-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
194 lines (167 loc) · 8.26 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from torch.nn.modules.transformer import MultiheadAttention, _get_activation_fn
from utils import SeqBN
import numpy as np
import pdb
class TransformerModel(nn.Module):
def __init__(self, encoder, n_out, ninp, nhead, nhid, nlayers, dropout=0.0, y_encoder=None, pos_encoder=None, decoder=None, input_normalization=False):
super().__init__()
self.model_type = 'Transformer'
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout, activation='gelu')
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.ninp = ninp
self.encoder = encoder
self.y_encoder = y_encoder
self.pos_encoder = pos_encoder
self.decoder = decoder(ninp, nhid, n_out) if decoder is not None else nn.Sequential(nn.Linear(ninp, nhid), nn.GELU(), nn.Linear(nhid, n_out))
self.input_ln = SeqBN(ninp) if input_normalization else None
self.init_weights()
@staticmethod
def generate_square_subsequent_mask(sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
@staticmethod
def generate_D_q_matrix(sz, query_size):
train_size = sz-query_size
mask = torch.zeros(sz,sz) == 0
mask[:,train_size:].zero_()
mask |= torch.eye(sz) == 1
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 1.
# if isinstance(self.encoder,EmbeddingEncoder):
# self.encoder.weight.data.uniform_(-initrange, initrange)
# self.decoder.bias.data.zero_()
# self.decoder.weight.data.uniform_(-initrange, initrange)
for layer in self.transformer_encoder.layers:
nn.init.zeros_(layer.linear2.weight)
nn.init.zeros_(layer.linear2.bias)
nn.init.zeros_(layer.self_attn.out_proj.weight)
nn.init.zeros_(layer.self_attn.out_proj.bias)
def forward(self, src, src_mask=None, single_eval_pos=None):
assert single_eval_pos is not None, 'Single eval pos is required now.'
fuse_x_y = not isinstance(src, tuple)
assert not(fuse_x_y and single_eval_pos is not None), \
'Don\'t use both fuxe_x_y and single_eval_pos (permutation equivariant setup) at the same time.'
if src_mask is None:
x_src = src if fuse_x_y else src[0]
if single_eval_pos is None:
src_mask = self.generate_square_subsequent_mask(len(x_src) if fuse_x_y else 2*len(x_src)).to(x_src.device)
else:
src_mask = self.generate_D_q_matrix(len(x_src), len(x_src)-single_eval_pos).to(x_src.device)
if not fuse_x_y:
x_src, y_src = src
x_src = self.encoder(x_src)
y_src = self.y_encoder(y_src.unsqueeze(-1))
if single_eval_pos is None:
src = torch.stack([x_src, y_src], 1).view(-1, *x_src.shape[1:])
else:
train_x = x_src[:single_eval_pos] + y_src[:single_eval_pos]
src = torch.cat([train_x, x_src[single_eval_pos:]], 0)
else:
src = self.encoder(src)
if self.input_ln is not None:
src = self.input_ln(src)
if self.pos_encoder is not None:
src = self.pos_encoder(src)
output = self.transformer_encoder(src, src_mask)
output = self.decoder(output)
if fuse_x_y:
return output
elif single_eval_pos is None:
return output[0::2]
else:
return output[single_eval_pos:]
class MyTransformerModel(nn.Module):
def __init__(self, encoder, n_out, ninp, nhead, nhid, nlayers, dropout=0.0, y_encoder=None, pos_encoder=None, decoder=None, input_normalization=False):
super().__init__()
self.model_type = 'Transformer'
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout, activation='gelu')
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.ninp = ninp
self.encoder = encoder
self.y_encoder = y_encoder
self.pos_encoder = pos_encoder
self.decoder = decoder(ninp, nhid, n_out) if decoder is not None else nn.Sequential(nn.Linear(ninp, nhid), nn.GELU(), nn.Linear(nhid, n_out))
self.input_ln = SeqBN(ninp) if input_normalization else None
self.init_weights()
@staticmethod
def generate_square_subsequent_mask(sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
@staticmethod
def generate_D_q_matrix(sz, query_size):
train_size = sz-query_size
mask = torch.zeros(sz,sz) == 0
mask[:,train_size:].zero_()
mask |= torch.eye(sz) == 1
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 1.
# if isinstance(self.encoder,EmbeddingEncoder):
# self.encoder.weight.data.uniform_(-initrange, initrange)
# self.decoder.bias.data.zero_()
# self.decoder.weight.data.uniform_(-initrange, initrange)
for layer in self.transformer_encoder.layers:
nn.init.zeros_(layer.linear2.weight)
nn.init.zeros_(layer.linear2.bias)
nn.init.zeros_(layer.self_attn.out_proj.weight)
nn.init.zeros_(layer.self_attn.out_proj.bias)
def single_forward(self,src,src_mask,fuse_x_y=False,single_eval_pos=None):
if not fuse_x_y:
x_src, y_src = src
x_src = self.encoder(x_src)
y_src = self.y_encoder(y_src.unsqueeze(-1))
if single_eval_pos is None:
src = torch.stack([x_src, y_src], 1).view(-1, *x_src.shape[1:])
else:
train_x = x_src[:single_eval_pos] + y_src[:single_eval_pos]
src = torch.cat([train_x, x_src[single_eval_pos:]], 0)
else:
src = self.encoder(src)
if self.input_ln is not None:
src = self.input_ln(src)
if self.pos_encoder is not None:
src = self.pos_encoder(src)
output = self.transformer_encoder(src, src_mask)
output = self.decoder(output)
if fuse_x_y:
return output
elif single_eval_pos is None:
return output[0::2]
else:
return output[single_eval_pos:]
def forward(self, src, src_mask=None, single_eval_pos=None, data_augment = True):
assert single_eval_pos is not None, 'Single eval pos is required now.'
fuse_x_y = not isinstance(src, tuple)
assert not(fuse_x_y and single_eval_pos is not None), \
'Don\'t use both fuxe_x_y and single_eval_pos (permutation equivariant setup) at the same time.'
if src_mask is None:
# x_src = src if fuse_x_y else src[0]
x_src = src.transpose(0,1) if fuse_x_y else src[0].transpose(0,1)
if single_eval_pos is None:
src_mask = self.generate_square_subsequent_mask(len(x_src) if fuse_x_y else 2*len(x_src)).to(x_src.device)
else:
src_mask = self.generate_D_q_matrix(len(x_src), len(x_src)-single_eval_pos).to(x_src.device)
x_src,y_src = src[0].transpose(0,1) ,src[1].transpose(0,1)
src = tuple([x_src,y_src])
if not data_augment:
output = self.single_forward(src,src_mask,fuse_x_y,single_eval_pos)
return output.transpose(0,1), None
else:
displacement = (torch.rand(x_src.shape)-0.5)/2
x_src2 = x_src + displacement.to(x_src.device)
src2 = (x_src2, y_src)
output1 = self.single_forward(src,src_mask,fuse_x_y,single_eval_pos)
output2 = self.single_forward(src2,src_mask,fuse_x_y,single_eval_pos)
return output1.transpose(0,1), output2.transpose(0,1) # output.shape[bs,len(x_src)-single_eval_pos,n_out]
# return output1.transpose(0,1),None