant_term(tmp3741) + constant_term(tmp3744) - TaylorSeries.zero!(tmp3746) - tmp3746.coeffs[1] = constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp3747) - tmp3747.coeffs[1] = constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp3748) - tmp3748.coeffs[1] = constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]) - TaylorSeries.zero!(tmp3749) - tmp3749.coeffs[1] = constant_term(tmp3747) + constant_term(tmp3748) - TaylorSeries.zero!(dIω_z) - dIω_z.coeffs[1] = constant_term(tmp3746) + constant_term(tmp3749) - TaylorSeries.zero!(er_EM_I_1) - er_EM_I_1.coeffs[1] = constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]) - TaylorSeries.zero!(er_EM_I_2) - er_EM_I_2.coeffs[1] = constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]) - TaylorSeries.zero!(er_EM_I_3) - er_EM_I_3.coeffs[1] = constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]) - TaylorSeries.zero!(p_E_I_1) - p_E_I_1.coeffs[1] = identity(constant_term(RotM[3, 1, ea])) - TaylorSeries.zero!(p_E_I_2) - p_E_I_2.coeffs[1] = identity(constant_term(RotM[3, 2, ea])) - TaylorSeries.zero!(p_E_I_3) - p_E_I_3.coeffs[1] = identity(constant_term(RotM[3, 3, ea])) - TaylorSeries.zero!(tmp3754) - tmp3754.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1) - TaylorSeries.zero!(tmp3755) - tmp3755.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2) - TaylorSeries.zero!(tmp3756) - tmp3756.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3) - TaylorSeries.zero!(tmp3757) - tmp3757.coeffs[1] = constant_term(tmp3755) + constant_term(tmp3756) - TaylorSeries.zero!(er_EM_1) - er_EM_1.coeffs[1] = constant_term(tmp3754) + constant_term(tmp3757) - TaylorSeries.zero!(tmp3759) - tmp3759.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1) - TaylorSeries.zero!(tmp3760) - tmp3760.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2) - TaylorSeries.zero!(tmp3761) - tmp3761.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3) - TaylorSeries.zero!(tmp3762) - tmp3762.coeffs[1] = constant_term(tmp3760) + constant_term(tmp3761) - TaylorSeries.zero!(er_EM_2) - er_EM_2.coeffs[1] = constant_term(tmp3759) + constant_term(tmp3762) - TaylorSeries.zero!(tmp3764) - tmp3764.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1) - TaylorSeries.zero!(tmp3765) - tmp3765.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2) - TaylorSeries.zero!(tmp3766) - tmp3766.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3) - TaylorSeries.zero!(tmp3767) - tmp3767.coeffs[1] = constant_term(tmp3765) + constant_term(tmp3766) - TaylorSeries.zero!(er_EM_3) - er_EM_3.coeffs[1] = constant_term(tmp3764) + constant_term(tmp3767) - TaylorSeries.zero!(tmp3769) - tmp3769.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1) - TaylorSeries.zero!(tmp3770) - tmp3770.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2) - TaylorSeries.zero!(tmp3771) - tmp3771.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3) - TaylorSeries.zero!(tmp3772) - tmp3772.coeffs[1] = constant_term(tmp3770) + constant_term(tmp3771) - TaylorSeries.zero!(p_E_1) - p_E_1.coeffs[1] = constant_term(tmp3769) + constant_term(tmp3772) - TaylorSeries.zero!(tmp3774) - tmp3774.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1) - TaylorSeries.zero!(tmp3775) - tmp3775.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2) - TaylorSeries.zero!(tmp3776) - tmp3776.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3) - TaylorSeries.zero!(tmp3777) - tmp3777.coeffs[1] = constant_term(tmp3775) + constant_term(tmp3776) - TaylorSeries.zero!(p_E_2) - p_E_2.coeffs[1] = constant_term(tmp3774) + constant_term(tmp3777) - TaylorSeries.zero!(tmp3779) - tmp3779.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1) - TaylorSeries.zero!(tmp3780) - tmp3780.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2) - TaylorSeries.zero!(tmp3781) - tmp3781.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3) - TaylorSeries.zero!(tmp3782) - tmp3782.coeffs[1] = constant_term(tmp3780) + constant_term(tmp3781) - TaylorSeries.zero!(p_E_3) - p_E_3.coeffs[1] = constant_term(tmp3779) + constant_term(tmp3782) - TaylorSeries.zero!(tmp3784) - tmp3784.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(er_EM_1) - TaylorSeries.zero!(tmp3785) - tmp3785.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(er_EM_2) - TaylorSeries.zero!(tmp3786) - tmp3786.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(er_EM_3) - TaylorSeries.zero!(tmp3787) - tmp3787.coeffs[1] = constant_term(tmp3785) + constant_term(tmp3786) - TaylorSeries.zero!(I_er_EM_1) - I_er_EM_1.coeffs[1] = constant_term(tmp3784) + constant_term(tmp3787) - TaylorSeries.zero!(tmp3789) - tmp3789.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(er_EM_1) - TaylorSeries.zero!(tmp3790) - tmp3790.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(er_EM_2) - TaylorSeries.zero!(tmp3791) - tmp3791.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(er_EM_3) - TaylorSeries.zero!(tmp3792) - tmp3792.coeffs[1] = constant_term(tmp3790) + constant_term(tmp3791) - TaylorSeries.zero!(I_er_EM_2) - I_er_EM_2.coeffs[1] = constant_term(tmp3789) + constant_term(tmp3792) - TaylorSeries.zero!(tmp3794) - tmp3794.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(er_EM_1) - TaylorSeries.zero!(tmp3795) - tmp3795.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(er_EM_2) - TaylorSeries.zero!(tmp3796) - tmp3796.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(er_EM_3) - TaylorSeries.zero!(tmp3797) - tmp3797.coeffs[1] = constant_term(tmp3795) + constant_term(tmp3796) - TaylorSeries.zero!(I_er_EM_3) - I_er_EM_3.coeffs[1] = constant_term(tmp3794) + constant_term(tmp3797) - TaylorSeries.zero!(tmp3799) - tmp3799.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(p_E_1) - TaylorSeries.zero!(tmp3800) - tmp3800.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(p_E_2) - TaylorSeries.zero!(tmp3801) - tmp3801.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(p_E_3) - TaylorSeries.zero!(tmp3802) - tmp3802.coeffs[1] = constant_term(tmp3800) + constant_term(tmp3801) - TaylorSeries.zero!(I_p_E_1) - I_p_E_1.coeffs[1] = constant_term(tmp3799) + constant_term(tmp3802) - TaylorSeries.zero!(tmp3804) - tmp3804.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(p_E_1) - TaylorSeries.zero!(tmp3805) - tmp3805.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(p_E_2) - TaylorSeries.zero!(tmp3806) - tmp3806.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(p_E_3) - TaylorSeries.zero!(tmp3807) - tmp3807.coeffs[1] = constant_term(tmp3805) + constant_term(tmp3806) - TaylorSeries.zero!(I_p_E_2) - I_p_E_2.coeffs[1] = constant_term(tmp3804) + constant_term(tmp3807) - TaylorSeries.zero!(tmp3809) - tmp3809.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(p_E_1) - TaylorSeries.zero!(tmp3810) - tmp3810.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(p_E_2) - TaylorSeries.zero!(tmp3811) - tmp3811.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(p_E_3) - TaylorSeries.zero!(tmp3812) - tmp3812.coeffs[1] = constant_term(tmp3810) + constant_term(tmp3811) - TaylorSeries.zero!(I_p_E_3) - I_p_E_3.coeffs[1] = constant_term(tmp3809) + constant_term(tmp3812) - TaylorSeries.zero!(tmp3814) - tmp3814.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_3) - TaylorSeries.zero!(tmp3815) - tmp3815.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_2) - TaylorSeries.zero!(er_EM_cross_I_er_EM_1) - er_EM_cross_I_er_EM_1.coeffs[1] = constant_term(tmp3814) - constant_term(tmp3815) - TaylorSeries.zero!(tmp3817) - tmp3817.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_1) - TaylorSeries.zero!(tmp3818) - tmp3818.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_3) - TaylorSeries.zero!(er_EM_cross_I_er_EM_2) - er_EM_cross_I_er_EM_2.coeffs[1] = constant_term(tmp3817) - constant_term(tmp3818) - TaylorSeries.zero!(tmp3820) - tmp3820.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_2) - TaylorSeries.zero!(tmp3821) - tmp3821.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_1) - TaylorSeries.zero!(er_EM_cross_I_er_EM_3) - er_EM_cross_I_er_EM_3.coeffs[1] = constant_term(tmp3820) - constant_term(tmp3821) - TaylorSeries.zero!(tmp3823) - tmp3823.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_3) - TaylorSeries.zero!(tmp3824) - tmp3824.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_2) - TaylorSeries.zero!(er_EM_cross_I_p_E_1) - er_EM_cross_I_p_E_1.coeffs[1] = constant_term(tmp3823) - constant_term(tmp3824) - TaylorSeries.zero!(tmp3826) - tmp3826.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_1) - TaylorSeries.zero!(tmp3827) - tmp3827.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_3) - TaylorSeries.zero!(er_EM_cross_I_p_E_2) - er_EM_cross_I_p_E_2.coeffs[1] = constant_term(tmp3826) - constant_term(tmp3827) - TaylorSeries.zero!(tmp3829) - tmp3829.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_2) - TaylorSeries.zero!(tmp3830) - tmp3830.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_1) - TaylorSeries.zero!(er_EM_cross_I_p_E_3) - er_EM_cross_I_p_E_3.coeffs[1] = constant_term(tmp3829) - constant_term(tmp3830) - TaylorSeries.zero!(tmp3832) - tmp3832.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_3) - TaylorSeries.zero!(tmp3833) - tmp3833.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_2) - TaylorSeries.zero!(p_E_cross_I_er_EM_1) - p_E_cross_I_er_EM_1.coeffs[1] = constant_term(tmp3832) - constant_term(tmp3833) - TaylorSeries.zero!(tmp3835) - tmp3835.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_1) - TaylorSeries.zero!(tmp3836) - tmp3836.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_3) - TaylorSeries.zero!(p_E_cross_I_er_EM_2) - p_E_cross_I_er_EM_2.coeffs[1] = constant_term(tmp3835) - constant_term(tmp3836) - TaylorSeries.zero!(tmp3838) - tmp3838.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_2) - TaylorSeries.zero!(tmp3839) - tmp3839.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_1) - TaylorSeries.zero!(p_E_cross_I_er_EM_3) - p_E_cross_I_er_EM_3.coeffs[1] = constant_term(tmp3838) - constant_term(tmp3839) - TaylorSeries.zero!(tmp3841) - tmp3841.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_3) - TaylorSeries.zero!(tmp3842) - tmp3842.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_2) - TaylorSeries.zero!(p_E_cross_I_p_E_1) - p_E_cross_I_p_E_1.coeffs[1] = constant_term(tmp3841) - constant_term(tmp3842) - TaylorSeries.zero!(tmp3844) - tmp3844.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_1) - TaylorSeries.zero!(tmp3845) - tmp3845.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_3) - TaylorSeries.zero!(p_E_cross_I_p_E_2) - p_E_cross_I_p_E_2.coeffs[1] = constant_term(tmp3844) - constant_term(tmp3845) - TaylorSeries.zero!(tmp3847) - tmp3847.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_2) - TaylorSeries.zero!(tmp3848) - tmp3848.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_1) - TaylorSeries.zero!(p_E_cross_I_p_E_3) - p_E_cross_I_p_E_3.coeffs[1] = constant_term(tmp3847) - constant_term(tmp3848) - TaylorSeries.zero!(tmp3852) - tmp3852.coeffs[1] = constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3853) - tmp3853.coeffs[1] = constant_term(7) * constant_term(tmp3852) - TaylorSeries.zero!(one_minus_7sin2ϕEM) - one_minus_7sin2ϕEM.coeffs[1] = constant_term(one_t) - constant_term(tmp3853) - TaylorSeries.zero!(two_sinϕEM) - two_sinϕEM.coeffs[1] = constant_term(2) * constant_term(sin_ϕ[ea, mo]) - TaylorSeries.zero!(tmp3858) - tmp3858.coeffs[1] = constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)) - TaylorSeries.zero!(N_MfigM_figE_factor_div_rEMp5) - N_MfigM_figE_factor_div_rEMp5.coeffs[1] = constant_term(N_MfigM_figE_factor) / constant_term(tmp3858) - TaylorSeries.zero!(tmp3860) - tmp3860.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1) - TaylorSeries.zero!(tmp3861) - tmp3861.coeffs[1] = constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1) - TaylorSeries.zero!(tmp3862) - tmp3862.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3861) - TaylorSeries.zero!(tmp3863) - tmp3863.coeffs[1] = constant_term(tmp3860) + constant_term(tmp3862) - TaylorSeries.zero!(tmp3865) - tmp3865.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_1) - TaylorSeries.zero!(tmp3866) - tmp3866.coeffs[1] = constant_term(tmp3863) - constant_term(tmp3865) - TaylorSeries.zero!(N_MfigM_figE_1) - N_MfigM_figE_1.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3866) - TaylorSeries.zero!(tmp3868) - tmp3868.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2) - TaylorSeries.zero!(tmp3869) - tmp3869.coeffs[1] = constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2) - TaylorSeries.zero!(tmp3870) - tmp3870.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3869) - TaylorSeries.zero!(tmp3871) - tmp3871.coeffs[1] = constant_term(tmp3868) + constant_term(tmp3870) - TaylorSeries.zero!(tmp3873) - tmp3873.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_2) - TaylorSeries.zero!(tmp3874) - tmp3874.coeffs[1] = constant_term(tmp3871) - constant_term(tmp3873) - TaylorSeries.zero!(N_MfigM_figE_2) - N_MfigM_figE_2.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3874) - TaylorSeries.zero!(tmp3876) - tmp3876.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3) - TaylorSeries.zero!(tmp3877) - tmp3877.coeffs[1] = constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3) - TaylorSeries.zero!(tmp3878) - tmp3878.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3877) - TaylorSeries.zero!(tmp3879) - tmp3879.coeffs[1] = constant_term(tmp3876) + constant_term(tmp3878) - TaylorSeries.zero!(tmp3881) - tmp3881.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_3) - TaylorSeries.zero!(tmp3882) - tmp3882.coeffs[1] = constant_term(tmp3879) - constant_term(tmp3881) - TaylorSeries.zero!(N_MfigM_figE_3) - N_MfigM_figE_3.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3882) - TaylorSeries.zero!(tmp3884) - tmp3884.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]) - TaylorSeries.zero!(tmp3885) - tmp3885.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]) - TaylorSeries.zero!(tmp3886) - tmp3886.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]) - TaylorSeries.zero!(tmp3887) - tmp3887.coeffs[1] = constant_term(tmp3885) + constant_term(tmp3886) - TaylorSeries.zero!(N_1_LMF) - N_1_LMF.coeffs[1] = constant_term(tmp3884) + constant_term(tmp3887) - TaylorSeries.zero!(tmp3889) - tmp3889.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]) - TaylorSeries.zero!(tmp3890) - tmp3890.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]) - TaylorSeries.zero!(tmp3891) - tmp3891.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]) - TaylorSeries.zero!(tmp3892) - tmp3892.coeffs[1] = constant_term(tmp3890) + constant_term(tmp3891) - TaylorSeries.zero!(N_2_LMF) - N_2_LMF.coeffs[1] = constant_term(tmp3889) + constant_term(tmp3892) - TaylorSeries.zero!(tmp3894) - tmp3894.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]) - TaylorSeries.zero!(tmp3895) - tmp3895.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]) - TaylorSeries.zero!(tmp3896) - tmp3896.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]) - TaylorSeries.zero!(tmp3897) - tmp3897.coeffs[1] = constant_term(tmp3895) + constant_term(tmp3896) - TaylorSeries.zero!(N_3_LMF) - N_3_LMF.coeffs[1] = constant_term(tmp3894) + constant_term(tmp3897) - TaylorSeries.zero!(tmp3899) - tmp3899.coeffs[1] = constant_term(q[6N + 10]) - constant_term(q[6N + 4]) - TaylorSeries.zero!(tmp3900) - tmp3900.coeffs[1] = constant_term(k_ν) * constant_term(tmp3899) - TaylorSeries.zero!(tmp3901) - tmp3901.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp3902) - tmp3902.coeffs[1] = constant_term(tmp3901) * constant_term(q[6N + 11]) - TaylorSeries.zero!(N_cmb_1) - N_cmb_1.coeffs[1] = constant_term(tmp3900) - constant_term(tmp3902) - TaylorSeries.zero!(tmp3904) - tmp3904.coeffs[1] = constant_term(q[6N + 11]) - constant_term(q[6N + 5]) - TaylorSeries.zero!(tmp3905) - tmp3905.coeffs[1] = constant_term(k_ν) * constant_term(tmp3904) - TaylorSeries.zero!(tmp3906) - tmp3906.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp3907) - tmp3907.coeffs[1] = constant_term(tmp3906) * constant_term(q[6N + 10]) - TaylorSeries.zero!(N_cmb_2) - N_cmb_2.coeffs[1] = constant_term(tmp3905) + constant_term(tmp3907) - TaylorSeries.zero!(tmp3909) - tmp3909.coeffs[1] = constant_term(q[6N + 12]) - constant_term(q[6N + 6]) - TaylorSeries.zero!(N_cmb_3) - N_cmb_3.coeffs[1] = constant_term(k_ν) * constant_term(tmp3909) - TaylorSeries.zero!(tmp3911) - tmp3911.coeffs[1] = constant_term(μ[mo]) * constant_term(N_1_LMF) - TaylorSeries.zero!(tmp3912) - tmp3912.coeffs[1] = constant_term(N_MfigM_figE_1) + constant_term(tmp3911) - TaylorSeries.zero!(tmp3913) - tmp3913.coeffs[1] = constant_term(tmp3912) + constant_term(N_cmb_1) - TaylorSeries.zero!(tmp3914) - tmp3914.coeffs[1] = constant_term(dIω_x) + constant_term(ωxIω_x) - TaylorSeries.zero!(I_dω_1) - I_dω_1.coeffs[1] = constant_term(tmp3913) - constant_term(tmp3914) - TaylorSeries.zero!(tmp3916) - tmp3916.coeffs[1] = constant_term(μ[mo]) * constant_term(N_2_LMF) - TaylorSeries.zero!(tmp3917) - tmp3917.coeffs[1] = constant_term(N_MfigM_figE_2) + constant_term(tmp3916) - TaylorSeries.zero!(tmp3918) - tmp3918.coeffs[1] = constant_term(tmp3917) + constant_term(N_cmb_2) - TaylorSeries.zero!(tmp3919) - tmp3919.coeffs[1] = constant_term(dIω_y) + constant_term(ωxIω_y) - TaylorSeries.zero!(I_dω_2) - I_dω_2.coeffs[1] = constant_term(tmp3918) - constant_term(tmp3919) - TaylorSeries.zero!(tmp3921) - tmp3921.coeffs[1] = constant_term(μ[mo]) * constant_term(N_3_LMF) - TaylorSeries.zero!(tmp3922) - tmp3922.coeffs[1] = constant_term(N_MfigM_figE_3) + constant_term(tmp3921) - TaylorSeries.zero!(tmp3923) - tmp3923.coeffs[1] = constant_term(tmp3922) + constant_term(N_cmb_3) - TaylorSeries.zero!(tmp3924) - tmp3924.coeffs[1] = constant_term(dIω_z) + constant_term(ωxIω_z) - TaylorSeries.zero!(I_dω_3) - I_dω_3.coeffs[1] = constant_term(tmp3923) - constant_term(tmp3924) - TaylorSeries.zero!