Skip to content

Latest commit

 

History

History
156 lines (92 loc) · 8.18 KB

README.md

File metadata and controls

156 lines (92 loc) · 8.18 KB

ConservationLawsDiffEq

Lifecycle Build Status Build status Coverage Status codecov.io

Collection of explicit numerical schemes for solving systems of Conservations Laws (finite volume methods), using method of Lines and an ODE Solver.

Each scheme returns a semidiscretization (discretization in space) that represents a ODE system. Time integration is performed then using OrdinaryDiffEq.

The general conservation laws problem is represented by the following PDE,

Solutions follow a conservative finite difference (finite volume) pattern. This method updates cell averages of the solution u. For a particular cell i it has the general form

Where the numerical flux is an approximate solution of the Riemann problem at the cell interface .

Features

Mesh:

At the moment only a Cartesian 1D uniform mesh is available, using Uniform1DFVMesh(N,[a,b]) command. Where

N = Number of cells

a,b = start and end coordinates.

The semidiscretization is obtained by using:

getSemiDiscretization(f,scheme,mesh,[boundary_conditions]; Df, use_threads,numvars)

where f is the flux function defined as a julia function.

scheme is the explicit finite volumes scheme used to discretize the flux (see next section).

mesh a valid finite volumes mesh.

boundary_conditions a set of boundary conditions among: Dirichlet(), ZeroFlux() and Periodic(). Note: Dirichlet boundary values are defined by the initial condition.

Df: is an optional Jacobian of the flux function.

use_threads: true or false.

numvars: number of variables of the Conservation Laws system.

Schemes

The explicit numerical schemes in space currently available are the following:

Lax-Friedrichs method

(LaxFriedrichsScheme()), Global/Local L-F Scheme (GlobalLaxFriedrichsScheme(), LocalLaxFriedrichsScheme()), Second order Law-Wendroff Scheme (LaxWendroffScheme()), Ritchmeyer Two-step Lax-Wendroff Method (LaxWendroff2sScheme())

  • R. LeVeque. Finite Volume Methods for Hyperbolic Problems.Cambridge University Press. New York 2002

TECNO Schemes

(FVTecnoScheme(Nflux;ve, order))

  • U. Fjordholm, S. Mishra, E. Tadmor, Arbitrarly high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. 2012. SIAM. vol. 50. No 2. pp. 544-573

High-Resolution Central Schemes

(FVSKTScheme(;slopeLimiter=GeneralizedMinmodLimiter()))

Kurganov, Tadmor, New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations, Journal of Computational Physics, Vol 160, issue 1, 1 May 2000, Pages 241-282

Second-Order upwind central scheme

(FVCUScheme(;slopeLimiter=GeneralizedMinmodLimiter()))

  • Kurganov A., Noelle S., Petrova G., Semidiscrete Central-Upwind schemes for hyperbolic Conservation Laws and Hamilton-Jacobi Equations. SIAM. Sci Comput, Vol 23, No 3m pp 707-740. 2001

Dissipation Reduced Central upwind Scheme:

Second-Order (FVDRCUScheme(;slopeLimiter=GeneralizedMinmodLimiter())), fifth-order (FVDRCU5Scheme(;slopeLimiter=GeneralizedMinmodLimiter()))

  • Kurganov A., Lin C., On the reduction of Numerical Dissipation in Central-Upwind # Schemes, Commun. Comput. Phys. Vol 2. No. 1, pp 141-163, Feb 2007.

Component Wise Weighted Essentially Non-Oscilaroty (WENO-LF)

(FVCompWENOScheme(;order))

  • C.-W. Shu, High order weighted essentially non-oscillatory schemes for convection dominated problems, SIAM Review, 51:82-126, (2009).

Component Wise Mapped WENO Scheme

(FVCompMWENOScheme(;order))

  • A. Henrick, T. Aslam, J. Powers, Mapped weighted essentially non-oscillatory schemes: Achiving optimal order near critical points. Journal of Computational Physics. Vol 207. 2005. Pages 542-567

Characteristic Wise WENO (Spectral) Scheme

(FVSpecMWENOScheme(;order))

  • R. Bürger, R. Donat, P. Mulet, C. Vega, On the implementation of WENO schemes for a class of polydisperse sedimentation models. Journal of Computational Physics, Volume 230, Issue 6, 20 March 2011, Pages 2322-2344

Note: OrdinaryDiffEq callbacks can be used in order to fix a CFL constant value, or recover the dt from adaptative ODE methods in the cases when the finite volumes scheme needs its value (getCFLCallback and get_adaptative_callback methods, see examples for more information about its use)

Note: Limiters available: GeneralizedMinmodLimiter(;θ=1.0), MinmodLimiter(), OsherLimiter(;β=1.0), SuperbeeLimiter().

Example

Scalar Burgers equation:

# u(x,t)_t+(0.5*u²(x,t))_{x}=0
# u(0,x) = f0(x)

using ConservationLawsDiffEq
using OrdinaryDiffEq
using LinearAlgebra

const CFL = 0.5
# First define the problem data (Jacobian is optional but useful)
Jf(u) = u           #Jacobian
f(u) = u^2/2        #Flux function
f0(x) = sin(2*π*x)  #Initial data distribution

# Now discretize the domain
mesh = Uniform1DFVMesh(10, [0.0, 1.0])

# Now get a explicit semidiscretization (discrete in space) du_h(t)/dt = f_h(u_h(t))
f_h = getSemiDiscretization(f,LaxFriedrichsScheme(),mesh,[Periodic()]; Df = Jf, use_threads = false,numvars = 1)

#Compute discrete initial data
u0 = getInitialState(mesh,f0,use_threads = true)

#Setup ODE problem for a time interval = [0.0,1.0]
ode_prob = ODEProblem(f_h,u0,(0.0,1.0))

#Setup callback in order to fix CFL constant value
cb = getCFLCallback(f_h, CFL)

#Estimate an initial dt
dt = update_dt!(u0, f_h, CFL)

#Solve problem using OrdinaryDiffEq
sol = solve(ode_prob,SSPRK22(); dt = dt, callback = cb)

#Plot solution
#Wrap solution so we can plot using dispatch
u_h = fv_solution(sol, mesh)
using Plots
plot(u_h,tidx = 1,lab="uo",line=(:dot,2)) #Plot initial data
plot!(u_h,lab="LF")                       #Plot LaxFriedrichsScheme solution

Disclamer

** developed for personal use, some of the schemes have not been tested enough!!!**