-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathtrain.py
executable file
·403 lines (309 loc) · 18.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#!/is/ps2/pghosh/.virtualenvs/gif/bin python
import constants as cnst
import os
import argparse
import math
import numpy as np
from tqdm import tqdm
import torch
from torch import nn, optim
from torch.nn import functional as F
from dataset_loaders import fast_image_reshape, sample_data
from model import stylegan2_common_layers
from model.stg2_generator import StyledGenerator
from model.stg2_discriminator import Discriminator
import torch.backends.cudnn as cudnn
from my_utils import compute_fid, generic_utils
from loss_functions import losses
from datetime import datetime
cudnn.benchmark = True
def train(args, dataset, generator, discriminator_flm, fid_computer, flame_param_est, used_samples,
step):
run_avg_rate = 0.999
interp_loss_run_avg = 0
pose = None
if args.embedding_vocab_size != 1:
true_embeddings = generator.module.get_embddings()
if args.gen_reg_type.upper() == 'PATH_LEN_REG':
pl_reg = losses.PathLengthRegularizor()
fid = np.nan
if flame_param_est is None:
fake_flame = None
fake_indices = None
else:
fake_flame = flame_param_est.get_samples(n_samples=50, shuffle=True, normalize=True)
fake_flame = torch.from_numpy(fake_flame).cuda()
fake_indices = torch.from_numpy(np.random.randint(0, args.embedding_vocab_size,
size=fake_flame.shape[0])).cuda()
viz_saver = generic_utils.VisualizationSaver(gen_i=10, gen_j=5, sampling_flame_labels=fake_flame, dataset=dataset,
input_indices=fake_indices)
resolution = 4 * 2 ** step
resolutions = [4 * 2 ** _step for _step in range(step + 1)]
loader = sample_data(dataset, args.batch.get(resolution, args.batch_default), resolutions, debug=args.debug)
data_loader = iter(loader)
if args.apply_texture_space_interpolation_loss:
interp_tex_loss = losses.InterpolatedTextureLoss(
max_images_in_batch=args.batch.get(resolution, args.batch_default))
# increasing generator learningrate as it falls behind discriminator. After adding more informative loss to
# discriminator
generic_utils.adjust_lr(g_optimizer, args.lr.get(resolution, 0.001), args.use_styled_conv_stylegan2)
pbar = tqdm(range(3_000_000))
generic_utils.requires_grad(generator, False)
generic_utils.requires_grad(discriminator_flm, True)
generic_utils.adjust_lr(d_optimizer_flm, args.lr.get(resolution, 0.001), args.use_styled_conv_stylegan2)
disc_loss_val = 0
gen_loss_val = 0
grad_loss_val = 0
max_step = int(math.log2(args.max_size)) - 2
final_progress = False
for i in pbar:
generic_utils.requires_grad(discriminator_flm, True)
discriminator_flm.zero_grad()
alpha = min(1, 1 / args.phase * (used_samples + 1))
if (resolution == args.init_size and args.ckpt is None) or final_progress:
alpha = 1
# Switching resolution code
if used_samples > args.phase * 2:
used_samples = 0
step += 1
if step > max_step:
step = max_step
final_progress = True
else:
alpha = 0
resolution = 4 * 2 ** step
time_now = datetime.now()
print(f'{time_now} : Resolution is : ' + str(resolution))
resolutions = [4 * 2 ** _step for _step in range(step + 1)]
loader = sample_data(dataset, args.batch.get(resolution, args.batch_default), resolutions, debug=args.debug)