(Ic_ωc_1) - Ic_ωc_1.coeffs[1] = constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]) - TaylorSeries.zero!(Ic_ωc_2) - Ic_ωc_2.coeffs[1] = constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]) - TaylorSeries.zero!(Ic_ωc_3) - Ic_ωc_3.coeffs[1] = constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]) - TaylorSeries.zero!(tmp3929) - tmp3929.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_2) - TaylorSeries.zero!(tmp3930) - tmp3930.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_3) - TaylorSeries.zero!(m_ωm_x_Icωc_1) - m_ωm_x_Icωc_1.coeffs[1] = constant_term(tmp3929) - constant_term(tmp3930) - TaylorSeries.zero!(tmp3932) - tmp3932.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_3) - TaylorSeries.zero!(tmp3933) - tmp3933.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_1) - TaylorSeries.zero!(m_ωm_x_Icωc_2) - m_ωm_x_Icωc_2.coeffs[1] = constant_term(tmp3932) - constant_term(tmp3933) - TaylorSeries.zero!(tmp3935) - tmp3935.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_1) - TaylorSeries.zero!(tmp3936) - tmp3936.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_2) - TaylorSeries.zero!(m_ωm_x_Icωc_3) - m_ωm_x_Icωc_3.coeffs[1] = constant_term(tmp3935) - constant_term(tmp3936) - TaylorSeries.zero!(Ic_dωc_1) - Ic_dωc_1.coeffs[1] = constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1) - TaylorSeries.zero!(Ic_dωc_2) - Ic_dωc_2.coeffs[1] = constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2) - TaylorSeries.zero!(Ic_dωc_3) - Ic_dωc_3.coeffs[1] = constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3) - TaylorSeries.zero!(tmp3941) - tmp3941.coeffs[1] = sin(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp4072) - tmp4072.coeffs[1] = cos(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp3942) - tmp3942.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp3941) - TaylorSeries.zero!(tmp3943) - tmp3943.coeffs[1] = cos(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp4073) - tmp4073.coeffs[1] = sin(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp3944) - tmp3944.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp3943) - TaylorSeries.zero!(tmp3945) - tmp3945.coeffs[1] = constant_term(tmp3942) + constant_term(tmp3944) - TaylorSeries.zero!(tmp3946) - tmp3946.coeffs[1] = sin(constant_term(q[6N + 2])) - TaylorSeries.zero!(tmp4074) - tmp4074.coeffs[1] = cos(constant_term(q[6N + 2])) - TaylorSeries.zero!(dq[6N + 1]) - (dq[6N + 1]).coeffs[1] = constant_term(tmp3945) / constant_term(tmp3946) - TaylorSeries.zero!(tmp3948) - tmp3948.coeffs[1] = cos(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp4075) - tmp4075.coeffs[1] = sin(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp3949) - tmp3949.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp3948) - TaylorSeries.zero!(tmp3950) - tmp3950.coeffs[1] = sin(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp4076) - tmp4076.coeffs[1] = cos(constant_term(q[6N + 3])) - TaylorSeries.zero!(tmp3951) - tmp3951.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp3950) - TaylorSeries.zero!(dq[6N + 2]) - (dq[6N + 2]).coeffs[1] = constant_term(tmp3949) - constant_term(tmp3951) - TaylorSeries.zero!(tmp3953) - tmp3953.coeffs[1] = cos(constant_term(q[6N + 2])) - TaylorSeries.zero!(tmp4077) - tmp4077.coeffs[1] = sin(constant_term(q[6N + 2])) - TaylorSeries.zero!(tmp3954) - tmp3954.coeffs[1] = constant_term(dq[6N + 1]) * constant_term(tmp3953) - TaylorSeries.zero!(dq[6N + 3]) - (dq[6N + 3]).coeffs[1] = constant_term(q[6N + 6]) - constant_term(tmp3954) - TaylorSeries.zero!(tmp3956) - tmp3956.coeffs[1] = constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1) - TaylorSeries.zero!(tmp3957) - tmp3957.coeffs[1] = constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2) - TaylorSeries.zero!(tmp3958) - tmp3958.coeffs[1] = constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3) - TaylorSeries.zero!(tmp3959) - tmp3959.coeffs[1] = constant_term(tmp3957) + constant_term(tmp3958) - TaylorSeries.zero!(dq[6N + 4]) - (dq[6N + 4]).coeffs[1] = constant_term(tmp3956) + constant_term(tmp3959) - TaylorSeries.zero!(tmp3961) - tmp3961.coeffs[1] = constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1) - TaylorSeries.zero!(tmp3962) - tmp3962.coeffs[1] = constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2) - TaylorSeries.zero!(tmp3963) - tmp3963.coeffs[1] = constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3) - TaylorSeries.zero!(tmp3964) - tmp3964.coeffs[1] = constant_term(tmp3962) + constant_term(tmp3963) - TaylorSeries.zero!(dq[6N + 5]) - (dq[6N + 5]).coeffs[1] = constant_term(tmp3961) + constant_term(tmp3964) - TaylorSeries.zero!(tmp3966) - tmp3966.coeffs[1] = constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1) - TaylorSeries.zero!(tmp3967) - tmp3967.coeffs[1] = constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2) - TaylorSeries.zero!(tmp3968) - tmp3968.coeffs[1] = constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3) - TaylorSeries.zero!(tmp3969) - tmp3969.coeffs[1] = constant_term(tmp3967) + constant_term(tmp3968) - TaylorSeries.zero!(dq[6N + 6]) - (dq[6N + 6]).coeffs[1] = constant_term(tmp3966) + constant_term(tmp3969) - TaylorSeries.zero!(tmp3971) - tmp3971.coeffs[1] = sin(constant_term(q[6N + 8])) - TaylorSeries.zero!(tmp4078) - tmp4078.coeffs[1] = cos(constant_term(q[6N + 8])) - TaylorSeries.zero!(tmp3972) - tmp3972.coeffs[1] = constant_term(ω_c_CE_2) / constant_term(tmp3971) - TaylorSeries.zero!(dq[6N + 9]) - (dq[6N + 9]).coeffs[1] = -(constant_term(tmp3972)) - TaylorSeries.zero!(tmp3974) - tmp3974.coeffs[1] = cos(constant_term(q[6N + 8])) - TaylorSeries.zero!(tmp4079) - tmp4079.coeffs[1] = sin(constant_term(q[6N + 8])) - TaylorSeries.zero!(tmp3975) - tmp3975.coeffs[1] = constant_term(dq[6N + 9]) * constant_term(tmp3974) - TaylorSeries.zero!(dq[6N + 7]) - (dq[6N + 7]).coeffs[1] = constant_term(ω_c_CE_3) - constant_term(tmp3975) - TaylorSeries.zero!(dq[6N + 8]) - (dq[6N + 8]).coeffs[1] = identity(constant_term(ω_c_CE_1)) - TaylorSeries.zero!(dq[6N + 10]) - (dq[6N + 10]).coeffs[1] = constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1) - TaylorSeries.zero!(dq[6N + 11]) - (dq[6N + 11]).coeffs[1] = constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2) - TaylorSeries.zero!(dq[6N + 12]) - (dq[6N + 12]).coeffs[1] = constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3) - TaylorSeries.zero!(tmp3980) - tmp3980.coeffs[1] = constant_term(newtonianCoeff[su, ea]) * constant_term(J2_t[su]) - TaylorSeries.zero!(tmp3983) - tmp3983.coeffs[1] = constant_term(sin_ϕ[su, ea]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3984) - tmp3984.coeffs[1] = constant_term(3) * constant_term(tmp3983) - TaylorSeries.zero!(tmp3985) - tmp3985.coeffs[1] = constant_term(one_t) - constant_term(tmp3984) - TaylorSeries.zero!(tmp3987) - tmp3987.coeffs[1] = constant_term(tmp3985) / constant_term(2) - TaylorSeries.zero!(w_LE) - w_LE.coeffs[1] = constant_term(tmp3980) * constant_term(tmp3987) - TaylorSeries.zero!(tmp3990) - tmp3990.coeffs[1] = constant_term(0.5) * constant_term(v2[ea]) - TaylorSeries.zero!(tmp3991) - tmp3991.coeffs[1] = constant_term(tmp3990) + constant_term(newtonianNb_Potential[ea]) - TaylorSeries.zero!(α_TTmTDB) - α_TTmTDB.coeffs[1] = constant_term(tmp3991) + constant_term(w_LE) - TaylorSeries.zero!(v4E) - v4E.coeffs[1] = constant_term(v2[ea]) ^ float(constant_term(2)) - TaylorSeries.zero!(ϕ_Earth_Newtonian_sq) - ϕ_Earth_Newtonian_sq.coeffs[1] = constant_term(newtonianNb_Potential[ea]) ^ float(constant_term(2)) - TaylorSeries.zero!(tmp3998) - tmp3998.coeffs[1] = constant_term(ϕ_Earth_Newtonian_sq) / constant_term(2) - TaylorSeries.zero!(tmp4000) - tmp4000.coeffs[1] = constant_term(v4E) / constant_term(8) - TaylorSeries.zero!(β_TTmTDB) - β_TTmTDB.coeffs[1] = constant_term(tmp3998) - constant_term(tmp4000) - for i = 1:N - if i == ea - continue - else - TaylorSeries.zero!(β_TTmTDB_i_1[i, ea]) - (β_TTmTDB_i_1[i, ea]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, ea]) - TaylorSeries.zero!(tmp4005[ea]) - (tmp4005[ea]).coeffs[1] = constant_term(1.5) * constant_term(v2[ea]) - TaylorSeries.zero!(tmp4007[i]) - (tmp4007[i]).coeffs[1] = constant_term(2) * constant_term(v2[i]) - TaylorSeries.zero!(tmp4008[ea]) - (tmp4008[ea]).coeffs[1] = constant_term(tmp4005[ea]) + constant_term(tmp4007[i]) - TaylorSeries.zero!(β_TTmTDB_i_2[i]) - (β_TTmTDB_i_2[i]).coeffs[1] = constant_term(newtonianNb_Potential[i]) - constant_term(tmp4008[ea]) - TaylorSeries.zero!(tmp4010[i, ea]) - (tmp4010[i, ea]).coeffs[1] = constant_term(dq[3 * (N + i) - 2]) * constant_term(X[i, ea]) - TaylorSeries.zero!(tmp4011[i, ea]) - (tmp4011[i, ea]).coeffs[1] = constant_term(dq[3 * (N + i) - 1]) * constant_term(Y[i, ea]) - TaylorSeries.zero!(tmp4012[i, ea]) - (tmp4012[i, ea]).coeffs[1] = constant_term(tmp4010[i, ea]) + constant_term(tmp4011[i, ea]) - TaylorSeries.zero!(tmp4013[i, ea]) - (tmp4013[i, ea]).coeffs[1] = constant_term(dq[3 * (N + i)]) * constant_term(Z[i, ea]) - TaylorSeries.zero!(tmp4014[i, ea]) - (tmp4014[i, ea]).coeffs[1] = constant_term(tmp4012[i, ea]) + constant_term(tmp4013[i, ea]) - TaylorSeries.zero!(β_TTmTDB_i_3[i, ea]) - (β_TTmTDB_i_3[i, ea]).coeffs[1] = constant_term(tmp4014[i, ea]) / constant_term(2) - TaylorSeries.zero!(β_TTmTDB_i_4[i, ea]) - (β_TTmTDB_i_4[i, ea]).coeffs[1] = constant_term(rij_dot_vi_div_rij_sq[i, ea]) / constant_term(2) - TaylorSeries.zero!(tmp4019[i, ea]) - (tmp4019[i, ea]).coeffs[1] = constant_term(β_TTmTDB_i_1[i, ea]) + constant_term(β_TTmTDB_i_2[i]) - TaylorSeries.zero!(tmp4020[i, ea]) - (tmp4020[i, ea]).coeffs[1] = constant_term(β_TTmTDB_i_3[i, ea]) + constant_term(β_TTmTDB_i_4[i, ea]) - TaylorSeries.zero!(β_TTmTDB_i[i, ea]) - (β_TTmTDB_i[i, ea]).coeffs[1] = constant_term(tmp4019[i, ea]) + constant_term(tmp4020[i, ea]) - TaylorSeries.zero!(tmp4022[i, ea]) - (tmp4022[i, ea]).coeffs[1] = constant_term(newtonian1b_Potential[i, ea]) * constant_term(β_TTmTDB_i[i, ea]) - TaylorSeries.zero!(temp_β_TTmTDB[i, ea]) - (temp_β_TTmTDB[i, ea]).coeffs[1] = constant_term(β_TTmTDB) + constant_term(tmp4022[i, ea]) - TaylorSeries.zero!(β_TTmTDB) - β_TTmTDB.coeffs[1] = identity(constant_term(temp_β_TTmTDB[i, ea])) - end - end - TaylorSeries.zero!(tmp4024) - tmp4024.coeffs[1] = constant_term(c_m2) * constant_term(α_TTmTDB) - TaylorSeries.zero!(tmp4025) - tmp4025.coeffs[1] = constant_term(L_B) - constant_term(tmp4024) - TaylorSeries.zero!(tmp4026) - tmp4026.coeffs[1] = constant_term(tmp4025) * constant_term(one_plus_L_B_minus_L_G) - TaylorSeries.zero!(tmp4027) - tmp4027.coeffs[1] = constant_term(c_m4) * constant_term(β_TTmTDB) - TaylorSeries.zero!(tmp4028) - tmp4028.coeffs[1] = constant_term(tmp4027) - constant_term(L_G) - TaylorSeries.zero!(tmp4029) - tmp4029.coeffs[1] = constant_term(tmp4026) + constant_term(tmp4028) - TaylorSeries.zero!(dq[6N + 13]) - (dq[6N + 13]).coeffs[1] = constant_term(daysec) * constant_term(tmp4029) - for __idx = eachindex(q) - (q[__idx]).coeffs[2] = (dq[__idx]).coeffs[1] - end - for ord = 1:order - 1 + for ord = 0:order - 1 ordnext = ord + 1 TaylorSeries.identity!(N_MfigM[1], zero_q_1, ord) TaylorSeries.identity!(N_MfigM[2], zero_q_1, ord) @@ -10765,109 +6973,109 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(ϕ_m, q[6N + 1], ord) TaylorSeries.identity!(θ_m, q[6N + 2], ord) TaylorSeries.identity!(ψ_m, q[6N + 3], ord) - TaylorSeries.sincos!(tmp4031, tmp2961, ϕ_m, ord) - TaylorSeries.sincos!(tmp4032, tmp2962, ψ_m, ord) - TaylorSeries.mul!(tmp2963, tmp2961, tmp2962, ord) - TaylorSeries.sincos!(tmp4033, tmp2964, θ_m, ord) - TaylorSeries.sincos!(tmp2965, tmp4034, ϕ_m, ord) - TaylorSeries.mul!(tmp2966, tmp2964, tmp2965, ord) - TaylorSeries.sincos!(tmp2967, tmp4035, ψ_m, ord) - TaylorSeries.mul!(tmp2968, tmp2966, tmp2967, ord) - TaylorSeries.subst!(RotM[1, 1, mo], tmp2963, tmp2968, ord) - TaylorSeries.sincos!(tmp4036, tmp2970, θ_m, ord) - TaylorSeries.subst!(tmp2971, tmp2970, ord) - TaylorSeries.sincos!(tmp4037, tmp2972, ψ_m, ord) - TaylorSeries.mul!(tmp2973, tmp2971, tmp2972, ord) - TaylorSeries.sincos!(tmp2974, tmp4038, ϕ_m, ord) - TaylorSeries.mul!(tmp2975, tmp2973, tmp2974, ord) - TaylorSeries.sincos!(tmp4039, tmp2976, ϕ_m, ord) - TaylorSeries.sincos!(tmp2977, tmp4040, ψ_m, ord) + TaylorSeries.sincos!(tmp4046, tmp2976, ϕ_m, ord) + TaylorSeries.sincos!(tmp4047, tmp2977, ψ_m, ord) TaylorSeries.mul!(tmp2978, tmp2976, tmp2977, ord) - TaylorSeries.subst!(RotM[2, 1, mo], tmp2975, tmp2978, ord) - TaylorSeries.sincos!(tmp2980, tmp4041, θ_m, ord) - TaylorSeries.sincos!(tmp2981, tmp4042, ϕ_m, ord) - TaylorSeries.mul!(RotM[3, 1, mo], tmp2980, tmp2981, ord) - TaylorSeries.sincos!(tmp4043, tmp2983, ψ_m, ord) - TaylorSeries.sincos!(tmp2984, tmp4044, ϕ_m, ord) - TaylorSeries.mul!(tmp2985, tmp2983, tmp2984, ord) - TaylorSeries.sincos!(tmp4045, tmp2986, θ_m, ord) - TaylorSeries.sincos!(tmp4046, tmp2987, ϕ_m, ord) + TaylorSeries.sincos!(tmp4048, tmp2979, θ_m, ord) + TaylorSeries.sincos!(tmp2980, tmp4049, ϕ_m, ord) + TaylorSeries.mul!(tmp2981, tmp2979, tmp2980, ord) + TaylorSeries.sincos!(tmp2982, tmp4050, ψ_m, ord) + TaylorSeries.mul!(tmp2983, tmp2981, tmp2982, ord) + TaylorSeries.subst!(RotM[1, 1, mo], tmp2978, tmp2983, ord) + TaylorSeries.sincos!(tmp4051, tmp2985, θ_m, ord) + TaylorSeries.subst!(tmp2986, tmp2985, ord) + TaylorSeries.sincos!(tmp4052, tmp2987, ψ_m, ord) TaylorSeries.mul!(tmp2988, tmp2986, tmp2987, ord) - TaylorSeries.sincos!(tmp2989, tmp4047, ψ_m, ord) + TaylorSeries.sincos!(tmp2989, tmp4053, ϕ_m, ord) TaylorSeries.mul!(tmp2990, tmp2988, tmp2989, ord) - TaylorSeries.add!(RotM[1, 2, mo], tmp2985, tmp2990, ord) - TaylorSeries.sincos!(tmp4048, tmp2992, θ_m, ord) - TaylorSeries.sincos!(tmp4049, tmp2993, ϕ_m, ord) - TaylorSeries.mul!(tmp2994, tmp2992, tmp2993, ord) - TaylorSeries.sincos!(tmp4050, tmp2995, ψ_m, ord) - TaylorSeries.mul!(tmp2996, tmp2994, tmp2995, ord) - TaylorSeries.sincos!(tmp2997, tmp4051, ϕ_m, ord) - TaylorSeries.sincos!(tmp2998, tmp4052, ψ_m, ord) - TaylorSeries.mul!(tmp2999, tmp2997, tmp2998, ord) - TaylorSeries.subst!(RotM[2, 2, mo], tmp2996, tmp2999, ord) - TaylorSeries.sincos!(tmp4053, tmp3001, ϕ_m, ord) - TaylorSeries.subst!(tmp3002, tmp3001, ord) - TaylorSeries.sincos!(tmp3003, tmp4054, θ_m, ord) - TaylorSeries.mul!(RotM[3, 2, mo], tmp3002, tmp3003, ord) - TaylorSeries.sincos!(tmp3005, tmp4055, θ_m, ord) - TaylorSeries.sincos!(tmp3006, tmp4056, ψ_m, ord) - TaylorSeries.mul!(RotM[1, 3, mo], tmp3005, tmp3006, ord) - TaylorSeries.sincos!(tmp4057, tmp3008, ψ_m, ord) - TaylorSeries.sincos!(tmp3009, tmp4058, θ_m, ord) - TaylorSeries.mul!(RotM[2, 3, mo], tmp3008, tmp3009, ord) - TaylorSeries.sincos!(tmp4059, RotM[3, 3, mo], θ_m, ord) + TaylorSeries.sincos!(tmp4054, tmp2991, ϕ_m, ord) + TaylorSeries.sincos!(tmp2992, tmp4055, ψ_m, ord) + TaylorSeries.mul!(tmp2993, tmp2991, tmp2992, ord) + TaylorSeries.subst!(RotM[2, 1, mo], tmp2990, tmp2993, ord) + TaylorSeries.sincos!(tmp2995, tmp4056, θ_m, ord) + TaylorSeries.sincos!(tmp2996, tmp4057, ϕ_m, ord) + TaylorSeries.mul!(RotM[3, 1, mo], tmp2995, tmp2996, ord) + TaylorSeries.sincos!(tmp4058, tmp2998, ψ_m, ord) + TaylorSeries.sincos!(tmp2999, tmp4059, ϕ_m, ord) + TaylorSeries.mul!(tmp3000, tmp2998, tmp2999, ord) + TaylorSeries.sincos!(tmp4060, tmp3001, θ_m, ord) + TaylorSeries.sincos!(tmp4061, tmp3002, ϕ_m, ord) + TaylorSeries.mul!(tmp3003, tmp3001, tmp3002, ord) + TaylorSeries.sincos!(tmp3004, tmp4062, ψ_m, ord) + TaylorSeries.mul!(tmp3005, tmp3003, tmp3004, ord) + TaylorSeries.add!(RotM[1, 2, mo], tmp3000, tmp3005, ord) + TaylorSeries.sincos!(tmp4063, tmp3007, θ_m, ord) + TaylorSeries.sincos!(tmp4064, tmp3008, ϕ_m, ord) + TaylorSeries.mul!(tmp3009, tmp3007, tmp3008, ord) + TaylorSeries.sincos!(tmp4065, tmp3010, ψ_m, ord) + TaylorSeries.mul!(tmp3011, tmp3009, tmp3010, ord) + TaylorSeries.sincos!(tmp3012, tmp4066, ϕ_m, ord) + TaylorSeries.sincos!(tmp3013, tmp4067, ψ_m, ord) + TaylorSeries.mul!(tmp3014, tmp3012, tmp3013, ord) + TaylorSeries.subst!(RotM[2, 2, mo], tmp3011, tmp3014, ord) + TaylorSeries.sincos!(tmp4068, tmp3016, ϕ_m, ord) + TaylorSeries.subst!(tmp3017, tmp3016, ord) + TaylorSeries.sincos!(tmp3018, tmp4069, θ_m, ord) + TaylorSeries.mul!(RotM[3, 2, mo], tmp3017, tmp3018, ord) + TaylorSeries.sincos!(tmp3020, tmp4070, θ_m, ord) + TaylorSeries.sincos!(tmp3021, tmp4071, ψ_m, ord) + TaylorSeries.mul!(RotM[1, 3, mo], tmp3020, tmp3021, ord) + TaylorSeries.sincos!(tmp4072, tmp3023, ψ_m, ord) + TaylorSeries.sincos!(tmp3024, tmp4073, θ_m, ord) + TaylorSeries.mul!(RotM[2, 3, mo], tmp3023, tmp3024, ord) + TaylorSeries.sincos!(tmp4074, RotM[3, 3, mo], θ_m, ord) TaylorSeries.identity!(ϕ_c, q[6N + 7], ord) - TaylorSeries.sincos!(tmp4060, tmp3012, ϕ_c, ord) - TaylorSeries.mul!(tmp3013, RotM[1, 1, mo], tmp3012, ord) - TaylorSeries.sincos!(tmp3014, tmp4061, ϕ_c, ord) - TaylorSeries.mul!(tmp3015, RotM[1, 2, mo], tmp3014, ord) - TaylorSeries.add!(mantlef2coref[1, 1], tmp3013, tmp3015, ord) - TaylorSeries.subst!(tmp3017, RotM[1, 1, mo], ord) - TaylorSeries.sincos!(tmp3018, tmp4062, ϕ_c, ord) - TaylorSeries.mul!(tmp3019, tmp3017, tmp3018, ord) - TaylorSeries.sincos!(tmp4063, tmp3020, ϕ_c, ord) - TaylorSeries.mul!(tmp3021, RotM[1, 2, mo], tmp3020, ord) - TaylorSeries.add!(mantlef2coref[2, 1], tmp3019, tmp3021, ord) + TaylorSeries.sincos!(tmp4075, tmp3027, ϕ_c, ord) + TaylorSeries.mul!(tmp3028, RotM[1, 1, mo], tmp3027, ord) + TaylorSeries.sincos!(tmp3029, tmp4076, ϕ_c, ord) + TaylorSeries.mul!(tmp3030, RotM[1, 2, mo], tmp3029, ord) + TaylorSeries.add!(mantlef2coref[1, 1], tmp3028, tmp3030, ord) + TaylorSeries.subst!(tmp3032, RotM[1, 1, mo], ord) + TaylorSeries.sincos!(tmp3033, tmp4077, ϕ_c, ord) + TaylorSeries.mul!(tmp3034, tmp3032, tmp3033, ord) + TaylorSeries.sincos!(tmp4078, tmp3035, ϕ_c, ord) + TaylorSeries.mul!(tmp3036, RotM[1, 2, mo], tmp3035, ord) + TaylorSeries.add!(mantlef2coref[2, 1], tmp3034, tmp3036, ord) TaylorSeries.identity!(mantlef2coref[3, 1], RotM[1, 3, mo], ord) - TaylorSeries.sincos!(tmp4064, tmp3023, ϕ_c, ord) - TaylorSeries.mul!(tmp3024, RotM[2, 1, mo], tmp3023, ord) - TaylorSeries.sincos!(tmp3025, tmp4065, ϕ_c, ord) - TaylorSeries.mul!(tmp3026, RotM[2, 2, mo], tmp3025, ord) - TaylorSeries.add!(mantlef2coref[1, 2], tmp3024, tmp3026, ord) - TaylorSeries.subst!(tmp3028, RotM[2, 1, mo], ord) - TaylorSeries.sincos!(tmp3029, tmp4066, ϕ_c, ord) - TaylorSeries.mul!(tmp3030, tmp3028, tmp3029, ord) - TaylorSeries.sincos!(tmp4067, tmp3031, ϕ_c, ord) - TaylorSeries.mul!(tmp3032, RotM[2, 2, mo], tmp3031, ord) - TaylorSeries.add!(mantlef2coref[2, 2], tmp3030, tmp3032, ord) + TaylorSeries.sincos!(tmp4079, tmp3038, ϕ_c, ord) + TaylorSeries.mul!(tmp3039, RotM[2, 1, mo], tmp3038, ord) + TaylorSeries.sincos!(tmp3040, tmp4080, ϕ_c, ord) + TaylorSeries.mul!(tmp3041, RotM[2, 2, mo], tmp3040, ord) + TaylorSeries.add!(mantlef2coref[1, 2], tmp3039, tmp3041, ord) + TaylorSeries.subst!(tmp3043, RotM[2, 1, mo], ord) + TaylorSeries.sincos!(tmp3044, tmp4081, ϕ_c, ord) + TaylorSeries.mul!(tmp3045, tmp3043, tmp3044, ord) + TaylorSeries.sincos!(tmp4082, tmp3046, ϕ_c, ord) + TaylorSeries.mul!(tmp3047, RotM[2, 2, mo], tmp3046, ord) + TaylorSeries.add!(mantlef2coref[2, 2], tmp3045, tmp3047, ord) TaylorSeries.identity!(mantlef2coref[3, 2], RotM[2, 3, mo], ord) - TaylorSeries.sincos!(tmp4068, tmp3034, ϕ_c, ord) - TaylorSeries.mul!(tmp3035, RotM[3, 1, mo], tmp3034, ord) - TaylorSeries.sincos!(tmp3036, tmp4069, ϕ_c, ord) - TaylorSeries.mul!(tmp3037, RotM[3, 2, mo], tmp3036, ord) - TaylorSeries.add!(mantlef2coref[1, 3], tmp3035, tmp3037, ord) - TaylorSeries.subst!(tmp3039, RotM[3, 1, mo], ord) - TaylorSeries.sincos!(tmp3040, tmp4070, ϕ_c, ord) - TaylorSeries.mul!(tmp3041, tmp3039, tmp3040, ord) - TaylorSeries.sincos!(tmp4071, tmp3042, ϕ_c, ord) - TaylorSeries.mul!(tmp3043, RotM[3, 2, mo], tmp3042, ord) - TaylorSeries.add!(mantlef2coref[2, 3], tmp3041, tmp3043, ord) + TaylorSeries.sincos!(tmp4083, tmp3049, ϕ_c, ord) + TaylorSeries.mul!(tmp3050, RotM[3, 1, mo], tmp3049, ord) + TaylorSeries.sincos!(tmp3051, tmp4084, ϕ_c, ord) + TaylorSeries.mul!(tmp3052, RotM[3, 2, mo], tmp3051, ord) + TaylorSeries.add!(mantlef2coref[1, 3], tmp3050, tmp3052, ord) + TaylorSeries.subst!(tmp3054, RotM[3, 1, mo], ord) + TaylorSeries.sincos!(tmp3055, tmp4085, ϕ_c, ord) + TaylorSeries.mul!(tmp3056, tmp3054, tmp3055, ord) + TaylorSeries.sincos!(tmp4086, tmp3057, ϕ_c, ord) + TaylorSeries.mul!(tmp3058, RotM[3, 2, mo], tmp3057, ord) + TaylorSeries.add!(mantlef2coref[2, 3], tmp3056, tmp3058, ord) TaylorSeries.identity!(mantlef2coref[3, 3], RotM[3, 3, mo], ord) - TaylorSeries.mul!(tmp3045, mantlef2coref[1, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp3046, mantlef2coref[1, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp3047, mantlef2coref[1, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp3048, tmp3046, tmp3047, ord) - TaylorSeries.add!(ω_c_CE_1, tmp3045, tmp3048, ord) - TaylorSeries.mul!(tmp3050, mantlef2coref[2, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp3051, mantlef2coref[2, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp3052, mantlef2coref[2, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp3053, tmp3051, tmp3052, ord) - TaylorSeries.add!(ω_c_CE_2, tmp3050, tmp3053, ord) - TaylorSeries.mul!(tmp3055, mantlef2coref[3, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp3056, mantlef2coref[3, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp3057, mantlef2coref[3, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp3058, tmp3056, tmp3057, ord) - TaylorSeries.add!(ω_c_CE_3, tmp3055, tmp3058, ord) + TaylorSeries.mul!(tmp3060, mantlef2coref[1, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp3061, mantlef2coref[1, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp3062, mantlef2coref[1, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp3063, tmp3061, tmp3062, ord) + TaylorSeries.add!(ω_c_CE_1, tmp3060, tmp3063, ord) + TaylorSeries.mul!(tmp3065, mantlef2coref[2, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp3066, mantlef2coref[2, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp3067, mantlef2coref[2, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp3068, tmp3066, tmp3067, ord) + TaylorSeries.add!(ω_c_CE_2, tmp3065, tmp3068, ord) + TaylorSeries.mul!(tmp3070, mantlef2coref[3, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp3071, mantlef2coref[3, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp3072, mantlef2coref[3, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp3073, tmp3071, tmp3072, ord) + TaylorSeries.add!(ω_c_CE_3, tmp3070, tmp3073, ord) TaylorSeries.identity!(J2_t[su], J2S_t, ord) TaylorSeries.identity!(J2_t[ea], J2E_t, ord) for j = 1:N @@ -10895,35 +7103,35 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.subst!(U[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.subst!(V[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.subst!(W[i, j], dq[3i], dq[3j], ord) - TaylorSeries.mul!(tmp3067[3j - 2], 4, dq[3j - 2], ord) - TaylorSeries.mul!(tmp3069[3i - 2], 3, dq[3i - 2], ord) - TaylorSeries.subst!(_4U_m_3X[i, j], tmp3067[3j - 2], tmp3069[3i - 2], ord) - TaylorSeries.mul!(tmp3072[3j - 1], 4, dq[3j - 1], ord) - TaylorSeries.mul!(tmp3074[3i - 1], 3, dq[3i - 1], ord) - TaylorSeries.subst!(_4V_m_3Y[i, j], tmp3072[3j - 1], tmp3074[3i - 1], ord) - TaylorSeries.mul!(tmp3077[3j], 4, dq[3j], ord) - TaylorSeries.mul!(tmp3079[3i], 3, dq[3i], ord) - TaylorSeries.subst!(_4W_m_3Z[i, j], tmp3077[3j], tmp3079[3i], ord) + TaylorSeries.mul!(tmp3082[3j - 2], 4, dq[3j - 2], ord) + TaylorSeries.mul!(tmp3084[3i - 2], 3, dq[3i - 2], ord) + TaylorSeries.subst!(_4U_m_3X[i, j], tmp3082[3j - 2], tmp3084[3i - 2], ord) + TaylorSeries.mul!(tmp3087[3j - 1], 4, dq[3j - 1], ord) + TaylorSeries.mul!(tmp3089[3i - 1], 3, dq[3i - 1], ord) + TaylorSeries.subst!(_4V_m_3Y[i, j], tmp3087[3j - 1], tmp3089[3i - 1], ord) + TaylorSeries.mul!(tmp3092[3j], 4, dq[3j], ord) + TaylorSeries.mul!(tmp3094[3i], 3, dq[3i], ord) + TaylorSeries.subst!(_4W_m_3Z[i, j], tmp3092[3j], tmp3094[3i], ord) TaylorSeries.mul!(pn2x[i, j], X[i, j], _4U_m_3X[i, j], ord) TaylorSeries.mul!(pn2y[i, j], Y[i, j], _4V_m_3Y[i, j], ord) TaylorSeries.mul!(pn2z[i, j], Z[i, j], _4W_m_3Z[i, j], ord) TaylorSeries.mul!(UU[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.mul!(VV[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.mul!(WW[i, j], dq[3i], dq[3j], ord) - TaylorSeries.add!(tmp3087[i, j], UU[i, j], VV[i, j], ord) - TaylorSeries.add!(vi_dot_vj[i, j], tmp3087[i, j], WW[i, j], ord) - TaylorSeries.pow!(tmp3090[i, j], X[i, j], 2, ord) - TaylorSeries.pow!(tmp3092[i, j], Y[i, j], 2, ord) - TaylorSeries.add!(tmp3093[i, j], tmp3090[i, j], tmp3092[i, j], ord) - TaylorSeries.pow!(tmp3095[i, j], Z[i, j], 2, ord) - TaylorSeries.add!(r_p2[i, j], tmp3093[i, j], tmp3095[i, j], ord) + TaylorSeries.add!(tmp3102[i, j], UU[i, j], VV[i, j], ord) + TaylorSeries.add!(vi_dot_vj[i, j], tmp3102[i, j], WW[i, j], ord) + TaylorSeries.pow!(tmp3105[i, j], X[i, j], tmp4087[i, j], 2, ord) + TaylorSeries.pow!(tmp3107[i, j], Y[i, j], tmp4088[i, j], 2, ord) + TaylorSeries.add!(tmp3108[i, j], tmp3105[i, j], tmp3107[i, j], ord) + TaylorSeries.pow!(tmp3110[i, j], Z[i, j], tmp4089[i, j], 2, ord) + TaylorSeries.add!(r_p2[i, j], tmp3108[i, j], tmp3110[i, j], ord) TaylorSeries.sqrt!(r_p1d2[i, j], r_p2[i, j], ord) - TaylorSeries.pow!(r_p3d2[i, j], r_p2[i, j], 1.5, ord) - TaylorSeries.pow!(r_p7d2[i, j], r_p2[i, j], 3.5, ord) + TaylorSeries.pow!(r_p3d2[i, j], r_p2[i, j], tmp4090[i, j], 1.5, ord) + TaylorSeries.pow!(r_p7d2[i, j], r_p2[i, j], tmp4091[i, j], 3.5, ord) TaylorSeries.div!(newtonianCoeff[i, j], μ[i], r_p3d2[i, j], ord) - TaylorSeries.add!(tmp3103[i, j], pn2x[i, j], pn2y[i, j], ord) - TaylorSeries.add!(tmp3104[i, j], tmp3103[i, j], pn2z[i, j], ord) - TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp3104[i, j], ord) + TaylorSeries.add!(tmp3118[i, j], pn2x[i, j], pn2y[i, j], ord) + TaylorSeries.add!(tmp3119[i, j], tmp3118[i, j], pn2z[i, j], ord) + TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp3119[i, j], ord) TaylorSeries.mul!(newton_acc_X[i, j], X[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Y[i, j], Y[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Z[i, j], Z[i, j], newtonianCoeff[i, j], ord) @@ -10932,39 +7140,39 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(U_t_pn2[i, j], pn2[i, j], U[i, j], ord) TaylorSeries.mul!(V_t_pn2[i, j], pn2[i, j], V[i, j], ord) TaylorSeries.mul!(W_t_pn2[i, j], pn2[i, j], W[i, j], ord) - TaylorSeries.mul!(tmp3115[i, j], X[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp3115[i, j], ord) + TaylorSeries.mul!(tmp3130[i, j], X[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp3130[i, j], ord) TaylorSeries.identity!(newtonX[j], temp_001[i, j], ord) - TaylorSeries.mul!(tmp3117[i, j], Y[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp3117[i, j], ord) + TaylorSeries.mul!(tmp3132[i, j], Y[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp3132[i, j], ord) TaylorSeries.identity!(newtonY[j], temp_002[i, j], ord) - TaylorSeries.mul!(tmp3119[i, j], Z[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp3119[i, j], ord) + TaylorSeries.mul!(tmp3134[i, j], Z[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp3134[i, j], ord) TaylorSeries.identity!(newtonZ[j], temp_003[i, j], ord) TaylorSeries.add!(temp_004[i, j], newtonianNb_Potential[j], newtonian1b_Potential[i, j], ord) TaylorSeries.identity!(newtonianNb_Potential[j], temp_004[i, j], ord) end end - TaylorSeries.pow!(tmp3123[3j - 2], dq[3j - 2], 2, ord) - TaylorSeries.pow!(tmp3125[3j - 1], dq[3j - 1], 2, ord) - TaylorSeries.add!(tmp3126[3j - 2], tmp3123[3j - 2], tmp3125[3j - 1], ord) - TaylorSeries.pow!(tmp3128[3j], dq[3j], 2, ord) - TaylorSeries.add!(v2[j], tmp3126[3j - 2], tmp3128[3j], ord) + TaylorSeries.pow!(tmp3138[3j - 2], dq[3j - 2], tmp4092[3j - 2], 2, ord) + TaylorSeries.pow!(tmp3140[3j - 1], dq[3j - 1], tmp4093[3j - 1], 2, ord) + TaylorSeries.add!(tmp3141[3j - 2], tmp3138[3j - 2], tmp3140[3j - 1], ord) + TaylorSeries.pow!(tmp3143[3j], dq[3j], tmp4094[3j], 2, ord) + TaylorSeries.add!(v2[j], tmp3141[3j - 2], tmp3143[3j], ord) end - TaylorSeries.add!(tmp3130, I_M_t[1, 1], I_M_t[2, 2], ord) - TaylorSeries.div!(tmp3132, tmp3130, 2, ord) - TaylorSeries.subst!(tmp3133, I_M_t[3, 3], tmp3132, ord) - TaylorSeries.div!(J2M_t, tmp3133, μ[mo], ord) - TaylorSeries.subst!(tmp3135, I_M_t[2, 2], I_M_t[1, 1], ord) - TaylorSeries.div!(tmp3136, tmp3135, μ[mo], ord) - TaylorSeries.div!(C22M_t, tmp3136, 4, ord) - TaylorSeries.subst!(tmp3139, I_M_t[1, 3], ord) - TaylorSeries.div!(C21M_t, tmp3139, μ[mo], ord) - TaylorSeries.subst!(tmp3141, I_M_t[3, 2], ord) - TaylorSeries.div!(S21M_t, tmp3141, μ[mo], ord) - TaylorSeries.subst!(tmp3143, I_M_t[2, 1], ord) - TaylorSeries.div!(tmp3144, tmp3143, μ[mo], ord) - TaylorSeries.div!(S22M_t, tmp3144, 2, ord) + TaylorSeries.add!(tmp3145, I_M_t[1, 1], I_M_t[2, 2], ord) + TaylorSeries.div!(tmp3147, tmp3145, 2, ord) + TaylorSeries.subst!(tmp3148, I_M_t[3, 3], tmp3147, ord) + TaylorSeries.div!(J2M_t, tmp3148, μ[mo], ord) + TaylorSeries.subst!(tmp3150, I_M_t[2, 2], I_M_t[1, 1], ord) + TaylorSeries.div!(tmp3151, tmp3150, μ[mo], ord) + TaylorSeries.div!(C22M_t, tmp3151, 4, ord) + TaylorSeries.subst!(tmp3154, I_M_t[1, 3], ord) + TaylorSeries.div!(C21M_t, tmp3154, μ[mo], ord) + TaylorSeries.subst!(tmp3156, I_M_t[3, 2], ord) + TaylorSeries.div!(S21M_t, tmp3156, μ[mo], ord) + TaylorSeries.subst!(tmp3158, I_M_t[2, 1], ord) + TaylorSeries.div!(tmp3159, tmp3158, μ[mo], ord) + TaylorSeries.div!(S22M_t, tmp3159, 2, ord) TaylorSeries.identity!(J2_t[mo], J2M_t, ord) #= /Users/Jorge/projects/PlanetaryEphemeris/newjetcoeffs.jl:1380 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext @@ -10981,17 +7189,17 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(Z_bf_1[i, j], X[i, j], RotM[3, 1, j], ord) TaylorSeries.mul!(Z_bf_2[i, j], Y[i, j], RotM[3, 2, j], ord) TaylorSeries.mul!(Z_bf_3[i, j], Z[i, j], RotM[3, 3, j], ord) - TaylorSeries.add!(tmp3156[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) - TaylorSeries.add!(X_bf[i, j], tmp3156[i, j], X_bf_3[i, j], ord) - TaylorSeries.add!(tmp3158[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) - TaylorSeries.add!(Y_bf[i, j], tmp3158[i, j], Y_bf_3[i, j], ord) - TaylorSeries.add!(tmp3160[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) - TaylorSeries.add!(Z_bf[i, j], tmp3160[i, j], Z_bf_3[i, j], ord) + TaylorSeries.add!(tmp3171[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) + TaylorSeries.add!(X_bf[i, j], tmp3171[i, j], X_bf_3[i, j], ord) + TaylorSeries.add!(tmp3173[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) + TaylorSeries.add!(Y_bf[i, j], tmp3173[i, j], Y_bf_3[i, j], ord) + TaylorSeries.add!(tmp3175[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) + TaylorSeries.add!(Z_bf[i, j], tmp3175[i, j], Z_bf_3[i, j], ord) TaylorSeries.div!(sin_ϕ[i, j], Z_bf[i, j], r_p1d2[i, j], ord) - TaylorSeries.pow!(tmp3164[i, j], X_bf[i, j], 2, ord) - TaylorSeries.pow!(tmp3166[i, j], Y_bf[i, j], 2, ord) - TaylorSeries.add!(tmp3167[i, j], tmp3164[i, j], tmp3166[i, j], ord) - TaylorSeries.sqrt!(r_xy[i, j], tmp3167[i, j], ord) + TaylorSeries.pow!(tmp3179[i, j], X_bf[i, j], tmp4095[i, j], 2, ord) + TaylorSeries.pow!(tmp3181[i, j], Y_bf[i, j], tmp4096[i, j], 2, ord) + TaylorSeries.add!(tmp3182[i, j], tmp3179[i, j], tmp3181[i, j], ord) + TaylorSeries.sqrt!(r_xy[i, j], tmp3182[i, j], ord) TaylorSeries.div!(cos_ϕ[i, j], r_xy[i, j], r_p1d2[i, j], ord) TaylorSeries.div!(sin_λ[i, j], Y_bf[i, j], r_xy[i, j], ord) TaylorSeries.div!(cos_λ[i, j], X_bf[i, j], r_xy[i, j], ord) @@ -11000,35 +7208,35 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(dP_n[i, j, 1], zero_q_1, ord) TaylorSeries.identity!(dP_n[i, j, 2], one_t, ord) for n = 2:n1SEM[j] - TaylorSeries.mul!(tmp3172[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3173[i, j, n], tmp3172[i, j, n], fact1_jsem[n], ord) - TaylorSeries.mul!(tmp3174[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) - TaylorSeries.subst!(P_n[i, j, n + 1], tmp3173[i, j, n], tmp3174[i, j, n - 1], ord) - TaylorSeries.mul!(tmp3176[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3177[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) - TaylorSeries.add!(dP_n[i, j, n + 1], tmp3176[i, j, n], tmp3177[i, j, n], ord) - TaylorSeries.pow!(temp_rn[i, j, n], r_p1d2[i, j], fact5_jsem[n], ord) + TaylorSeries.mul!(tmp3187[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3188[i, j, n], tmp3187[i, j, n], fact1_jsem[n], ord) + TaylorSeries.mul!(tmp3189[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) + TaylorSeries.subst!(P_n[i, j, n + 1], tmp3188[i, j, n], tmp3189[i, j, n - 1], ord) + TaylorSeries.mul!(tmp3191[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3192[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) + TaylorSeries.add!(dP_n[i, j, n + 1], tmp3191[i, j, n], tmp3192[i, j, n], ord) + TaylorSeries.pow!(temp_rn[i, j, n], r_p1d2[i, j], tmp4097[i, j], fact5_jsem[n], ord) end - TaylorSeries.pow!(r_p4[i, j], r_p2[i, j], 2, ord) - TaylorSeries.mul!(tmp3182[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) - TaylorSeries.mul!(tmp3183[i, j, 3], tmp3182[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ξ[i, j], tmp3183[i, j, 3], r_p4[i, j], ord) - TaylorSeries.subst!(tmp3185[i, j, 3], dP_n[i, j, 3], ord) - TaylorSeries.mul!(tmp3186[i, j, 3], tmp3185[i, j, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3187[i, j, 3], tmp3186[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ζ[i, j], tmp3187[i, j, 3], r_p4[i, j], ord) + TaylorSeries.pow!(r_p4[i, j], r_p2[i, j], tmp4098[i, j], 2, ord) + TaylorSeries.mul!(tmp3197[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) + TaylorSeries.mul!(tmp3198[i, j, 3], tmp3197[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ξ[i, j], tmp3198[i, j, 3], r_p4[i, j], ord) + TaylorSeries.subst!(tmp3200[i, j, 3], dP_n[i, j, 3], ord) + TaylorSeries.mul!(tmp3201[i, j, 3], tmp3200[i, j, 3], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3202[i, j, 3], tmp3201[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ζ[i, j], tmp3202[i, j, 3], r_p4[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_J_ζ_36[i, j], zero_q_1, ord) for n = 3:n1SEM[j] - TaylorSeries.mul!(tmp3189[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) - TaylorSeries.mul!(tmp3190[i, j, n + 1], tmp3189[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp3191[i, j, n + 1], tmp3190[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjξ[i, j, n], tmp3191[i, j, n + 1], F_J_ξ_36[i, j], ord) - TaylorSeries.subst!(tmp3193[i, j, n + 1], dP_n[i, j, n + 1], ord) - TaylorSeries.mul!(tmp3194[i, j, n + 1], tmp3193[i, j, n + 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3195[i, j, n + 1], tmp3194[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp3196[i, j, n + 1], tmp3195[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjζ[i, j, n], tmp3196[i, j, n + 1], F_J_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp3204[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) + TaylorSeries.mul!(tmp3205[i, j, n + 1], tmp3204[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp3206[i, j, n + 1], tmp3205[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjξ[i, j, n], tmp3206[i, j, n + 1], F_J_ξ_36[i, j], ord) + TaylorSeries.subst!(tmp3208[i, j, n + 1], dP_n[i, j, n + 1], ord) + TaylorSeries.mul!(tmp3209[i, j, n + 1], tmp3208[i, j, n + 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3210[i, j, n + 1], tmp3209[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp3211[i, j, n + 1], tmp3210[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjζ[i, j, n], tmp3211[i, j, n + 1], F_J_ζ_36[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], temp_fjξ[i, j, n], ord) TaylorSeries.identity!(F_J_ζ_36[i, j], temp_fjζ[i, j, n], ord) end @@ -11041,69 +7249,69 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(P_nm[i, j, 1, 1], cos_ϕ[i, j], ord) TaylorSeries.mul!