data_loader = iter(loader)
generic_utils.adjust_lr(g_optimizer, args.lr.get(resolution, 0.001), args.use_styled_conv_stylegan2)
try:
real_image, flm_rndr, flm_lbls, input_indices = next(data_loader) # Real image sin different scales
except (OSError, StopIteration):
data_loader = iter(loader)
real_image, flm_rndr, flm_lbls, input_indices = next(data_loader)
if not args.rendered_flame_as_condition and not args.normal_maps_as_cond:
flm_rndr = flm_lbls
dataset.accumulate_batches_of_flm(flm_lbls[0], pose)
else:
dataset.accumulate_batches_of_flm(flm_rndr[0], pose)
real_image = real_image.cuda()
real_image_list = [fast_image_reshape(real_image, resolutions[-1], resolutions[-1])]
flm_lbls = flm_lbls[0].cuda()
flm_rndr = flm_rndr[0].cuda()
input_indices = input_indices.cuda()
b_size = args.batch.get(resolution, args.batch_default)
used_samples += b_size
for real_image in real_image_list:
real_image.requires_grad = True
real_img_condition = flm_rndr
real_img_condition.requires_grad = True
# import ipdb; ipdb.set_trace()
real_scores_flm, _ = discriminator_flm(real_image_list, condition=real_img_condition, step=step, alpha=alpha)
real_Dloss_flm = torch.nn.functional.softplus(-real_scores_flm).mean()
if (i + 1) % 16 == 0: # To save time do only every 16th iteration. otherwise 17 sec per itr
# grad_penalty_flm = losses.grad_penalty_loss(real_image_list + [real_img_condition], real_scores_flm,
# step=None)
grad_penalty_flm = losses.grad_penalty_loss(real_image_list, real_scores_flm, step=None)
real_Dloss_flm += grad_penalty_flm.mean()
if args.rendered_flame_as_condition or args.normal_maps_as_cond:
gen_in1 = flm_rndr.clone()
else:
gen_in1 = flm_lbls.clone()
# import ipdb; ipdb.set_trace()
fake_image_list = generator(gen_in1, pose, step=step, alpha=alpha, input_indices=input_indices)
cond_fake_imgs = gen_in1
fake_image_list[0] = fake_image_list[0].detach()
if args.shfld_cond_as_neg_smpl:
# fake_image_list[0] = torch.cat((fake_image_list[0], real_image_list[0]), dim=0)
fake_image_list[0] = fake_image_list[0].repeat((2, 1, 1, 1))
shuffle_indices = generic_utils.get_unique_shuffle_indices(real_img_condition.shape[0])
cond_discrim_fake_imgs = torch.cat((cond_fake_imgs, real_img_condition[shuffle_indices, :]), dim=0)
else:
cond_discrim_fake_imgs = cond_fake_imgs
fake_scores_flm, _ = discriminator_flm(fake_image_list, condition=cond_discrim_fake_imgs, step=step,
alpha=alpha)
fake_Dloss = F.softplus(fake_scores_flm).mean()
(real_Dloss_flm + fake_Dloss).backward()
disc_loss_val = fake_Dloss + real_Dloss_flm
disc_loss_val = (disc_loss_val + fake_Dloss).item()
d_optimizer_flm.step()
################################## Training Generator #######################################
if n_critic >= 1: # letting generator to be trained more
if (i + 1) % n_critic == 0:
gen_itr_count = 1
else:
gen_itr_count = 0
else:
gen_itr_count = int(1 / n_critic)
generic_utils.requires_grad(generator, True)
generic_utils.requires_grad(discriminator_flm, False)
for gen_trn_itr in range(gen_itr_count):
generator.zero_grad()
# import ipdb; ipdb.set_trace()
fake_image_list = generator(gen_in1, pose, step=step, alpha=alpha, input_indices=input_indices)