(cosϕ_dP_nm[i, j, 1, 1], sin_ϕ[i, j], lnm3[1], ord) else - TaylorSeries.mul!(tmp3199[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3200[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.add!(sin_mλ[i, j, m], tmp3199[i, j, m - 1], tmp3200[i, j, m - 1], ord) - TaylorSeries.mul!(tmp3202[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3203[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(cos_mλ[i, j, m], tmp3202[i, j, m - 1], tmp3203[i, j, m - 1], ord) - TaylorSeries.mul!(tmp3205[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp3205[i, j, m - 1, m - 1], lnm5[m], ord) + TaylorSeries.mul!(tmp3214[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3215[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.add!(sin_mλ[i, j, m], tmp3214[i, j, m - 1], tmp3215[i, j, m - 1], ord) + TaylorSeries.mul!(tmp3217[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3218[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(cos_mλ[i, j, m], tmp3217[i, j, m - 1], tmp3218[i, j, m - 1], ord) + TaylorSeries.mul!(tmp3220[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp3220[i, j, m - 1, m - 1], lnm5[m], ord) TaylorSeries.mul!(P_nm[i, j, m, m], secϕ_P_nm[i, j, m, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3208[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp3208[i, j, m, m], lnm3[m], ord) + TaylorSeries.mul!(tmp3223[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp3223[i, j, m, m], lnm3[m], ord) end for n = m + 1:n1SEM[mo] if n == m + 1 - TaylorSeries.mul!(tmp3210[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp3210[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp3225[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp3225[i, j, n - 1, m], lnm1[n, m], ord) else - TaylorSeries.mul!(tmp3212[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3213[i, j, n - 1, m], tmp3212[i, j, n - 1, m], lnm1[n, m], ord) - TaylorSeries.mul!(tmp3214[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) - TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp3213[i, j, n - 1, m], tmp3214[i, j, n - 2, m], ord) + TaylorSeries.mul!(tmp3227[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3228[i, j, n - 1, m], tmp3227[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp3229[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) + TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp3228[i, j, n - 1, m], tmp3229[i, j, n - 2, m], ord) end TaylorSeries.mul!(P_nm[i, j, n, m], secϕ_P_nm[i, j, n, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3217[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3218[i, j, n, m], tmp3217[i, j, n, m], lnm3[n], ord) - TaylorSeries.mul!(tmp3219[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) - TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp3218[i, j, n, m], tmp3219[i, j, n - 1, m], ord) + TaylorSeries.mul!(tmp3232[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3233[i, j, n, m], tmp3232[i, j, n, m], lnm3[n], ord) + TaylorSeries.mul!(tmp3234[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) + TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp3233[i, j, n, m], tmp3234[i, j, n - 1, m], ord) end end - TaylorSeries.mul!(tmp3221[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) - TaylorSeries.mul!(tmp3222[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3223[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp3224[i, j, 1], tmp3222[i, j, 1], tmp3223[i, j, 1], ord) - TaylorSeries.mul!(tmp3225[i, j, 2, 1], tmp3221[i, j, 2, 1], tmp3224[i, j, 1], ord) - TaylorSeries.mul!(tmp3226[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) - TaylorSeries.mul!(tmp3227[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3228[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp3229[i, j, 2], tmp3227[i, j, 2], tmp3228[i, j, 2], ord) - TaylorSeries.mul!(tmp3230[i, j, 2, 2], tmp3226[i, j, 2, 2], tmp3229[i, j, 2], ord) - TaylorSeries.add!(tmp3231[i, j, 2, 1], tmp3225[i, j, 2, 1], tmp3230[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ξ[i, j], tmp3231[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp3233[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) - TaylorSeries.mul!(tmp3234[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3235[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(tmp3236[i, j, 1], tmp3234[i, j, 1], tmp3235[i, j, 1], ord) - TaylorSeries.mul!(tmp3237[i, j, 2, 1], tmp3233[i, j, 2, 1], tmp3236[i, j, 1], ord) - TaylorSeries.mul!(tmp3238[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) - TaylorSeries.mul!(tmp3239[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3240[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.subst!(tmp3241[i, j, 2], tmp3239[i, j, 2], tmp3240[i, j, 2], ord) - TaylorSeries.mul!(tmp3242[i, j, 2, 2], tmp3238[i, j, 2, 2], tmp3241[i, j, 2], ord) - TaylorSeries.add!(tmp3243[i, j, 2, 1], tmp3237[i, j, 2, 1], tmp3242[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_η[i, j], tmp3243[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp3245[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3246[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp3247[i, j, 1], tmp3245[i, j, 1], tmp3246[i, j, 1], ord) - TaylorSeries.mul!(tmp3248[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp3247[i, j, 1], ord) - TaylorSeries.mul!(tmp3249[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3250[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp3251[i, j, 2], tmp3249[i, j, 2], tmp3250[i, j, 2], ord) - TaylorSeries.mul!(tmp3252[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp3251[i, j, 2], ord) - TaylorSeries.add!(tmp3253[i, j, 2, 1], tmp3248[i, j, 2, 1], tmp3252[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ζ[i, j], tmp3253[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp3236[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) + TaylorSeries.mul!(tmp3237[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3238[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp3239[i, j, 1], tmp3237[i, j, 1], tmp3238[i, j, 1], ord) + TaylorSeries.mul!(tmp3240[i, j, 2, 1], tmp3236[i, j, 2, 1], tmp3239[i, j, 1], ord) + TaylorSeries.mul!(tmp3241[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) + TaylorSeries.mul!(tmp3242[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp3243[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp3244[i, j, 2], tmp3242[i, j, 2], tmp3243[i, j, 2], ord) + TaylorSeries.mul!(tmp3245[i, j, 2, 2], tmp3241[i, j, 2, 2], tmp3244[i, j, 2], ord) + TaylorSeries.add!(tmp3246[i, j, 2, 1], tmp3240[i, j, 2, 1], tmp3245[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ξ[i, j], tmp3246[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp3248[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) + TaylorSeries.mul!(tmp3249[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3250[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(tmp3251[i, j, 1], tmp3249[i, j, 1], tmp3250[i, j, 1], ord) + TaylorSeries.mul!(tmp3252[i, j, 2, 1], tmp3248[i, j, 2, 1], tmp3251[i, j, 1], ord) + TaylorSeries.mul!(tmp3253[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) + TaylorSeries.mul!(tmp3254[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp3255[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.subst!(tmp3256[i, j, 2], tmp3254[i, j, 2], tmp3255[i, j, 2], ord) + TaylorSeries.mul!(tmp3257[i, j, 2, 2], tmp3253[i, j, 2, 2], tmp3256[i, j, 2], ord) + TaylorSeries.add!(tmp3258[i, j, 2, 1], tmp3252[i, j, 2, 1], tmp3257[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_η[i, j], tmp3258[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp3260[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3261[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp3262[i, j, 1], tmp3260[i, j, 1], tmp3261[i, j, 1], ord) + TaylorSeries.mul!(tmp3263[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp3262[i, j, 1], ord) + TaylorSeries.mul!(tmp3264[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp3265[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp3266[i, j, 2], tmp3264[i, j, 2], tmp3265[i, j, 2], ord) + TaylorSeries.mul!(tmp3267[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp3266[i, j, 2], ord) + TaylorSeries.add!(tmp3268[i, j, 2, 1], tmp3263[i, j, 2, 1], tmp3267[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ζ[i, j], tmp3268[i, j, 2, 1], r_p4[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_η_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], zero_q_1, ord) @@ -11113,32 +7321,32 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(Cnm_sinmλ[i, j, n, m], CM[n, m], sin_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_cosmλ[i, j, n, m], SM[n, m], cos_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_sinmλ[i, j, n, m], SM[n, m], sin_mλ[i, j, m], ord) - TaylorSeries.mul!(tmp3259[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) - TaylorSeries.add!(tmp3260[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3261[i, j, n, m], tmp3259[i, j, n, m], tmp3260[i, j, n, m], ord) - TaylorSeries.div!(tmp3262[i, j, n, m], tmp3261[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp3262[i, j, n, m], F_CS_ξ_36[i, j], ord) - TaylorSeries.mul!(tmp3264[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) - TaylorSeries.subst!(tmp3265[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3266[i, j, n, m], tmp3264[i, j, n, m], tmp3265[i, j, n, m], ord) - TaylorSeries.div!(tmp3267[i, j, n, m], tmp3266[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp3267[i, j, n, m], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp3269[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3270[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp3269[i, j, n, m], ord) - TaylorSeries.div!(tmp3271[i, j, n, m], tmp3270[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp3271[i, j, n, m], F_CS_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp3274[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) + TaylorSeries.add!(tmp3275[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp3276[i, j, n, m], tmp3274[i, j, n, m], tmp3275[i, j, n, m], ord) + TaylorSeries.div!(tmp3277[i, j, n, m], tmp3276[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp3277[i, j, n, m], F_CS_ξ_36[i, j], ord) + TaylorSeries.mul!(tmp3279[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) + TaylorSeries.subst!(tmp3280[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp3281[i, j, n, m], tmp3279[i, j, n, m], tmp3280[i, j, n, m], ord) + TaylorSeries.div!(tmp3282[i, j, n, m], tmp3281[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp3282[i, j, n, m], F_CS_η_36[i, j], ord) + TaylorSeries.add!(tmp3284[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp3285[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp3284[i, j, n, m], ord) + TaylorSeries.div!(tmp3286[i, j, n, m], tmp3285[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp3286[i, j, n, m], F_CS_ζ_36[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], temp_CS_ξ[i, j, n, m], ord) TaylorSeries.identity!(F_CS_η_36[i, j], temp_CS_η[i, j, n, m], ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], temp_CS_ζ[i, j, n, m], ord) end end - TaylorSeries.add!(tmp3273[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) - TaylorSeries.add!(tmp3274[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ξ[i, j], tmp3273[i, j], tmp3274[i, j], ord) + TaylorSeries.add!(tmp3288[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) + TaylorSeries.add!(tmp3289[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ξ[i, j], tmp3288[i, j], tmp3289[i, j], ord) TaylorSeries.add!(F_JCS_η[i, j], F_CS_η[i, j], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp3277[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) - TaylorSeries.add!(tmp3278[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ζ[i, j], tmp3277[i, j], tmp3278[i, j], ord) + TaylorSeries.add!(tmp3292[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) + TaylorSeries.add!(tmp3293[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ζ[i, j], tmp3292[i, j], tmp3293[i, j], ord) else TaylorSeries.add!(F_JCS_ξ[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) TaylorSeries.identity!(F_JCS_η[i, j], zero_q_1, ord) @@ -11146,75 +7354,75 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract end TaylorSeries.mul!(Rb2p[i, j, 1, 1], cos_ϕ[i, j], cos_λ[i, j], ord) TaylorSeries.subst!(Rb2p[i, j, 2, 1], sin_λ[i, j], ord) - TaylorSeries.subst!(tmp3284[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp3284[i, j], cos_λ[i, j], ord) + TaylorSeries.subst!(tmp3299[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp3299[i, j], cos_λ[i, j], ord) TaylorSeries.mul!(Rb2p[i, j, 1, 2], cos_ϕ[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 2], cos_λ[i, j], ord) - TaylorSeries.subst!(tmp3287[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp3287[i, j], sin_λ[i, j], ord) + TaylorSeries.subst!(tmp3302[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp3302[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 1, 3], sin_ϕ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 3], zero_q_1, ord) TaylorSeries.identity!(Rb2p[i, j, 3, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3289[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3290[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3291[i, j, 1, 1], tmp3289[i, j, 1, 1], tmp3290[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3292[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp3291[i, j, 1, 1], tmp3292[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3294[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3295[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3296[i, j, 2, 1], tmp3294[i, j, 2, 1], tmp3295[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3297[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp3296[i, j, 2, 1], tmp3297[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3299[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3300[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3301[i, j, 3, 1], tmp3299[i, j, 3, 1], tmp3300[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3302[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp3301[i, j, 3, 1], tmp3302[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3304[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3305[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) + TaylorSeries.mul!(tmp3304[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp3305[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) TaylorSeries.add!(tmp3306[i, j, 1, 1], tmp3304[i, j, 1, 1], tmp3305[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3307[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp3306[i, j, 1, 1], tmp3307[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3309[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3310[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) + TaylorSeries.mul!(tmp3307[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp3306[i, j, 1, 1], tmp3307[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3309[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp3310[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) TaylorSeries.add!(tmp3311[i, j, 2, 1], tmp3309[i, j, 2, 1], tmp3310[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3312[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp3311[i, j, 2, 1], tmp3312[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3314[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3315[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) + TaylorSeries.mul!(tmp3312[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp3311[i, j, 2, 1], tmp3312[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3314[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp3315[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) TaylorSeries.add!(tmp3316[i, j, 3, 1], tmp3314[i, j, 3, 1], tmp3315[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3317[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp3316[i, j, 3, 1], tmp3317[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3319[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3320[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) + TaylorSeries.mul!(tmp3317[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp3316[i, j, 3, 1], tmp3317[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3319[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp3320[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) TaylorSeries.add!(tmp3321[i, j, 1, 1], tmp3319[i, j, 1, 1], tmp3320[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3322[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp3321[i, j, 1, 1], tmp3322[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3324[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3325[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) + TaylorSeries.mul!(tmp3322[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp3321[i, j, 1, 1], tmp3322[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3324[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp3325[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) TaylorSeries.add!(tmp3326[i, j, 2, 1], tmp3324[i, j, 2, 1], tmp3325[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3327[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp3326[i, j, 2, 1], tmp3327[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3329[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3330[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) + TaylorSeries.mul!(tmp3327[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp3326[i, j, 2, 1], tmp3327[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3329[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp3330[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) TaylorSeries.add!(tmp3331[i, j, 3, 1], tmp3329[i, j, 3, 1], tmp3330[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3332[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp3331[i, j, 3, 1], tmp3332[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3334[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) - TaylorSeries.mul!(tmp3335[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) - TaylorSeries.add!(tmp3336[i, j, 1, 1], tmp3334[i, j, 1, 1], tmp3335[i, j, 2, 1], ord) - TaylorSeries.mul!(tmp3337[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) - TaylorSeries.add!(F_JCS_x[i, j], tmp3336[i, j, 1, 1], tmp3337[i, j, 3, 1], ord) - TaylorSeries.mul!(tmp3339[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3340[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) - TaylorSeries.add!(tmp3341[i, j, 1, 2], tmp3339[i, j, 1, 2], tmp3340[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3342[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) - TaylorSeries.add!(F_JCS_y[i, j], tmp3341[i, j, 1, 2], tmp3342[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3344[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3345[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) - TaylorSeries.add!(tmp3346[i, j, 1, 3], tmp3344[i, j, 1, 3], tmp3345[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3347[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) - TaylorSeries.add!(F_JCS_z[i, j], tmp3346[i, j, 1, 3], tmp3347[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3332[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp3331[i, j, 3, 1], tmp3332[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3334[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp3335[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp3336[i, j, 1, 1], tmp3334[i, j, 1, 1], tmp3335[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp3337[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp3336[i, j, 1, 1], tmp3337[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3339[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp3340[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp3341[i, j, 2, 1], tmp3339[i, j, 2, 1], tmp3340[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp3342[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp3341[i, j, 2, 1], tmp3342[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3344[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp3345[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp3346[i, j, 3, 1], tmp3344[i, j, 3, 1], tmp3345[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp3347[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp3346[i, j, 3, 1], tmp3347[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3349[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) + TaylorSeries.mul!(tmp3350[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) + TaylorSeries.add!(tmp3351[i, j, 1, 1], tmp3349[i, j, 1, 1], tmp3350[i, j, 2, 1], ord) + TaylorSeries.mul!(tmp3352[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) + TaylorSeries.add!(F_JCS_x[i, j], tmp3351[i, j, 1, 1], tmp3352[i, j, 3, 1], ord) + TaylorSeries.mul!(tmp3354[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp3355[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) + TaylorSeries.add!(tmp3356[i, j, 1, 2], tmp3354[i, j, 1, 2], tmp3355[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp3357[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) + TaylorSeries.add!(F_JCS_y[i, j], tmp3356[i, j, 1, 2], tmp3357[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp3359[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3360[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) + TaylorSeries.add!(tmp3361[i, j, 1, 3], tmp3359[i, j, 1, 3], tmp3360[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3362[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) + TaylorSeries.add!(F_JCS_z[i, j], tmp3361[i, j, 1, 3], tmp3362[i, j, 3, 3], ord) end end end @@ -11225,37 +7433,37 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract continue else if UJ_interaction[i, j] - TaylorSeries.mul!(tmp3349[i, j], μ[i], F_JCS_x[i, j], ord) - TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp3349[i, j], ord) + TaylorSeries.mul!(tmp3364[i, j], μ[i], F_JCS_x[i, j], ord) + TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp3364[i, j], ord) TaylorSeries.identity!(accX[j], temp_accX_j[i, j], ord) - TaylorSeries.mul!(tmp3351[i, j], μ[i], F_JCS_y[i, j], ord) - TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp3351[i, j], ord) + TaylorSeries.mul!(tmp3366[i, j], μ[i], F_JCS_y[i, j], ord) + TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp3366[i, j], ord) TaylorSeries.identity!(accY[j], temp_accY_j[i, j], ord) - TaylorSeries.mul!(tmp3353[i, j], μ[i], F_JCS_z[i, j], ord) - TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp3353[i, j], ord) + TaylorSeries.mul!(tmp3368[i, j], μ[i], F_JCS_z[i, j], ord) + TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp3368[i, j], ord) TaylorSeries.identity!(accZ[j], temp_accZ_j[i, j], ord) - TaylorSeries.mul!(tmp3355[i, j], μ[j], F_JCS_x[i, j], ord) - TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp3355[i, j], ord) + TaylorSeries.mul!(tmp3370[i, j], μ[j], F_JCS_x[i, j], ord) + TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp3370[i, j], ord) TaylorSeries.identity!(accX[i], temp_accX_i[i, j], ord) - TaylorSeries.mul!(tmp3357[i, j], μ[j], F_JCS_y[i, j], ord) - TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp3357[i, j], ord) + TaylorSeries.mul!(tmp3372[i, j], μ[j], F_JCS_y[i, j], ord) + TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp3372[i, j], ord) TaylorSeries.identity!(accY[i], temp_accY_i[i, j], ord) - TaylorSeries.mul!(tmp3359[i, j], μ[j], F_JCS_z[i, j], ord) - TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp3359[i, j], ord) + TaylorSeries.mul!(tmp3374[i, j], μ[j], F_JCS_z[i, j], ord) + TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp3374[i, j], ord) TaylorSeries.identity!(accZ[i], temp_accZ_i[i, j], ord) if j == mo - TaylorSeries.mul!(tmp3361[i, j], Y[i, j], F_JCS_z[i, j], ord) - TaylorSeries.mul!(tmp3362[i, j], Z[i, j], F_JCS_y[i, j], ord) - TaylorSeries.subst!(tmp3363[i, j], tmp3361[i, j], tmp3362[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp3363[i, j], ord) - TaylorSeries.mul!(tmp3365[i, j], Z[i, j], F_JCS_x[i, j], ord) - TaylorSeries.mul!(tmp3366[i, j], X[i, j], F_JCS_z[i, j], ord) - TaylorSeries.subst!(tmp3367[i, j], tmp3365[i, j], tmp3366[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp3367[i, j], ord) - TaylorSeries.mul!(tmp3369[i, j], X[i, j], F_JCS_y[i, j], ord) - TaylorSeries.mul!(tmp3370[i, j], Y[i, j], F_JCS_x[i, j], ord) - TaylorSeries.subst!(tmp3371[i, j], tmp3369[i, j], tmp3370[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp3371[i, j], ord) + TaylorSeries.mul!(tmp3376[i, j], Y[i, j], F_JCS_z[i, j], ord) + TaylorSeries.mul!(tmp3377[i, j], Z[i, j], F_JCS_y[i, j], ord) + TaylorSeries.subst!(tmp3378[i, j], tmp3376[i, j], tmp3377[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp3378[i, j], ord) + TaylorSeries.mul!(tmp3380[i, j], Z[i, j], F_JCS_x[i, j], ord) + TaylorSeries.mul!(tmp3381[i, j], X[i, j], F_JCS_z[i, j], ord) + TaylorSeries.subst!(tmp3382[i, j], tmp3380[i, j], tmp3381[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp3382[i, j], ord) + TaylorSeries.mul!(tmp3384[i, j], X[i, j], F_JCS_y[i, j], ord) + TaylorSeries.mul!(tmp3385[i, j], Y[i, j], F_JCS_x[i, j], ord) + TaylorSeries.subst!(tmp3386[i, j], tmp3384[i, j], tmp3385[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp3386[i, j], ord) TaylorSeries.subst!(temp_N_M_x[i], N_MfigM[1], N_MfigM_pmA_x[i], ord) TaylorSeries.identity!(N_MfigM[1], temp_N_M_x[i], ord) TaylorSeries.subst!(temp_N_M_y[i], N_MfigM[2], N_MfigM_pmA_y[i], ord) @@ -11276,18 +7484,18 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.add!(ϕi_plus_4ϕj[i, j], newtonianNb_Potential[i], _4ϕj[i, j], ord) TaylorSeries.mul!(_2v2[i, j], 2, v2[i], ord) TaylorSeries.add!(sj2_plus_2si2[i, j], v2[j], _2v2[i, j], ord) - TaylorSeries.mul!(tmp3383[i, j], 4, vi_dot_vj[i, j], ord) - TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp3383[i, j], ord) + TaylorSeries.mul!(tmp3398[i, j], 4, vi_dot_vj[i, j], ord) + TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp3398[i, j], ord) TaylorSeries.subst!(ϕs_and_vs[i, j], sj2_plus_2si2_minus_4vivj[i, j], ϕi_plus_4ϕj[i, j], ord) TaylorSeries.mul!(Xij_t_Ui[i, j], X[i, j], dq[3i - 2], ord) TaylorSeries.mul!(Yij_t_Vi[i, j], Y[i, j], dq[3i - 1], ord) TaylorSeries.mul!(Zij_t_Wi[i, j], Z[i, j], dq[3i], ord) - TaylorSeries.add!(tmp3389[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) - TaylorSeries.add!(Rij_dot_Vi[i, j], tmp3389[i, j], Zij_t_Wi[i, j], ord) - TaylorSeries.pow!(tmp3392[i, j], Rij_dot_Vi[i, j], 2, ord) - TaylorSeries.div!(rij_dot_vi_div_rij_sq[i, j], tmp3392[i, j], r_p2[i, j], ord) - TaylorSeries.mul!(tmp3395[i, j], 1.5, rij_dot_vi_div_rij_sq[i, j], ord) - TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp3395[i, j], ord) + TaylorSeries.add!(tmp3404[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) + TaylorSeries.add!(Rij_dot_Vi[i, j], tmp3404[i, j], Zij_t_Wi[i, j], ord) + TaylorSeries.pow!(tmp3407[i, j], Rij_dot_Vi[i, j], tmp4099[i, j], 2, ord) + TaylorSeries.div!(rij_dot_vi_div_rij_sq[i, j], tmp3407[i, j], r_p2[i, j], ord) + TaylorSeries.mul!(tmp3410[i, j], 1.5, rij_dot_vi_div_rij_sq[i, j], ord) + TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp3410[i, j], ord) TaylorSeries.add!(pn1t1_7[i, j], c_p2, pn1t2_7[i, j], ord) end end @@ -11303,26 +7511,26 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(pNX_t_X[i, j], newtonX[i], X[i, j], ord) TaylorSeries.mul!(pNY_t_Y[i, j], newtonY[i], Y[i, j], ord) TaylorSeries.mul!(pNZ_t_Z[i, j], newtonZ[i], Z[i, j], ord) - TaylorSeries.add!(tmp3402[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) - TaylorSeries.add!(tmp3403[i, j], tmp3402[i, j], pNZ_t_Z[i, j], ord) - TaylorSeries.mul!(tmp3404[i, j], 0.5, tmp3403[i, j], ord) - TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp3404[i, j], ord) + TaylorSeries.add!(tmp3417[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) + TaylorSeries.add!(tmp3418[i, j], tmp3417[i, j], pNZ_t_Z[i, j], ord) + TaylorSeries.mul!(tmp3419[i, j], 0.5, tmp3418[i, j], ord) + TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp3419[i, j], ord) TaylorSeries.mul!(X_t_pn1[i, j], newton_acc_X[i, j], pn1[i, j], ord) TaylorSeries.mul!(Y_t_pn1[i, j], newton_acc_Y[i, j], pn1[i, j], ord) TaylorSeries.mul!(Z_t_pn1[i, j], newton_acc_Z[i, j], pn1[i, j], ord) TaylorSeries.mul!(pNX_t_pn3[i, j], newtonX[i], pn3[i, j], ord) TaylorSeries.mul!(pNY_t_pn3[i, j], newtonY[i], pn3[i, j], ord) TaylorSeries.mul!(pNZ_t_pn3[i, j], newtonZ[i], pn3[i, j], ord) - TaylorSeries.add!(tmp3412[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) - TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp3412[i, j], ord) + TaylorSeries.add!(tmp3427[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) + TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp3427[i, j], ord) TaylorSeries.add!(sumpnx[i, j], pntempX[j], termpnx[i, j], ord) TaylorSeries.identity!(pntempX[j], sumpnx[i, j], ord) - TaylorSeries.add!(tmp3415[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) - TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp3415[i, j], ord) + TaylorSeries.add!(tmp3430[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) + TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp3430[i, j], ord) TaylorSeries.add!(sumpny[i, j], pntempY[j], termpny[i, j], ord) TaylorSeries.identity!(pntempY[j], sumpny[i, j], ord) - TaylorSeries.add!(tmp3418[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) - TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp3418[i, j], ord) + TaylorSeries.add!(tmp3433[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) + TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp3433[i, j], ord) TaylorSeries.add!(sumpnz[i, j], pntempZ[j], termpnz[i, j], ord) TaylorSeries.identity!(pntempZ[j], sumpnz[i, j], ord) end @@ -11334,248 +7542,248 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(x0s_M, r_star_M_0[1], ord) TaylorSeries.identity!(y0s_M, r_star_M_0[2], ord) TaylorSeries.identity!(z0s_M, r_star_M_0[3], ord) - TaylorSeries.pow!(tmp3425, x0s_M, 2, ord) - TaylorSeries.pow!(tmp3427, y0s_M, 2, ord) - TaylorSeries.add!(ρ0s2_M, tmp3425, tmp3427, ord) + TaylorSeries.pow!(tmp3440, x0s_M, tmp4100, 2, ord) + TaylorSeries.pow!(tmp3442, y0s_M, tmp4101, 2, ord) + TaylorSeries.add!(ρ0s2_M, tmp3440, tmp3442, ord) TaylorSeries.sqrt!(ρ0s_M, ρ0s2_M, ord) - TaylorSeries.pow!(z0s2_M, z0s_M, 2, ord) + TaylorSeries.pow!(z0s2_M, z0s_M, tmp4102, 2, ord) TaylorSeries.add!(r0s2_M, ρ0s2_M, z0s2_M, ord) TaylorSeries.sqrt!(r0s_M, r0s2_M, ord) - TaylorSeries.pow!(r0s5_M, r0s_M, 5, ord) + TaylorSeries.pow!(r0s5_M, r0s_M, tmp4103, 5, ord) TaylorSeries.identity!(x0s_S, r_star_S_0[1], ord) TaylorSeries.identity!(y0s_S, r_star_S_0[2], ord) TaylorSeries.identity!(z0s_S, r_star_S_0[3], ord) - TaylorSeries.pow!(tmp3437, x0s_S, 2, ord) - TaylorSeries.pow!(tmp3439, y0s_S, 2, ord) - TaylorSeries.add!(ρ0s2_S, tmp3437, tmp3439, ord) + TaylorSeries.pow!(tmp3452, x0s_S, tmp4104, 2, ord) + TaylorSeries.pow!(tmp3454, y0s_S, tmp4105, 2, ord) + TaylorSeries.add!(ρ0s2_S, tmp3452, tmp3454, ord) TaylorSeries.sqrt!(ρ0s_S, ρ0s2_S, ord) - TaylorSeries.pow!(z0s2_S, z0s_S, 2, ord) + TaylorSeries.pow!(z0s2_S, z0s_S, tmp4106, 2, ord) TaylorSeries.add!(r0s2_S, ρ0s2_S, z0s2_S, ord) TaylorSeries.sqrt!(r0s_S, r0s2_S, ord) - TaylorSeries.pow!(r0s5_S, r0s_S, 5, ord) - TaylorSeries.mul!(tmp3449, Z_bf[mo, ea], r_star_M_0[3], ord) - TaylorSeries.pow!(tmp3451, tmp3449, 2, ord) - TaylorSeries.mul!(tmp3453, r_xy[mo, ea], ρ0s_M, ord) - TaylorSeries.pow!(tmp3455, tmp3453, 2, ord) - TaylorSeries.mul!(tmp3456, 0.5, tmp3455, ord) - TaylorSeries.add!(tmp3457, tmp3451, tmp3456, ord) - TaylorSeries.div!(tmp3458, tmp3457, r_p2[mo, ea], ord) - TaylorSeries.mul!(tmp3459, 5, tmp3458, ord) - TaylorSeries.subst!(coeff0_M, r0s2_M, tmp3459, ord) - TaylorSeries.mul!(tmp3462, Z_bf[mo, ea], r_star_S_0[3], ord) - TaylorSeries.pow!(tmp3464, tmp3462, 2, ord) - TaylorSeries.mul!(tmp3466, r_xy[mo, ea], ρ0s_S, ord) - TaylorSeries.pow!(tmp3468, tmp3466, 2, ord) - TaylorSeries.mul!(tmp3469, 0.5, tmp3468, ord) - TaylorSeries.add!(tmp3470, tmp3464, tmp3469, ord) - TaylorSeries.div!(tmp3471, tmp3470, r_p2[mo, ea], ord) - TaylorSeries.mul!(tmp3472, 5, tmp3471, ord) - TaylorSeries.subst!(coeff0_S, r0s2_S, tmp3472, ord) + TaylorSeries.pow!(r0s5_S, r0s_S, tmp4107, 5, ord) + TaylorSeries.mul!(tmp3464, Z_bf[mo, ea], r_star_M_0[3], ord) + TaylorSeries.pow!(tmp3466, tmp3464, tmp4108, 2, ord) + TaylorSeries.mul!(tmp3468, r_xy[mo, ea], ρ0s_M, ord) + TaylorSeries.pow!(tmp3470, tmp3468, tmp4109, 2, ord) + TaylorSeries.mul!(tmp3471, 0.5, tmp3470, ord) + TaylorSeries.add!(tmp3472, tmp3466, tmp3471, ord) + TaylorSeries.div!(tmp3473, tmp3472, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp3474, 5, tmp3473, ord) + TaylorSeries.subst!(coeff0_M, r0s2_M, tmp3474, ord) + TaylorSeries.mul!(tmp3477, Z_bf[mo, ea], r_star_S_0[3], ord) + TaylorSeries.pow!(tmp3479, tmp3477, tmp4110, 2, ord) + TaylorSeries.mul!(tmp3481, r_xy[mo, ea], ρ0s_S, ord) + TaylorSeries.pow!(tmp3483, tmp3481, tmp4111, 2, ord) + TaylorSeries.mul!(tmp3484, 0.5, tmp3483, ord) + TaylorSeries.add!(tmp3485, tmp3479, tmp3484, ord) + TaylorSeries.div!(tmp3486, tmp3485, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp3487, 5, tmp3486, ord) + TaylorSeries.subst!(coeff0_S, r0s2_S, tmp3487, ord) TaylorSeries.div!(k_20E_div_r0s5_M, k_20E, r0s5_M, ord) TaylorSeries.div!(k_20E_div_r0s5_S, k_20E, r0s5_S, ord) - TaylorSeries.add!(tmp3476, ρ0s2_M, coeff0_M, ord) - TaylorSeries.mul!(tmp3477, k_20E_div_r0s5_M, tmp3476, ord) - TaylorSeries.mul!(a_tid_0_M_x, tmp3477, X_bf[mo, ea], ord) - TaylorSeries.add!(tmp3479, ρ0s2_M, coeff0_M, ord) - TaylorSeries.mul!(tmp3480, k_20E_div_r0s5_M, tmp3479, ord) - TaylorSeries.mul!(a_tid_0_M_y, tmp3480, Y_bf[mo, ea], ord) - TaylorSeries.mul!(tmp3483, 2, z0s2_M, ord) - TaylorSeries.add!(tmp3484, tmp3483, coeff0_M, ord) - TaylorSeries.mul!(tmp3485, k_20E_div_r0s5_M, tmp3484, ord) - TaylorSeries.mul!(a_tid_0_M_z, tmp3485, Z_bf[mo, ea], ord) - TaylorSeries.add!(tmp3487, ρ0s2_S, coeff0_S, ord) - TaylorSeries.mul!(tmp3488, k_20E_div_r0s5_S, tmp3487, ord) - TaylorSeries.mul!(a_tid_0_S_x, tmp3488, X_bf[mo, ea], ord) - TaylorSeries.add!(tmp3490, ρ0s2_S, coeff0_S, ord) - TaylorSeries.mul!(tmp3491, k_20E_div_r0s5_S, tmp3490, ord) - TaylorSeries.mul!(a_tid_0_S_y, tmp3491, Y_bf[mo, ea], ord) - TaylorSeries.mul!(tmp3494, 2, z0s2_S, ord) - TaylorSeries.add!(tmp3495, tmp3494, coeff0_S, ord) - TaylorSeries.mul!(tmp3496, k_20E_div_r0s5_S, tmp3495, ord) - TaylorSeries.mul!(a_tid_0_S_z, tmp3496, Z_bf[mo, ea], ord) + TaylorSeries.add!(tmp3491, ρ0s2_M, coeff0_M, ord) + TaylorSeries.mul!(tmp3492, k_20E_div_r0s5_M, tmp3491, ord) + TaylorSeries.mul!(a_tid_0_M_x, tmp3492, X_bf[mo, ea], ord) + TaylorSeries.add!(tmp3494, ρ0s2_M, coeff0_M, ord) + TaylorSeries.mul!(tmp3495, k_20E_div_r0s5_M, tmp3494, ord) + TaylorSeries.mul!(a_tid_0_M_y, tmp3495, Y_bf[mo, ea], ord) + TaylorSeries.mul!(tmp3498, 2, z0s2_M, ord) + TaylorSeries.add!(tmp3499, tmp3498, coeff0_M, ord) + TaylorSeries.mul!(tmp3500, k_20E_div_r0s5_M, tmp3499, ord) + TaylorSeries.mul!(a_tid_0_M_z, tmp3500, Z_bf[mo, ea], ord) + TaylorSeries.add!(tmp3502, ρ0s2_S, coeff0_S, ord) + TaylorSeries.mul!(tmp3503, k_20E_div_r0s5_S, tmp3502, ord) + TaylorSeries.mul!(a_tid_0_S_x, tmp3503, X_bf[mo, ea], ord) + TaylorSeries.add!(tmp3505, ρ0s2_S, coeff0_S, ord) + TaylorSeries.mul!(tmp3506, k_20E_div_r0s5_S, tmp3505, ord) + TaylorSeries.mul!(a_tid_0_S_y, tmp3506, Y_bf[mo, ea], ord) + TaylorSeries.mul!(tmp3509, 2, z0s2_S, ord) + TaylorSeries.add!(tmp3510, tmp3509, coeff0_S, ord) + TaylorSeries.mul!(tmp3511, k_20E_div_r0s5_S, tmp3510, ord) + TaylorSeries.mul!(a_tid_0_S_z, tmp3511, Z_bf[mo, ea], ord) TaylorSeries.identity!(x1s_M, r_star_M_1[1], ord) TaylorSeries.identity!(y1s_M, r_star_M_1[2], ord) TaylorSeries.identity!(z1s_M, r_star_M_1[3], ord) - TaylorSeries.pow!(tmp3499, x1s_M, 2, ord) - TaylorSeries.pow!(tmp3501, y1s_M, 2, ord) - TaylorSeries.add!(ρ1s2_M, tmp3499, tmp3501, ord) + TaylorSeries.pow!(tmp3514, x1s_M, tmp4112, 2, ord) + TaylorSeries.pow!(tmp3516, y1s_M, tmp4113, 2, ord) + TaylorSeries.add!(ρ1s2_M, tmp3514, tmp3516, ord) TaylorSeries.sqrt!(ρ1s_M, ρ1s2_M, ord) - TaylorSeries.pow!(z1s2_M, z1s_M, 2, ord) + TaylorSeries.pow!(z1s2_M, z1s_M, tmp4114, 2, ord) TaylorSeries.add!(r1s2_M, ρ1s2_M, z1s2_M, ord) TaylorSeries.sqrt!(r1s_M, r1s2_M, ord) - TaylorSeries.pow!(r1s5_M, r1s_M, 5, ord) + TaylorSeries.pow!(r1s5_M, r1s_M, tmp4115, 5, ord) TaylorSeries.identity!(x1s_S, r_star_S_1[1], ord) TaylorSeries.identity!(y1s_S, r_star_S_1[2], ord) TaylorSeries.identity!(z1s_S, r_star_S_1[3], ord) - TaylorSeries.pow!(tmp3511, x1s_S, 2, ord) - TaylorSeries.pow!(tmp3513, y1s_S, 2, ord) - TaylorSeries.add!(ρ1s2_S, tmp3511, tmp3513, ord) + TaylorSeries.pow!(tmp3526, x1s_S, tmp4116, 2, ord) + TaylorSeries.pow!(tmp3528, y1s_S, tmp4117, 2, ord) + TaylorSeries.add!(ρ1s2_S, tmp3526, tmp3528, ord) TaylorSeries.sqrt!(ρ1s_S, ρ1s2_S, ord) - TaylorSeries.pow!(z1s2_S, z1s_S, 2, ord) + TaylorSeries.pow!(z1s2_S, z1s_S, tmp4118, 2, ord) TaylorSeries.add!(r1s2_S, ρ1s2_S, z1s2_S, ord) TaylorSeries.sqrt!(r1s_S, r1s2_S, ord) - TaylorSeries.pow!(r1s5_S, r1s_S, 5, ord) - TaylorSeries.mul!(tmp3522, X_bf[mo, ea], r_star_M_1[1], ord) - TaylorSeries.mul!(tmp3523, Y_bf[mo, ea], r_star_M_1[2], ord) - TaylorSeries.add!(coeff1_1_M, tmp3522, tmp3523, ord) - TaylorSeries.mul!(tmp3525, X_bf[mo, ea], r_star_S_1[1], ord) - TaylorSeries.mul!(tmp3526, Y_bf[mo, ea], r_star_S_1[2], ord) - TaylorSeries.add!(coeff1_1_S, tmp3525, tmp3526, ord) + TaylorSeries.pow!(r1s5_S, r1s_S, tmp4119, 5, ord) + TaylorSeries.mul!(tmp3537, X_bf[mo, ea], r_star_M_1[1], ord) + TaylorSeries.mul!(tmp3538, Y_bf[mo, ea], r_star_M_1[2], ord) + TaylorSeries.add!(coeff1_1_M, tmp3537, tmp3538, ord) + TaylorSeries.mul!(tmp3540, X_bf[mo, ea], r_star_S_1[1], ord) + TaylorSeries.mul!(tmp3541, Y_bf[mo, ea], r_star_S_1[2], ord) + TaylorSeries.add!(coeff1_1_S, tmp3540, tmp3541, ord) TaylorSeries.mul!(coeff2_1_M, Z_bf[mo, ea], r_star_M_1[3], ord) TaylorSeries.mul!(coeff2_1_S, Z_bf[mo, ea], r_star_S_1[3], ord) - TaylorSeries.mul!(tmp3531, 10, coeff1_1_M, ord) - TaylorSeries.mul!(tmp3532, tmp3531, coeff2_1_M, ord) - TaylorSeries.div!(coeff3_1_M, tmp3532, r_p2[mo, ea], ord) - TaylorSeries.mul!(tmp3535, 10, coeff1_1_S, ord) - TaylorSeries.mul!(tmp3536, tmp3535, coeff2_1_S, ord) - TaylorSeries.div!(coeff3_1_S, tmp3536, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp3546, 10, coeff1_1_M, ord) + TaylorSeries.mul!(tmp3547, tmp3546, coeff2_1_M, ord) + TaylorSeries.div!(coeff3_1_M, tmp3547, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp3550, 10, coeff1_1_S, ord) + TaylorSeries.mul!(tmp3551, tmp3550, coeff2_1_S, ord) + TaylorSeries.div!(coeff3_1_S, tmp3551, r_p2[mo, ea], ord) TaylorSeries.div!(k_21E_div_r1s5_M, k_21E, r1s5_M, ord) TaylorSeries.div!(k_21E_div_r1s5_S, k_21E, r1s5_S, ord) - TaylorSeries.mul!(tmp3541, 2, coeff2_1_M, ord) - TaylorSeries.mul!(tmp3542, tmp3541, r_star_M_1[1], ord) - TaylorSeries.mul!(tmp3543, coeff3_1_M, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp3544, tmp3542, tmp3543, ord) - TaylorSeries.mul!(a_tid_1_M_x, k_21E_div_r1s5_M, tmp3544, ord) - TaylorSeries.mul!(tmp3547, 2, coeff2_1_M, ord) - TaylorSeries.mul!(tmp3548, tmp3547, r_star_M_1[2], ord) - TaylorSeries.mul!(tmp3549, coeff3_1_M, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp3550, tmp3548, tmp3549, ord) - TaylorSeries.mul!(a_tid_1_M_y, k_21E_div_r1s5_M, tmp3550, ord) - TaylorSeries.mul!(tmp3553, 2, coeff1_1_M, ord) - TaylorSeries.mul!(tmp3554, tmp3553, r_star_M_1[3], ord) - TaylorSeries.mul!(tmp3555, coeff3_1_M, Z_bf[mo, ea], ord) - TaylorSeries.subst!(tmp3556, tmp3554, tmp3555, ord) - TaylorSeries.mul!(a_tid_1_M_z, k_21E_div_r1s5_M, tmp3556, ord) - TaylorSeries.mul!(tmp3559, 2, coeff2_1_S, ord) - TaylorSeries.mul!(tmp3560, tmp3559, r_star_S_1[1], ord) - TaylorSeries.mul!(tmp3561, coeff3_1_S, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp3562, tmp3560, tmp3561, ord) - TaylorSeries.mul!(a_tid_1_S_x, k_21E_div_r1s5_S, tmp3562, ord) - TaylorSeries.mul!(tmp3565, 2, coeff2_1_S, ord) - TaylorSeries.mul!(tmp3566, tmp3565, r_star_S_1[2], ord) - TaylorSeries.mul!(tmp3567, coeff3_1_S, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp3568, tmp3566, tmp3567, ord) - TaylorSeries.mul!(a_tid_1_S_y, k_21E_div_r1s5_S, tmp3568, ord) - TaylorSeries.mul!(tmp3571, 2, coeff1_1_S, ord) - TaylorSeries.mul!(tmp3572, tmp3571, r_star_S_1[3], ord) - TaylorSeries.mul!(tmp3573, coeff3_1_S, Z_bf[mo, ea], ord) - TaylorSeries.subst!(tmp3574, tmp3572, tmp3573, ord) - TaylorSeries.mul!(a_tid_1_S_z, k_21E_div_r1s5_S, tmp3574, ord) + TaylorSeries.mul!(tmp3556, 2, coeff2_1_M, ord) + TaylorSeries.mul!(tmp3557, tmp3556, r_star_M_1[1], ord) + TaylorSeries.mul!(tmp3558, coeff3_1_M, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3559, tmp3557, tmp3558, ord) + TaylorSeries.mul!(a_tid_1_M_x, k_21E_div_r1s5_M, tmp3559, ord) + TaylorSeries.mul!(tmp3562, 2, coeff2_1_M, ord) + TaylorSeries.mul!(tmp3563, tmp3562, r_star_M_1[2], ord) + TaylorSeries.mul!(tmp3564, coeff3_1_M, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3565, tmp3563, tmp3564, ord) + TaylorSeries.mul!(a_tid_1_M_y, k_21E_div_r1s5_M, tmp3565, ord) + TaylorSeries.mul!(tmp3568, 2, coeff1_1_M, ord) + TaylorSeries.mul!(tmp3569, tmp3568, r_star_M_1[3], ord) + TaylorSeries.mul!(tmp3570, coeff3_1_M, Z_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3571, tmp3569, tmp3570, ord) + TaylorSeries.mul!(a_tid_1_M_z, k_21E_div_r1s5_M, tmp3571, ord) + TaylorSeries.mul!(tmp3574, 2, coeff2_1_S, ord) + TaylorSeries.mul!(tmp3575, tmp3574, r_star_S_1[1], ord) + TaylorSeries.mul!(tmp3576, coeff3_1_S, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3577, tmp3575, tmp3576, ord) + TaylorSeries.mul!(a_tid_1_S_x, k_21E_div_r1s5_S, tmp3577, ord) + TaylorSeries.mul!(tmp3580, 2, coeff2_1_S, ord) + TaylorSeries.mul!(tmp3581, tmp3580, r_star_S_1[2], ord) + TaylorSeries.mul!(tmp3582, coeff3_1_S, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3583, tmp3581, tmp3582, ord) + TaylorSeries.mul!(a_tid_1_S_y, k_21E_div_r1s5_S, tmp3583, ord) + TaylorSeries.mul!(tmp3586, 2, coeff1_1_S, ord) + TaylorSeries.mul!(tmp3587, tmp3586, r_star_S_1[3], ord) + TaylorSeries.mul!(tmp3588, coeff3_1_S, Z_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3589, tmp3587, tmp3588, ord) + TaylorSeries.mul!(a_tid_1_S_z, k_21E_div_r1s5_S, tmp3589, ord) TaylorSeries.identity!(x2s_M, r_star_M_2[1], ord) TaylorSeries.identity!(y2s_M, r_star_M_2[2], ord) TaylorSeries.identity!(z2s_M, r_star_M_2[3], ord) - TaylorSeries.pow!(tmp3577, x2s_M, 2, ord) - TaylorSeries.pow!(tmp3579, y2s_M, 2, ord) - TaylorSeries.add!(ρ2s2_M, tmp3577, tmp3579, ord) + TaylorSeries.pow!(tmp3592, x2s_M, tmp4120, 2, ord) + TaylorSeries.pow!(tmp3594, y2s_M, tmp4121, 2, ord) + TaylorSeries.add!(ρ2s2_M, tmp3592, tmp3594, ord) TaylorSeries.sqrt!(ρ2s_M, ρ2s2_M, ord) - TaylorSeries.pow!(z2s2_M, z2s_M, 2, ord) + TaylorSeries.pow!(z2s2_M, z2s_M, tmp4122, 2, ord) TaylorSeries.add!(r2s2_M, ρ2s2_M, z2s2_M, ord) TaylorSeries.sqrt!(r2s_M, r2s2_M, ord) - TaylorSeries.pow!(r2s5_M, r2s_M, 5, ord) + TaylorSeries.pow!(r2s5_M, r2s_M, tmp4123, 5, ord) TaylorSeries.identity!(x2s_S, r_star_S_2[1], ord) TaylorSeries.identity!(y2s_S, r_star_S_2[2], ord) TaylorSeries.identity!(z2s_S, r_star_S_2[3], ord) - TaylorSeries.pow!(tmp3589, x2s_S, 2, ord) - TaylorSeries.pow!(tmp3591, y2s_S, 2, ord) - TaylorSeries.add!(ρ2s2_S, tmp3589, tmp3591, ord) + TaylorSeries.pow!(tmp3604, x2s_S, tmp4124, 2, ord) + TaylorSeries.pow!(tmp3606, y2s_S, tmp4125, 2, ord) + TaylorSeries.add!(ρ2s2_S, tmp3604, tmp3606, ord) TaylorSeries.sqrt!(ρ2s_S, ρ2s2_S, ord) - TaylorSeries.pow!(z2s2_S, z2s_S, 2, ord) + TaylorSeries.pow!(z2s2_S, z2s_S, tmp4126, 2, ord) TaylorSeries.add!(r2s2_S, ρ2s2_S, z2s2_S, ord) TaylorSeries.sqrt!(r2s_S, r2s2_S, ord) - TaylorSeries.pow!(r2s5_S, r2s_S, 5, ord) - TaylorSeries.mul!(tmp3600, X_bf[mo, ea], r_star_M_2[1], ord) - TaylorSeries.mul!(tmp3601, Y_bf[mo, ea], r_star_M_2[2], ord) - TaylorSeries.add!(coeff1_2_M, tmp3600, tmp3601, ord) - TaylorSeries.mul!(tmp3603, X_bf[mo, ea], r_star_S_2[1], ord) - TaylorSeries.mul!(tmp3604, Y_bf[mo, ea], r_star_S_2[2], ord) - TaylorSeries.add!(coeff1_2_S, tmp3603, tmp3604, ord) - TaylorSeries.pow!(tmp3608, coeff1_2_M, 2, ord) - TaylorSeries.pow!(tmp3611, r_xy[mo, ea], 2, ord) - TaylorSeries.mul!(tmp3612, 0.5, tmp3611, ord) - TaylorSeries.mul!(tmp3613, tmp3612, ρ2s2_M, ord) - TaylorSeries.subst!(tmp3614, tmp3608, tmp3613, ord) - TaylorSeries.mul!(tmp3615, 5, tmp3614, ord) - TaylorSeries.div!(coeff3_2_M, tmp3615, r_p2[mo, ea], ord) - TaylorSeries.pow!(tmp3619, coeff1_2_S, 2, ord) - TaylorSeries.pow!(tmp3622, r_xy[mo, ea], 2, ord) - TaylorSeries.mul!(tmp3623, 0.5, tmp3622, ord) - TaylorSeries.mul!(tmp3624, tmp3623, ρ2s2_S, ord) - TaylorSeries.subst!(tmp3625, tmp3619, tmp3624, ord) - TaylorSeries.mul!(tmp3626, 5, tmp3625, ord) - TaylorSeries.div!(coeff3_2_S, tmp3626, r_p2[mo, ea], ord) + TaylorSeries.pow!(r2s5_S, r2s_S, tmp4127, 5, ord) + TaylorSeries.mul!(tmp3615, X_bf[mo, ea], r_star_M_2[1], ord) + TaylorSeries.mul!(tmp3616, Y_bf[mo, ea], r_star_M_2[2], ord) + TaylorSeries.add!(coeff1_2_M, tmp3615, tmp3616, ord) + TaylorSeries.mul!(tmp3618, X_bf[mo, ea], r_star_S_2[1], ord) + TaylorSeries.mul!(tmp3619, Y_bf[mo, ea], r_star_S_2[2], ord) + TaylorSeries.add!(coeff1_2_S, tmp3618, tmp3619, ord) + TaylorSeries.pow!(tmp3623, coeff1_2_M, tmp4128, 2, ord) + TaylorSeries.pow!(tmp3626, r_xy[mo, ea], tmp4129, 2, ord) + TaylorSeries.mul!(tmp3627, 0.5, tmp3626, ord) + TaylorSeries.mul!(tmp3628, tmp3627, ρ2s2_M, ord) + TaylorSeries.subst!(tmp3629, tmp3623, tmp3628, ord) + TaylorSeries.mul!(tmp3630, 5, tmp3629, ord) + TaylorSeries.div!(coeff3_2_M, tmp3630, r_p2[mo, ea], ord) + TaylorSeries.pow!(tmp3634, coeff1_2_S, tmp4130, 2, ord) + TaylorSeries.pow!(tmp3637, r_xy[mo, ea], tmp4131, 2, ord) + TaylorSeries.mul!(tmp3638, 0.5, tmp3637, ord) + TaylorSeries.mul!(tmp3639, tmp3638, ρ2s2_S, ord) + TaylorSeries.subst!(tmp3640, tmp3634, tmp3639, ord) + TaylorSeries.mul!(tmp3641, 5, tmp3640, ord) + TaylorSeries.div!(coeff3_2_S, tmp3641, r_p2[mo, ea], ord) TaylorSeries.div!(k_22E_div_r2s5_M, k_22E, r2s5_M, ord) TaylorSeries.div!(k_22E_div_r2s5_S, k_22E, r2s5_S, ord) - TaylorSeries.mul!(tmp3631, 2, coeff1_2_M, ord) - TaylorSeries.mul!(tmp3632, tmp3631, r_star_M_2[1], ord) - TaylorSeries.add!(tmp3633, ρ2s2_M, coeff3_2_M, ord) - TaylorSeries.mul!(tmp3634, tmp3633, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp3635, tmp3632, tmp3634, ord) - TaylorSeries.mul!(a_tid_2_M_x, k_22E_div_r2s5_M, tmp3635, ord) - TaylorSeries.mul!(tmp3638, 2, coeff1_2_M, ord) - TaylorSeries.mul!(tmp3639, tmp3638, r_star_M_2[2], ord) - TaylorSeries.add!(tmp3640, ρ2s2_M, coeff3_2_M, ord) - TaylorSeries.mul!(tmp3641, tmp3640, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp3642, tmp3639, tmp3641, ord) - TaylorSeries.mul!(a_tid_2_M_y, k_22E_div_r2s5_M, tmp3642, ord) - TaylorSeries.subst!(tmp3644, coeff3_2_M, ord) - TaylorSeries.mul!(tmp3645, k_22E_div_r2s5_M, tmp3644, ord) - TaylorSeries.mul!(a_tid_2_M_z, tmp3645, Z_bf[mo, ea], ord) - TaylorSeries.mul!(tmp3648, 2, coeff1_2_S, ord) - TaylorSeries.mul!(tmp3649, tmp3648, r_star_S_2[1], ord) - TaylorSeries.add!(tmp3650, ρ2s2_S, coeff3_2_S, ord) - TaylorSeries.mul!(tmp3651, tmp3650, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp3652, tmp3649, tmp3651, ord) - TaylorSeries.mul!(a_tid_2_S_x, k_22E_div_r2s5_S, tmp3652, ord) - TaylorSeries.mul!(tmp3655, 2, coeff1_2_S, ord) - TaylorSeries.mul!(tmp3656, tmp3655, r_star_S_2[2], ord) - TaylorSeries.add!(tmp3657, ρ2s2_S, coeff3_2_S, ord) - TaylorSeries.mul!(tmp3658, tmp3657, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp3659, tmp3656, tmp3658, ord) - TaylorSeries.mul!(a_tid_2_S_y, k_22E_div_r2s5_S, tmp3659, ord) - TaylorSeries.subst!(tmp3661, coeff3_2_S, ord) - TaylorSeries.mul!(tmp3662, k_22E_div_r2s5_S, tmp3661, ord) - TaylorSeries.mul!(a_tid_2_S_z, tmp3662, Z_bf[mo, ea], ord) - TaylorSeries.div!(tmp3664, RE_au, r_p1d2[mo, ea], ord) - TaylorSeries.pow!(RE_div_r_p5, tmp3664, 5, ord) + TaylorSeries.mul!(tmp3646, 2, coeff1_2_M, ord) + TaylorSeries.mul!(tmp3647, tmp3646, r_star_M_2[1], ord) + TaylorSeries.add!(tmp3648, ρ2s2_M, coeff3_2_M, ord) + TaylorSeries.mul!(tmp3649, tmp3648, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3650, tmp3647, tmp3649, ord) + TaylorSeries.mul!(a_tid_2_M_x, k_22E_div_r2s5_M, tmp3650, ord) + TaylorSeries.mul!(tmp3653, 2, coeff1_2_M, ord) + TaylorSeries.mul!(tmp3654, tmp3653, r_star_M_2[2], ord) + TaylorSeries.add!(tmp3655, ρ2s2_M, coeff3_2_M, ord) + TaylorSeries.mul!(tmp3656, tmp3655, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3657, tmp3654, tmp3656, ord) + TaylorSeries.mul!(a_tid_2_M_y, k_22E_div_r2s5_M, tmp3657, ord) + TaylorSeries.subst!(tmp3659, coeff3_2_M, ord) + TaylorSeries.mul!(tmp3660, k_22E_div_r2s5_M, tmp3659, ord) + TaylorSeries.mul!(a_tid_2_M_z, tmp3660, Z_bf[mo, ea], ord) + TaylorSeries.mul!(tmp3663, 2, coeff1_2_S, ord) + TaylorSeries.mul!(tmp3664, tmp3663, r_star_S_2[1], ord) + TaylorSeries.add!(tmp3665, ρ2s2_S, coeff3_2_S, ord) + TaylorSeries.mul!(tmp3666, tmp3665, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3667, tmp3664, tmp3666, ord) + TaylorSeries.mul!(a_tid_2_S_x, k_22E_div_r2s5_S, tmp3667, ord) + TaylorSeries.mul!(tmp3670, 2, coeff1_2_S, ord) + TaylorSeries.mul!(tmp3671, tmp3670, r_star_S_2[2], ord) + TaylorSeries.add!(tmp3672, ρ2s2_S, coeff3_2_S, ord) + TaylorSeries.mul!(tmp3673, tmp3672, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp3674, tmp3671, tmp3673, ord) + TaylorSeries.mul!(a_tid_2_S_y, k_22E_div_r2s5_S, tmp3674, ord) + TaylorSeries.subst!(tmp3676, coeff3_2_S, ord) + TaylorSeries.mul!(tmp3677, k_22E_div_r2s5_S, tmp3676, ord) + TaylorSeries.mul!(a_tid_2_S_z, tmp3677, Z_bf[mo, ea], ord) + TaylorSeries.div!(tmp3679, RE_au, r_p1d2[mo, ea], ord) + TaylorSeries.pow!(RE_div_r_p5, tmp3679, tmp4132, 5, ord) TaylorSeries.mul!(aux_tidacc, tid_num_coeff, RE_div_r_p5, ord) TaylorSeries.mul!(a_tidal_coeff_M, μ[mo], aux_tidacc, ord) TaylorSeries.mul!(a_tidal_coeff_S, μ[su], aux_tidacc, ord) - TaylorSeries.add!(tmp3670, a_tid_0_M_x, a_tid_1_M_x, ord) - TaylorSeries.add!(tmp3671, tmp3670, a_tid_2_M_x, ord) - TaylorSeries.mul!(tmp3672, a_tidal_coeff_M, tmp3671, ord) - TaylorSeries.add!(tmp3673, a_tid_0_S_x, a_tid_1_S_x, ord) - TaylorSeries.add!(tmp3674, tmp3673, a_tid_2_S_x, ord) - TaylorSeries.mul!(tmp3675, a_tidal_coeff_S, tmp3674, ord) - TaylorSeries.add!(a_tidal_tod_x, tmp3672, tmp3675, ord) - TaylorSeries.add!(tmp3677, a_tid_0_M_y, a_tid_1_M_y, ord) - TaylorSeries.add!(tmp3678, tmp3677, a_tid_2_M_y, ord) - TaylorSeries.mul!(tmp3679, a_tidal_coeff_M, tmp3678, ord) - TaylorSeries.add!(tmp3680, a_tid_0_S_y, a_tid_1_S_y, ord) - TaylorSeries.add!(tmp3681, tmp3680, a_tid_2_S_y, ord) - TaylorSeries.mul!(tmp3682, a_tidal_coeff_S, tmp3681, ord) - TaylorSeries.add!(a_tidal_tod_y, tmp3679, tmp3682, ord) - TaylorSeries.add!(tmp3684, a_tid_0_M_z, a_tid_1_M_z, ord) - TaylorSeries.add!(tmp3685, tmp3684, a_tid_2_M_z, ord) - TaylorSeries.mul!(tmp3686, a_tidal_coeff_M, tmp3685, ord) - TaylorSeries.add!(tmp3687, a_tid_0_S_z, a_tid_1_S_z, ord) - TaylorSeries.add!(tmp3688, tmp3687, a_tid_2_S_z, ord) - TaylorSeries.mul!(tmp3689, a_tidal_coeff_S, tmp3688, ord) - TaylorSeries.add!(a_tidal_tod_z, tmp3686, tmp3689, ord) - TaylorSeries.mul!(tmp3691, RotM[1, 1, ea], a_tidal_tod_x, ord) - TaylorSeries.mul!(tmp3692, RotM[2, 1, ea], a_tidal_tod_y, ord) - TaylorSeries.add!(tmp3693, tmp3691, tmp3692, ord) - TaylorSeries.mul!(tmp3694, RotM[3, 1, ea], a_tidal_tod_z, ord) - TaylorSeries.add!(a_tidal_x, tmp3693, tmp3694, ord) - TaylorSeries.mul!(tmp3696, RotM[1, 2, ea], a_tidal_tod_x, ord) - TaylorSeries.mul!(tmp3697, RotM[2, 2, ea], a_tidal_tod_y, ord) - TaylorSeries.add!(tmp3698, tmp3696, tmp3697, ord) - TaylorSeries.mul!(tmp3699, RotM[3, 2, ea], a_tidal_tod_z, ord) - TaylorSeries.add!(a_tidal_y, tmp3698, tmp3699, ord) - TaylorSeries.mul!(tmp3701, RotM[1, 3, ea], a_tidal_tod_x, ord) - TaylorSeries.mul!(tmp3702, RotM[2, 3, ea], a_tidal_tod_y, ord) - TaylorSeries.add!(tmp3703, tmp3701, tmp3702, ord) - TaylorSeries.mul!(tmp3704, RotM[3, 3, ea], a_tidal_tod_z, ord) - TaylorSeries.add!(a_tidal_z, tmp3703, tmp3704, ord) + TaylorSeries.add!(tmp3685, a_tid_0_M_x, a_tid_1_M_x, ord) + TaylorSeries.add!(tmp3686, tmp3685, a_tid_2_M_x, ord) + TaylorSeries.mul!(tmp3687, a_tidal_coeff_M, tmp3686, ord) + TaylorSeries.add!(tmp3688, a_tid_0_S_x, a_tid_1_S_x, ord) + TaylorSeries.add!(tmp3689, tmp3688, a_tid_2_S_x, ord) + TaylorSeries.mul!(tmp3690, a_tidal_coeff_S, tmp3689, ord) + TaylorSeries.add!(a_tidal_tod_x, tmp3687, tmp3690, ord) + TaylorSeries.add!(tmp3692, a_tid_0_M_y, a_tid_1_M_y, ord) + TaylorSeries.add!(tmp3693, tmp3692, a_tid_2_M_y, ord) + TaylorSeries.mul!(tmp3694, a_tidal_coeff_M, tmp3693, ord) + TaylorSeries.add!(tmp3695, a_tid_0_S_y, a_tid_1_S_y, ord) + TaylorSeries.add!(tmp3696, tmp3695, a_tid_2_S_y, ord) + TaylorSeries.mul!(tmp3697, a_tidal_coeff_S, tmp3696, ord) + TaylorSeries.add!(a_tidal_tod_y, tmp3694, tmp3697, ord) + TaylorSeries.add!(tmp3699, a_tid_0_M_z, a_tid_1_M_z, ord) + TaylorSeries.add!(tmp3700, tmp3699, a_tid_2_M_z, ord) + TaylorSeries.mul!(tmp3701, a_tidal_coeff_M, tmp3700, ord) + TaylorSeries.add!(tmp3702, a_tid_0_S_z, a_tid_1_S_z, ord) + TaylorSeries.add!(tmp3703, tmp3702, a_tid_2_S_z, ord) + TaylorSeries.mul!(tmp3704, a_tidal_coeff_S, tmp3703, ord) + TaylorSeries.add!(a_tidal_tod_z, tmp3701, tmp3704, ord) + TaylorSeries.mul!(tmp3706, RotM[1, 1, ea], a_tidal_tod_x, ord) + TaylorSeries.mul!(tmp3707, RotM[2, 1, ea], a_tidal_tod_y, ord) + TaylorSeries.add!(tmp3708, tmp3706, tmp3707, ord) + TaylorSeries.mul!(tmp3709, RotM[3, 1, ea], a_tidal_tod_z, ord) + TaylorSeries.add!(a_tidal_x, tmp3708, tmp3709, ord) + TaylorSeries.mul!(tmp3711, RotM[1, 2, ea], a_tidal_tod_x, ord) + TaylorSeries.mul!(tmp3712, RotM[2, 2, ea], a_tidal_tod_y, ord) + TaylorSeries.add!(tmp3713, tmp3711, tmp3712, ord) + TaylorSeries.mul!(tmp3714, RotM[3, 2, ea], a_tidal_tod_z, ord) + TaylorSeries.add!(a_tidal_y, tmp3713, tmp3714, ord) + TaylorSeries.mul!(tmp3716, RotM[1, 3, ea], a_tidal_tod_x, ord) + TaylorSeries.mul!(tmp3717, RotM[2, 3, ea], a_tidal_tod_y, ord) + TaylorSeries.add!(tmp3718, tmp3716, tmp3717, ord) + TaylorSeries.mul!(tmp3719, RotM[3, 3, ea], a_tidal_tod_z, ord) + TaylorSeries.add!(a_tidal_z, tmp3718, tmp3719, ord) TaylorSeries.add!(accX_mo_tides, accX[mo], a_tidal_x, ord) TaylorSeries.add!(accY_mo_tides, accY[mo], a_tidal_y, ord) TaylorSeries.add!(accZ_mo_tides, accZ[mo], a_tidal_z, ord) @@ -11592,318 +7800,318 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(dq[3 * (N + i) - 1], postNewtonY[i], ord) TaylorSeries.identity!(dq[3 * (N + i)], postNewtonZ[i], ord) end - TaylorSeries.mul!(tmp3712, I_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3713, I_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3714, I_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3715, tmp3713, tmp3714, ord) - TaylorSeries.add!(Iω_x, tmp3712, tmp3715, ord) - TaylorSeries.mul!(tmp3717, I_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3718, I_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3719, I_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3720, tmp3718, tmp3719, ord) - TaylorSeries.add!(Iω_y, tmp3717, tmp3720, ord) - TaylorSeries.mul!(tmp3722, I_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3723, I_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3724, I_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3725, tmp3723, tmp3724, ord) - TaylorSeries.add!(Iω_z, tmp3722, tmp3725, ord) - TaylorSeries.mul!(tmp3727, q[6N + 5], Iω_z, ord) - TaylorSeries.mul!(tmp3728, q[6N + 6], Iω_y, ord) - TaylorSeries.subst!(ωxIω_x, tmp3727, tmp3728, ord) - TaylorSeries.mul!(tmp3730, q[6N + 6], Iω_x, ord) - TaylorSeries.mul!(tmp3731, q[6N + 4], Iω_z, ord) - TaylorSeries.subst!(ωxIω_y, tmp3730, tmp3731, ord) - TaylorSeries.mul!(tmp3733, q[6N + 4], Iω_y, ord) - TaylorSeries.mul!(tmp3734, q[6N + 5], Iω_x, ord) - TaylorSeries.subst!(ωxIω_z, tmp3733, tmp3734, ord) - TaylorSeries.mul!(tmp3736, dI_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3737, dI_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3738, dI_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3739, tmp3737, tmp3738, ord) - TaylorSeries.add!(dIω_x, tmp3736, tmp3739, ord) - TaylorSeries.mul!(tmp3741, dI_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3742, dI_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3743, dI_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3744, tmp3742, tmp3743, ord) - TaylorSeries.add!(dIω_y, tmp3741, tmp3744, ord) - TaylorSeries.mul!(tmp3746, dI_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3747, dI_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3748, dI_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3749, tmp3747, tmp3748, ord) - TaylorSeries.add!(dIω_z, tmp3746, tmp3749, ord) + TaylorSeries.mul!(tmp3727, I_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3728, I_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3729, I_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3730, tmp3728, tmp3729, ord) + TaylorSeries.add!(Iω_x, tmp3727, tmp3730, ord) + TaylorSeries.mul!(tmp3732, I_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3733, I_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3734, I_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3735, tmp3733, tmp3734, ord) + TaylorSeries.add!(Iω_y, tmp3732, tmp3735, ord) + TaylorSeries.mul!(tmp3737, I_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3738, I_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3739, I_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3740, tmp3738, tmp3739, ord) + TaylorSeries.add!(Iω_z, tmp3737, tmp3740, ord) + TaylorSeries.mul!(tmp3742, q[6N + 5], Iω_z, ord) + TaylorSeries.mul!(tmp3743, q[6N + 6], Iω_y, ord) + TaylorSeries.subst!(ωxIω_x, tmp3742, tmp3743, ord) + TaylorSeries.mul!(tmp3745, q[6N + 6], Iω_x, ord) + TaylorSeries.mul!(tmp3746, q[6N + 4], Iω_z, ord) + TaylorSeries.subst!(ωxIω_y, tmp3745, tmp3746, ord) + TaylorSeries.mul!(tmp3748, q[6N + 4], Iω_y, ord) + TaylorSeries.mul!(tmp3749, q[6N + 5], Iω_x, ord) + TaylorSeries.subst!(ωxIω_z, tmp3748, tmp3749, ord) + TaylorSeries.mul!(tmp3751, dI_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3752, dI_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3753, dI_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3754, tmp3752, tmp3753, ord) + TaylorSeries.add!(dIω_x, tmp3751, tmp3754, ord) + TaylorSeries.mul!(tmp3756, dI_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3757, dI_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3758, dI_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3759, tmp3757, tmp3758, ord) + TaylorSeries.add!(dIω_y, tmp3756, tmp3759, ord) + TaylorSeries.mul!(tmp3761, dI_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3762, dI_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3763, dI_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3764, tmp3762, tmp3763, ord) + TaylorSeries.add!(dIω_z, tmp3761, tmp3764, ord) TaylorSeries.div!(er_EM_I_1, X[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_2, Y[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_3, Z[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.identity!(p_E_I_1, RotM[3, 1, ea], ord) TaylorSeries.identity!(p_E_I_2, RotM[3, 2, ea], ord) TaylorSeries.identity!(p_E_I_3, RotM[3, 3, ea], ord) - TaylorSeries.mul!(tmp3754, RotM[1, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp3755, RotM[1, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp3756, RotM[1, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp3757, tmp3755, tmp3756, ord) - TaylorSeries.add!(er_EM_1, tmp3754, tmp3757, ord) - TaylorSeries.mul!(tmp3759, RotM[2, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp3760, RotM[2, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp3761, RotM[2, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp3762, tmp3760, tmp3761, ord) - TaylorSeries.add!(er_EM_2, tmp3759, tmp3762, ord) - TaylorSeries.mul!(tmp3764, RotM[3, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp3765, RotM[3, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp3766, RotM[3, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp3767, tmp3765, tmp3766, ord) - TaylorSeries.add!(er_EM_3, tmp3764, tmp3767, ord) - TaylorSeries.mul!(tmp3769, RotM[1, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp3770, RotM[1, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp3771, RotM[1, 3, mo], p_E_I_3, ord) + TaylorSeries.mul!(tmp3769, RotM[1, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp3770, RotM[1, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp3771, RotM[1, 3, mo], er_EM_I_3, ord) TaylorSeries.add!(tmp3772, tmp3770, tmp3771, ord) - TaylorSeries.add!(p_E_1, tmp3769, tmp3772, ord) - TaylorSeries.mul!(tmp3774, RotM[2, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp3775, RotM[2, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp3776, RotM[2, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(er_EM_1, tmp3769, tmp3772, ord) + TaylorSeries.mul!(tmp3774, RotM[2, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp3775, RotM[2, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp3776, RotM[2, 3, mo], er_EM_I_3, ord) TaylorSeries.add!(tmp3777, tmp3775, tmp3776, ord) - TaylorSeries.add!(p_E_2, tmp3774, tmp3777, ord) - TaylorSeries.mul!(tmp3779, RotM[3, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp3780, RotM[3, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp3781, RotM[3, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(er_EM_2, tmp3774, tmp3777, ord) + TaylorSeries.mul!(tmp3779, RotM[3, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp3780, RotM[3, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp3781, RotM[3, 3, mo], er_EM_I_3, ord) TaylorSeries.add!(tmp3782, tmp3780, tmp3781, ord) - TaylorSeries.add!(p_E_3, tmp3779, tmp3782, ord) - TaylorSeries.mul!(tmp3784, I_m_t[1, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp3785, I_m_t[1, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp3786, I_m_t[1, 3], er_EM_3, ord) + TaylorSeries.add!(er_EM_3, tmp3779, tmp3782, ord) + TaylorSeries.mul!(tmp3784, RotM[1, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp3785, RotM[1, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp3786, RotM[1, 3, mo], p_E_I_3, ord) TaylorSeries.add!(tmp3787, tmp3785, tmp3786, ord) - TaylorSeries.add!(I_er_EM_1, tmp3784, tmp3787, ord) - TaylorSeries.mul!(tmp3789, I_m_t[2, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp3790, I_m_t[2, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp3791, I_m_t[2, 3], er_EM_3, ord) + TaylorSeries.add!(p_E_1, tmp3784, tmp3787, ord) + TaylorSeries.mul!(tmp3789, RotM[2, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp3790, RotM[2, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp3791, RotM[2, 3, mo], p_E_I_3, ord) TaylorSeries.add!(tmp3792, tmp3790, tmp3791, ord) - TaylorSeries.add!(I_er_EM_2, tmp3789, tmp3792, ord) - TaylorSeries.mul!(tmp3794, I_m_t[3, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp3795, I_m_t[3, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp3796, I_m_t[3, 3], er_EM_3, ord) + TaylorSeries.add!(p_E_2, tmp3789, tmp3792, ord) + TaylorSeries.mul!(tmp3794, RotM[3, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp3795, RotM[3, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp3796, RotM[3, 3, mo], p_E_I_3, ord) TaylorSeries.add!(tmp3797, tmp3795, tmp3796, ord) - TaylorSeries.add!(I_er_EM_3, tmp3794, tmp3797, ord) - TaylorSeries.mul!(tmp3799, I_m_t[1, 1], p_E_1, ord) - TaylorSeries.mul!(tmp3800, I_m_t[1, 2], p_E_2, ord) - TaylorSeries.mul!(tmp3801, I_m_t[1, 3], p_E_3, ord) + TaylorSeries.add!(p_E_3, tmp3794, tmp3797, ord) + TaylorSeries.mul!(tmp3799, I_m_t[1, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp3800, I_m_t[1, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp3801, I_m_t[1, 3], er_EM_3, ord) TaylorSeries.add!(tmp3802, tmp3800, tmp3801, ord) - TaylorSeries.add!(I_p_E_1, tmp3799, tmp3802, ord) - TaylorSeries.mul!(tmp3804, I_m_t[2, 1], p_E_1, ord) - TaylorSeries.mul!(tmp3805, I_m_t[2, 2], p_E_2, ord) - TaylorSeries.mul!(tmp3806, I_m_t[2, 3], p_E_3, ord) + TaylorSeries.add!(I_er_EM_1, tmp3799, tmp3802, ord) + TaylorSeries.mul!(tmp3804, I_m_t[2, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp3805, I_m_t[2, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp3806, I_m_t[2, 3], er_EM_3, ord) TaylorSeries.add!(tmp3807, tmp3805, tmp3806, ord) - TaylorSeries.add!(I_p_E_2, tmp3804, tmp3807, ord) - TaylorSeries.mul!(tmp3809, I_m_t[3, 1], p_E_1, ord) - TaylorSeries.mul!(tmp3810, I_m_t[3, 2], p_E_2, ord) - TaylorSeries.mul!(tmp3811, I_m_t[3, 3], p_E_3, ord) + TaylorSeries.add!(I_er_EM_2, tmp3804, tmp3807, ord) + TaylorSeries.mul!(tmp3809, I_m_t[3, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp3810, I_m_t[3, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp3811, I_m_t[3, 3], er_EM_3, ord) TaylorSeries.add!(tmp3812, tmp3810, tmp3811, ord) - TaylorSeries.add!(I_p_E_3, tmp3809, tmp3812, ord) - TaylorSeries.mul!(tmp3814, er_EM_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp3815, er_EM_3, I_er_EM_2, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp3814, tmp3815, ord) - TaylorSeries.mul!(tmp3817, er_EM_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp3818, er_EM_1, I_er_EM_3, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp3817, tmp3818, ord) - TaylorSeries.mul!(tmp3820, er_EM_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp3821, er_EM_2, I_er_EM_1, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp3820, tmp3821, ord) - TaylorSeries.mul!(tmp3823, er_EM_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp3824, er_EM_3, I_p_E_2, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp3823, tmp3824, ord) - TaylorSeries.mul!(tmp3826, er_EM_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp3827, er_EM_1, I_p_E_3, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp3826, tmp3827, ord) - TaylorSeries.mul!(tmp3829, er_EM_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp3830, er_EM_2, I_p_E_1, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp3829, tmp3830, ord) - TaylorSeries.mul!(tmp3832, p_E_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp3833, p_E_3, I_er_EM_2, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp3832, tmp3833, ord) - TaylorSeries.mul!(tmp3835, p_E_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp3836, p_E_1, I_er_EM_3, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp3835, tmp3836, ord) - TaylorSeries.mul!(tmp3838, p_E_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp3839, p_E_2, I_er_EM_1, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp3838, tmp3839, ord) - TaylorSeries.mul!(tmp3841, p_E_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp3842, p_E_3, I_p_E_2, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp3841, tmp3842, ord) - TaylorSeries.mul!(tmp3844, p_E_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp3845, p_E_1, I_p_E_3, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp3844, tmp3845, ord) - TaylorSeries.mul!(tmp3847, p_E_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp3848, p_E_2, I_p_E_1, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp3847, tmp3848, ord) - TaylorSeries.pow!(tmp3852, sin_ϕ[ea, mo], 2, ord) - TaylorSeries.mul!(tmp3853, 7, tmp3852, ord) - TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp3853, ord) + TaylorSeries.add!(I_er_EM_3, tmp3809, tmp3812, ord) + TaylorSeries.mul!(tmp3814, I_m_t[1, 1], p_E_1, ord) + TaylorSeries.mul!(tmp3815, I_m_t[1, 2], p_E_2, ord) + TaylorSeries.mul!(tmp3816, I_m_t[1, 3], p_E_3, ord) + TaylorSeries.add!(tmp3817, tmp3815, tmp3816, ord) + TaylorSeries.add!(I_p_E_1, tmp3814, tmp3817, ord) + TaylorSeries.mul!(tmp3819, I_m_t[2, 1], p_E_1, ord) + TaylorSeries.mul!(tmp3820, I_m_t[2, 2], p_E_2, ord) + TaylorSeries.mul!(tmp3821, I_m_t[2, 3], p_E_3, ord) + TaylorSeries.add!(tmp3822, tmp3820, tmp3821, ord) + TaylorSeries.add!(I_p_E_2, tmp3819, tmp3822, ord) + TaylorSeries.mul!(tmp3824, I_m_t[3, 1], p_E_1, ord) + TaylorSeries.mul!(tmp3825, I_m_t[3, 2], p_E_2, ord) + TaylorSeries.mul!(tmp3826, I_m_t[3, 3], p_E_3, ord) + TaylorSeries.add!(tmp3827, tmp3825, tmp3826, ord) + TaylorSeries.add!(I_p_E_3, tmp3824, tmp3827, ord) + TaylorSeries.mul!(tmp3829, er_EM_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp3830, er_EM_3, I_er_EM_2, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp3829, tmp3830, ord) + TaylorSeries.mul!(tmp3832, er_EM_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp3833, er_EM_1, I_er_EM_3, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp3832, tmp3833, ord) + TaylorSeries.mul!(tmp3835, er_EM_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp3836, er_EM_2, I_er_EM_1, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp3835, tmp3836, ord) + TaylorSeries.mul!(tmp3838, er_EM_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp3839, er_EM_3, I_p_E_2, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp3838, tmp3839, ord) + TaylorSeries.mul!(tmp3841, er_EM_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp3842, er_EM_1, I_p_E_3, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp3841, tmp3842, ord) + TaylorSeries.mul!(tmp3844, er_EM_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp3845, er_EM_2, I_p_E_1, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp3844, tmp3845, ord) + TaylorSeries.mul!(tmp3847, p_E_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp3848, p_E_3, I_er_EM_2, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp3847, tmp3848, ord) + TaylorSeries.mul!(tmp3850, p_E_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp3851, p_E_1, I_er_EM_3, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp3850, tmp3851, ord) + TaylorSeries.mul!(tmp3853, p_E_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp3854, p_E_2, I_er_EM_1, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp3853, tmp3854, ord) + TaylorSeries.mul!(tmp3856, p_E_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp3857, p_E_3, I_p_E_2, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp3856, tmp3857, ord) + TaylorSeries.mul!(tmp3859, p_E_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp3860, p_E_1, I_p_E_3, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp3859, tmp3860, ord) + TaylorSeries.mul!(tmp3862, p_E_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp3863, p_E_2, I_p_E_1, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp3862, tmp3863, ord) + TaylorSeries.pow!(tmp3867, sin_ϕ[ea, mo], tmp4133, 2, ord) + TaylorSeries.mul!(tmp3868, 7, tmp3867, ord) + TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp3868, ord) TaylorSeries.mul!(two_sinϕEM, 2, sin_ϕ[ea, mo], ord) - TaylorSeries.pow!(tmp3858, r_p1d2[mo, ea], 5, ord) - TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp3858, ord) - TaylorSeries.mul!(tmp3860, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) - TaylorSeries.add!(tmp3861, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) - TaylorSeries.mul!(tmp3862, two_sinϕEM, tmp3861, ord) - TaylorSeries.add!(tmp3863, tmp3860, tmp3862, ord) - TaylorSeries.mul!(tmp3865, 0.4, p_E_cross_I_p_E_1, ord) - TaylorSeries.subst!(tmp3866, tmp3863, tmp3865, ord) - TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp3866, ord) - TaylorSeries.mul!(tmp3868, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) - TaylorSeries.add!(tmp3869, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) - TaylorSeries.mul!(tmp3870, two_sinϕEM, tmp3869, ord) - TaylorSeries.add!(tmp3871, tmp3868, tmp3870, ord) - TaylorSeries.mul!(tmp3873, 0.4, p_E_cross_I_p_E_2, ord) - TaylorSeries.subst!(tmp3874, tmp3871, tmp3873, ord) - TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp3874, ord) - TaylorSeries.mul!(tmp3876, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) - TaylorSeries.add!(tmp3877, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) - TaylorSeries.mul!(tmp3878, two_sinϕEM, tmp3877, ord) - TaylorSeries.add!(tmp3879, tmp3876, tmp3878, ord) - TaylorSeries.mul!(tmp3881, 0.4, p_E_cross_I_p_E_3, ord) - TaylorSeries.subst!(tmp3882, tmp3879, tmp3881, ord) - TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp3882, ord) - TaylorSeries.mul!(tmp3884, RotM[1, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp3885, RotM[1, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp3886, RotM[1, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp3887, tmp3885, tmp3886, ord) - TaylorSeries.add!(N_1_LMF, tmp3884, tmp3887, ord) - TaylorSeries.mul!(tmp3889, RotM[2, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp3890, RotM[2, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp3891, RotM[2, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp3892, tmp3890, tmp3891, ord) - TaylorSeries.add!(N_2_LMF, tmp3889, tmp3892, ord) - TaylorSeries.mul!(tmp3894, RotM[3, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp3895, RotM[3, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp3896, RotM[3, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp3897, tmp3895, tmp3896, ord) - TaylorSeries.add!(N_3_LMF, tmp3894, tmp3897, ord) - TaylorSeries.subst!(tmp3899, q[6N + 10], q[6N + 4], ord) - TaylorSeries.mul!(tmp3900, k_ν, tmp3899, ord) - TaylorSeries.mul!(tmp3901, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp3902, tmp3901, q[6N + 11], ord) - TaylorSeries.subst!(N_cmb_1, tmp3900, tmp3902, ord) - TaylorSeries.subst!(tmp3904, q[6N + 11], q[6N + 5], ord) - TaylorSeries.mul!(tmp3905, k_ν, tmp3904, ord) - TaylorSeries.mul!(tmp3906, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp3907, tmp3906, q[6N + 10], ord) - TaylorSeries.add!(N_cmb_2, tmp3905, tmp3907, ord) - TaylorSeries.subst!(tmp3909, q[6N + 12], q[6N + 6], ord) - TaylorSeries.mul!(N_cmb_3, k_ν, tmp3909, ord) - TaylorSeries.mul!(tmp3911, μ[mo], N_1_LMF, ord) - TaylorSeries.add!(tmp3912, N_MfigM_figE_1, tmp3911, ord) - TaylorSeries.add!(tmp3913, tmp3912, N_cmb_1, ord) - TaylorSeries.add!(tmp3914, dIω_x, ωxIω_x, ord) - TaylorSeries.subst!(I_dω_1, tmp3913, tmp3914, ord) - TaylorSeries.mul!(tmp3916, μ[mo], N_2_LMF, ord) - TaylorSeries.add!(tmp3917, N_MfigM_figE_2, tmp3916, ord) - TaylorSeries.add!(tmp3918, tmp3917, N_cmb_2, ord) - TaylorSeries.add!(tmp3919, dIω_y, ωxIω_y, ord) - TaylorSeries.subst!(I_dω_2, tmp3918, tmp3919, ord) - TaylorSeries.mul!(tmp3921, μ[mo], N_3_LMF, ord) - TaylorSeries.add!(tmp3922, N_MfigM_figE_3, tmp3921, ord) - TaylorSeries.add!(tmp3923, tmp3922, N_cmb_3, ord) - TaylorSeries.add!(tmp3924, dIω_z, ωxIω_z, ord) - TaylorSeries.subst!(I_dω_3, tmp3923, tmp3924, ord) + TaylorSeries.pow!(tmp3873, r_p1d2[mo, ea], tmp4134, 5, ord) + TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp3873, ord) + TaylorSeries.mul!(tmp3875, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) + TaylorSeries.add!(tmp3876, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) + TaylorSeries.mul!(tmp3877, two_sinϕEM, tmp3876, ord) + TaylorSeries.add!(tmp3878, tmp3875, tmp3877, ord) + TaylorSeries.mul!(tmp3880, 0.4, p_E_cross_I_p_E_1, ord) + TaylorSeries.subst!(tmp3881, tmp3878, tmp3880, ord) + TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp3881, ord) + TaylorSeries.mul!(tmp3883, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) + TaylorSeries.add!(tmp3884, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) + TaylorSeries.mul!(tmp3885, two_sinϕEM, tmp3884, ord) + TaylorSeries.add!(tmp3886, tmp3883, tmp3885, ord) + TaylorSeries.mul!(tmp3888, 0.4, p_E_cross_I_p_E_2, ord) + TaylorSeries.subst!(tmp3889, tmp3886, tmp3888, ord) + TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp3889, ord) + TaylorSeries.mul!(tmp3891, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) + TaylorSeries.add!(tmp3892, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) + TaylorSeries.mul!(tmp3893, two_sinϕEM, tmp3892, ord) + TaylorSeries.add!(tmp3894, tmp3891, tmp3893, ord) + TaylorSeries.mul!(tmp3896, 0.4, p_E_cross_I_p_E_3, ord) + TaylorSeries.subst!(tmp3897, tmp3894, tmp3896, ord) + TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp3897, ord) + TaylorSeries.mul!(tmp3899, RotM[1, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp3900, RotM[1, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp3901, RotM[1, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp3902, tmp3900, tmp3901, ord) + TaylorSeries.add!(N_1_LMF, tmp3899, tmp3902, ord) + TaylorSeries.mul!(tmp3904, RotM[2, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp3905, RotM[2, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp3906, RotM[2, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp3907, tmp3905, tmp3906, ord) + TaylorSeries.add!(N_2_LMF, tmp3904, tmp3907, ord) + TaylorSeries.mul!(tmp3909, RotM[3, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp3910, RotM[3, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp3911, RotM[3, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp3912, tmp3910, tmp3911, ord) + TaylorSeries.add!(N_3_LMF, tmp3909, tmp3912, ord) + TaylorSeries.subst!(tmp3914, q[6N + 10], q[6N + 4], ord) + TaylorSeries.mul!(tmp3915, k_ν, tmp3914, ord) + TaylorSeries.mul!(tmp3916, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp3917, tmp3916, q[6N + 11], ord) + TaylorSeries.subst!(N_cmb_1, tmp3915, tmp3917, ord) + TaylorSeries.subst!(tmp3919, q[6N + 11], q[6N + 5], ord) + TaylorSeries.mul!(tmp3920, k_ν, tmp3919, ord) + TaylorSeries.mul!(tmp3921, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp3922, tmp3921, q[6N + 10], ord) + TaylorSeries.add!(N_cmb_2, tmp3920, tmp3922, ord) + TaylorSeries.subst!(tmp3924, q[6N + 12], q[6N + 6], ord) + TaylorSeries.mul!(N_cmb_3, k_ν, tmp3924, ord) + TaylorSeries.mul!(tmp3926, μ[mo], N_1_LMF, ord) + TaylorSeries.add!(tmp3927, N_MfigM_figE_1, tmp3926, ord) + TaylorSeries.add!(tmp3928, tmp3927, N_cmb_1, ord) + TaylorSeries.add!(tmp3929, dIω_x, ωxIω_x, ord) + TaylorSeries.subst!(I_dω_1, tmp3928, tmp3929, ord) + TaylorSeries.mul!(tmp3931, μ[mo], N_2_LMF, ord) + TaylorSeries.add!(tmp3932, N_MfigM_figE_2, tmp3931, ord) + TaylorSeries.add!(tmp3933, tmp3932, N_cmb_2, ord) + TaylorSeries.add!(tmp3934, dIω_y, ωxIω_y, ord) + TaylorSeries.subst!(I_dω_2, tmp3933, tmp3934, ord) + TaylorSeries.mul!(tmp3936, μ[mo], N_3_LMF, ord) + TaylorSeries.add!(tmp3937, N_MfigM_figE_3, tmp3936, ord) + TaylorSeries.add!(tmp3938, tmp3937, N_cmb_3, ord) + TaylorSeries.add!(tmp3939, dIω_z, ωxIω_z, ord) + TaylorSeries.subst!(I_dω_3, tmp3938, tmp3939, ord) TaylorSeries.mul!(Ic_ωc_1, I_c_t[1, 1], q[6N + 10], ord) TaylorSeries.mul!(Ic_ωc_2, I_c_t[2, 2], q[6N + 11], ord) TaylorSeries.mul!(Ic_ωc_3, I_c_t[3, 3], q[6N + 12], ord) - TaylorSeries.mul!(tmp3929, q[6N + 6], Ic_ωc_2, ord) - TaylorSeries.mul!(tmp3930, q[6N + 5], Ic_ωc_3, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp3929, tmp3930, ord) - TaylorSeries.mul!(tmp3932, q[6N + 4], Ic_ωc_3, ord) - TaylorSeries.mul!(tmp3933, q[6N + 6], Ic_ωc_1, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp3932, tmp3933, ord) - TaylorSeries.mul!(tmp3935, q[6N + 5], Ic_ωc_1, ord) - TaylorSeries.mul!(tmp3936, q[6N + 4], Ic_ωc_2, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp3935, tmp3936, ord) + TaylorSeries.mul!(tmp3944, q[6N + 6], Ic_ωc_2, ord) + TaylorSeries.mul!(tmp3945, q[6N + 5], Ic_ωc_3, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp3944, tmp3945, ord) + TaylorSeries.mul!(tmp3947, q[6N + 4], Ic_ωc_3, ord) + TaylorSeries.mul!(tmp3948, q[6N + 6], Ic_ωc_1, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp3947, tmp3948, ord) + TaylorSeries.mul!(tmp3950, q[6N + 5], Ic_ωc_1, ord) + TaylorSeries.mul!(tmp3951, q[6N + 4], Ic_ωc_2, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp3950, tmp3951, ord) TaylorSeries.subst!(Ic_dωc_1, m_ωm_x_Icωc_1, N_cmb_1, ord) TaylorSeries.subst!(Ic_dωc_2, m_ωm_x_Icωc_2, N_cmb_2, ord) TaylorSeries.subst!(Ic_dωc_3, m_ωm_x_Icωc_3, N_cmb_3, ord) - TaylorSeries.sincos!(tmp3941, tmp4072, q[6N + 3], ord) - TaylorSeries.mul!(tmp3942, q[6N + 4], tmp3941, ord) - TaylorSeries.sincos!(tmp4073, tmp3943, q[6N + 3], ord) - TaylorSeries.mul!(tmp3944, q[6N + 5], tmp3943, ord) - TaylorSeries.add!(tmp3945, tmp3942, tmp3944, ord) - TaylorSeries.sincos!(tmp3946, tmp4074, q[6N + 2], ord) - TaylorSeries.div!(dq[6N + 1], tmp3945, tmp3946, ord) - TaylorSeries.sincos!(tmp4075, tmp3948, q[6N + 3], ord) - TaylorSeries.mul!(tmp3949, q[6N + 4], tmp3948, ord) - TaylorSeries.sincos!(tmp3950, tmp4076, q[6N + 3], ord) - TaylorSeries.mul!(tmp3951, q[6N + 5], tmp3950, ord) - TaylorSeries.subst!(dq[6N + 2], tmp3949, tmp3951, ord) - TaylorSeries.sincos!(tmp4077, tmp3953, q[6N + 2], ord) - TaylorSeries.mul!(tmp3954, dq[6N + 1], tmp3953, ord) - TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp3954, ord) - TaylorSeries.mul!(tmp3956, inv_I_m_t[1, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp3957, inv_I_m_t[1, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp3958, inv_I_m_t[1, 3], I_dω_3, ord) - TaylorSeries.add!(tmp3959, tmp3957, tmp3958, ord) - TaylorSeries.add!(dq[6N + 4], tmp3956, tmp3959, ord) - TaylorSeries.mul!(tmp3961, inv_I_m_t[2, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp3962, inv_I_m_t[2, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp3963, inv_I_m_t[2, 3], I_dω_3, ord) - TaylorSeries.add!(tmp3964, tmp3962, tmp3963, ord) - TaylorSeries.add!(dq[6N + 5], tmp3961, tmp3964, ord) - TaylorSeries.mul!(tmp3966, inv_I_m_t[3, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp3967, inv_I_m_t[3, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp3968, inv_I_m_t[3, 3], I_dω_3, ord) - TaylorSeries.add!(tmp3969, tmp3967, tmp3968, ord) - TaylorSeries.add!(dq[6N + 6], tmp3966, tmp3969, ord) - TaylorSeries.sincos!(tmp3971, tmp4078, q[6N + 8], ord) - TaylorSeries.div!(tmp3972, ω_c_CE_2, tmp3971, ord) - TaylorSeries.subst!(dq[6N + 9], tmp3972, ord) - TaylorSeries.sincos!(tmp4079, tmp3974, q[6N + 8], ord) - TaylorSeries.mul!(tmp3975, dq[6N + 9], tmp3974, ord) - TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp3975, ord) + TaylorSeries.sincos!(tmp3956, tmp4135, q[6N + 3], ord) + TaylorSeries.mul!(tmp3957, q[6N + 4], tmp3956, ord) + TaylorSeries.sincos!(tmp4136, tmp3958, q[6N + 3], ord) + TaylorSeries.mul!(tmp3959, q[6N + 5], tmp3958, ord) + TaylorSeries.add!(tmp3960, tmp3957, tmp3959, ord) + TaylorSeries.sincos!(tmp3961, tmp4137, q[6N + 2], ord) + TaylorSeries.div!(dq[6N + 1], tmp3960, tmp3961, ord) + TaylorSeries.sincos!(tmp4138, tmp3963, q[6N + 3], ord) + TaylorSeries.mul!(tmp3964, q[6N + 4], tmp3963, ord) + TaylorSeries.sincos!(tmp3965, tmp4139, q[6N + 3], ord) + TaylorSeries.mul!(tmp3966, q[6N + 5], tmp3965, ord) + TaylorSeries.subst!(dq[6N + 2], tmp3964, tmp3966, ord) + TaylorSeries.sincos!(tmp4140, tmp3968, q[6N + 2], ord) + TaylorSeries.mul!(tmp3969, dq[6N + 1], tmp3968, ord) + TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp3969, ord) + TaylorSeries.mul!(tmp3971, inv_I_m_t[1, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp3972, inv_I_m_t[1, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp3973, inv_I_m_t[1, 3], I_dω_3, ord) + TaylorSeries.add!(tmp3974, tmp3972, tmp3973, ord) + TaylorSeries.add!(dq[6N + 4], tmp3971, tmp3974, ord) + TaylorSeries.mul!(tmp3976, inv_I_m_t[2, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp3977, inv_I_m_t[2, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp3978, inv_I_m_t[2, 3], I_dω_3, ord) + TaylorSeries.add!(tmp3979, tmp3977, tmp3978, ord) + TaylorSeries.add!(dq[6N + 5], tmp3976, tmp3979, ord) + TaylorSeries.mul!(tmp3981, inv_I_m_t[3, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp3982, inv_I_m_t[3, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp3983, inv_I_m_t[3, 3], I_dω_3, ord) + TaylorSeries.add!(tmp3984, tmp3982, tmp3983, ord) + TaylorSeries.add!(dq[6N + 6], tmp3981, tmp3984, ord) + TaylorSeries.sincos!(tmp3986, tmp4141, q[6N + 8], ord) + TaylorSeries.div!(tmp3987, ω_c_CE_2, tmp3986, ord) + TaylorSeries.subst!(dq[6N + 9], tmp3987, ord) + TaylorSeries.sincos!(tmp4142, tmp3989, q[6N + 8], ord) + TaylorSeries.mul!(tmp3990, dq[6N + 9], tmp3989, ord) + TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp3990, ord) TaylorSeries.identity!(dq[6N + 8], ω_c_CE_1, ord) TaylorSeries.mul!(dq[6N + 10], inv_I_c_t[1, 1], Ic_dωc_1, ord) TaylorSeries.mul!(dq[6N + 11], inv_I_c_t[2, 2], Ic_dωc_2, ord) TaylorSeries.mul!(dq[6N + 12], inv_I_c_t[3, 3], Ic_dωc_3, ord) - TaylorSeries.mul!(tmp3980, newtonianCoeff[su, ea], J2_t[su], ord) - TaylorSeries.pow!(tmp3983, sin_ϕ[su, ea], 2, ord) - TaylorSeries.mul!(tmp3984, 3, tmp3983, ord) - TaylorSeries.subst!(tmp3985, one_t, tmp3984, ord) - TaylorSeries.div!(tmp3987, tmp3985, 2, ord) - TaylorSeries.mul!(w_LE, tmp3980, tmp3987, ord) - TaylorSeries.mul!(tmp3990, 0.5, v2[ea], ord) - TaylorSeries.add!(tmp3991, tmp3990, newtonianNb_Potential[ea], ord) - TaylorSeries.add!(α_TTmTDB, tmp3991, w_LE, ord) - TaylorSeries.pow!(v4E, v2[ea], 2, ord) - TaylorSeries.pow!(ϕ_Earth_Newtonian_sq, newtonianNb_Potential[ea], 2, ord) - TaylorSeries.div!(tmp3998, ϕ_Earth_Newtonian_sq, 2, ord) - TaylorSeries.div!(tmp4000, v4E, 8, ord) - TaylorSeries.subst!(β_TTmTDB, tmp3998, tmp4000, ord) + TaylorSeries.mul!(tmp3995, newtonianCoeff[su, ea], J2_t[su], ord) + TaylorSeries.pow!(tmp3998, sin_ϕ[su, ea], tmp4143, 2, ord) + TaylorSeries.mul!(tmp3999, 3, tmp3998, ord) + TaylorSeries.subst!(tmp4000, one_t, tmp3999, ord) + TaylorSeries.div!(tmp4002, tmp4000, 2, ord) + TaylorSeries.mul!(w_LE, tmp3995, tmp4002, ord) + TaylorSeries.mul!(tmp4005, 0.5, v2[ea], ord) + TaylorSeries.add!(tmp4006, tmp4005, newtonianNb_Potential[ea], ord) + TaylorSeries.add!(α_TTmTDB, tmp4006, w_LE, ord) + TaylorSeries.pow!(v4E, v2[ea], tmp4144, 2, ord) + TaylorSeries.pow!(ϕ_Earth_Newtonian_sq, newtonianNb_Potential[ea], tmp4145, 2, ord) + TaylorSeries.div!(tmp4013, ϕ_Earth_Newtonian_sq, 2, ord) + TaylorSeries.div!(tmp4015, v4E, 8, ord) + TaylorSeries.subst!(β_TTmTDB, tmp4013, tmp4015, ord) for i = 1:N if i == ea continue else TaylorSeries.mul!(β_TTmTDB_i_1[i, ea], 4, vi_dot_vj[i, ea], ord) - TaylorSeries.mul!(tmp4005[ea], 1.5, v2[ea], ord) - TaylorSeries.mul!(tmp4007[i], 2, v2[i], ord) - TaylorSeries.add!(tmp4008[ea], tmp4005[ea], tmp4007[i], ord) - TaylorSeries.subst!(β_TTmTDB_i_2[i], newtonianNb_Potential[i], tmp4008[ea], ord) - TaylorSeries.mul!(tmp4010[i, ea], dq[3 * (N + i) - 2], X[i, ea], ord) - TaylorSeries.mul!(tmp4011[i, ea], dq[3 * (N + i) - 1], Y[i, ea], ord) - TaylorSeries.add!(tmp4012[i, ea], tmp4010[i, ea], tmp4011[i, ea], ord) - TaylorSeries.mul!(tmp4013[i, ea], dq[3 * (N + i)], Z[i, ea], ord) - TaylorSeries.add!(tmp4014[i, ea], tmp4012[i, ea], tmp4013[i, ea], ord) - TaylorSeries.div!(β_TTmTDB_i_3[i, ea], tmp4014[i, ea], 2, ord) + TaylorSeries.mul!(tmp4020[ea], 1.5, v2[ea], ord) + TaylorSeries.mul!(tmp4022[i], 2, v2[i], ord) + TaylorSeries.add!(tmp4023[ea], tmp4020[ea], tmp4022[i], ord) + TaylorSeries.subst!(β_TTmTDB_i_2[i], newtonianNb_Potential[i], tmp4023[ea], ord) + TaylorSeries.mul!(tmp4025[i, ea], dq[3 * (N + i) - 2], X[i, ea], ord) + TaylorSeries.mul!(tmp4026[i, ea], dq[3 * (N + i) - 1], Y[i, ea], ord) + TaylorSeries.add!(tmp4027[i, ea], tmp4025[i, ea], tmp4026[i, ea], ord) + TaylorSeries.mul!(tmp4028[i, ea], dq[3 * (N + i)], Z[i, ea], ord) + TaylorSeries.add!(tmp4029[i, ea], tmp4027[i, ea], tmp4028[i, ea], ord) + TaylorSeries.div!(β_TTmTDB_i_3[i, ea], tmp4029[i, ea], 2, ord) TaylorSeries.div!(β_TTmTDB_i_4[i, ea], rij_dot_vi_div_rij_sq[i, ea], 2, ord) - TaylorSeries.add!(tmp4019[i, ea], β_TTmTDB_i_1[i, ea], β_TTmTDB_i_2[i], ord) - TaylorSeries.add!(tmp4020[i, ea], β_TTmTDB_i_3[i, ea], β_TTmTDB_i_4[i, ea], ord) - TaylorSeries.add!(β_TTmTDB_i[i, ea], tmp4019[i, ea], tmp4020[i, ea], ord) - TaylorSeries.mul!(tmp4022[i, ea], newtonian1b_Potential[i, ea], β_TTmTDB_i[i, ea], ord) - TaylorSeries.add!(temp_β_TTmTDB[i, ea], β_TTmTDB, tmp4022[i, ea], ord) + TaylorSeries.add!(tmp4034[i, ea], β_TTmTDB_i_1[i, ea], β_TTmTDB_i_2[i], ord) + TaylorSeries.add!(tmp4035[i, ea], β_TTmTDB_i_3[i, ea], β_TTmTDB_i_4[i, ea], ord) + TaylorSeries.add!(β_TTmTDB_i[i, ea], tmp4034[i, ea], tmp4035[i, ea], ord) + TaylorSeries.mul!(tmp4037[i, ea], newtonian1b_Potential[i, ea], β_TTmTDB_i[i, ea], ord) + TaylorSeries.add!(temp_β_TTmTDB[i, ea], β_TTmTDB, tmp4037[i, ea], ord) TaylorSeries.identity!(β_TTmTDB, temp_β_TTmTDB[i, ea], ord) end end - TaylorSeries.mul!(tmp4024, c_m2, α_TTmTDB, ord) - TaylorSeries.subst!(tmp4025, L_B, tmp4024, ord) - TaylorSeries.mul!(tmp4026, tmp4025, one_plus_L_B_minus_L_G, ord) - TaylorSeries.mul!(tmp4027, c_m4, β_TTmTDB, ord) - TaylorSeries.subst!(tmp4028, tmp4027, L_G, ord) - TaylorSeries.add!(tmp4029, tmp4026, tmp4028, ord) - TaylorSeries.mul!(dq[6N + 13], daysec, tmp4029, ord) + TaylorSeries.mul!(tmp4039, c_m2, α_TTmTDB, ord) + TaylorSeries.subst!(tmp4040, L_B, tmp4039, ord) + TaylorSeries.mul!(tmp4041, tmp4040, one_plus_L_B_minus_L_G, ord) + TaylorSeries.mul!(tmp4042, c_m4, β_TTmTDB, ord) + TaylorSeries.subst!(tmp4043, tmp4042, L_G, ord) + TaylorSeries.add!(tmp4044, tmp4041, tmp4043, ord) + TaylorSeries.mul!(dq[6N + 13], daysec, tmp4044, ord) for __idx = eachindex(q) - (q[__idx]).coeffs[ordnext + 1] = (dq[__idx]).coeffs[ordnext] / ordnext + TaylorIntegration.ode!(q[__idx], dq[__idx], ordnext) end end return nothing diff --git a/test/Project.toml b/test/Project.toml index 4236bc5..3f981d0 100644 --- a/test/Project.toml +++ b/test/Project.toml @@ -12,4 +12,4 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" JLD2 = "0.4" Quadmath = "0.5" SPICE = "0.2" -TaylorSeries = "0.17" +TaylorSeries = "0.18"