# cond_fake_imgs.detach() is necessary because it will try and propaget gradients and will retain
# cleared buffers from training on real data and cause double call of backward!
predict_flm, _ = discriminator_flm(fake_image_list, condition=cond_fake_imgs.detach(), step=step,
alpha=alpha)
fake_gen_loss = F.softplus(-predict_flm).mean()
if args.gen_reg_type.upper() == 'PATH_LEN_REG':
gen_flm_weight = 2
fake_gen_loss += gen_flm_weight * pl_reg.path_length_reg(generator, step=step, alpha=alpha,
input_indices=input_indices)
elif args.gen_reg_type.upper() == 'DIRECT_GRAD_REG':
# Changes in flame input should cause as small output change as possible
gen_flm_weight = 1e-8*8
fake_gen_loss += gen_flm_weight * losses.grad_penalty_loss(inputs=[gen_in1,],
outs=torch.pow(fake_image_list[-1], 2),
step=None)
# embeddign regularizatio loss
if args.embedding_vocab_size != 1:
embedding_reg_loss = args.embedding_reg_weight * losses.l2_reg(generator.module.z_to_w)
fake_gen_loss += embedding_reg_loss
# interpolation loss. Texture must stay same even when the face is moved with different flame parameters
if args.apply_texture_space_interpolation_loss:
# This is the only reason why FLAME labels are necessary in train time
flm_intrp_batch = flm_lbls[:-1, :159] + \
np.random.uniform(0, 1)*(flm_lbls[1:, :159] - flm_lbls[:-1, :159])
# During interpolation light and texture code should stay constant. Don in the loss function
flm_intrp_batch = torch.cat((flm_intrp_batch, flm_lbls[:-1, 159:]), axis=-1)
# import ipdb; ipdb.set_trace()
interp_loss = interp_tex_loss.tex_sp_intrp_loss(
dataset.un_normalize_flame(flm_intrp_batch), generator,
step=step, alpha=alpha,
max_ids=args.embedding_vocab_size,
normal_maps_as_cond=args.normal_maps_as_cond,
use_posed_constant_input=args.use_posed_constant_input,
rendered_flame_as_condition=args.rendered_flame_as_condition)
if args.adaptive_interp_loss:
interp_loss *= 0.25*fake_gen_loss.detach()/interp_loss.detach()
fake_gen_loss += interp_loss
# import ipdb; ipdb.set_trace()
fake_gen_loss.backward()
g_optimizer.step()
if gen_loss_val is None:
gen_loss_val = fake_gen_loss.item()
else:
gen_loss_val = gen_loss_val * run_avg_rate + fake_gen_loss.item()*(1 - run_avg_rate)
# decay factor copied from STG2
generic_utils.accumulate(g_running, generator, decay=0.5 ** (32 / (10 * 1000)))
generic_utils.requires_grad(generator, False)
if (i + 1) % 1000 == 0:
md_chk_pt_name = f'{cnst.output_root}checkpoint/{str(args.run_id)}/{str(i + 1).zfill(6)}_{alpha}.model'
chk_pt_dict = {'generator_running': g_running.state_dict(),
'generator': generator.state_dict(),
'g_optimizer': g_optimizer.state_dict(),
'discriminator_flm': discriminator_flm.state_dict(),
'd_optimizer_flm': d_optimizer_flm.state_dict()}
torch.save(chk_pt_dict, md_chk_pt_name)
np.savez(md_chk_pt_name.replace('.model', '.npz'), step=step, used_sampless=used_sampless, alpha=alpha,
resolution=resolution)
if (i + 1) % 500 == 0:
# fid_computation
flame_parmas, input_indices, pose = dataset.get_10k_flame_params()
# import ipdb; ipdb.set_trace()
image_tensor = generic_utils.get_images_from_flame_params(flame_parmas, pose, g_running, step=step,
alpha=alpha, input_indices=input_indices)
# import ipdb; ipdb.set_trace()
fid = fid_computer.get_fid(image_tensor)
state_msg = (f'Size: {4 * 2 ** step}; G: {gen_loss_val:.3f}; D: {disc_loss_val:.3f};'
f' fid: {fid:.0f}')
if args.embedding_vocab_size != 1:
state_msg += f', embd_reg_l: {embedding_reg_loss:.3f}; '
if args.apply_texture_space_interpolation_loss:
if interp_loss_run_avg is None:
interp_loss_run_avg = interp_loss.item()
else:
interp_loss_run_avg = interp_loss_run_avg*run_avg_rate + interp_loss.item()*(1-run_avg_rate)
state_msg += f', interp_l: {interp_loss_run_avg:.3f}; '
pbar.set_description(state_msg)
if (i + 1) % 500 == 0:
if flame_param_est is None:
condition_parmas = torch.from_numpy(flame_parmas[:50]).cuda()
if pose is not None:
pose_for_saving = torch.from_numpy(pose[:50]).cuda()
else:
pose_for_saving = None
inpt_idxs = torch.from_numpy(input_indices[:50]).cuda()
viz_saver.set_flame_params(pose_for_saving, condition_parmas, inpt_idxs)
flame_param_est = 0
viz_saver.save_samples(i, model=g_running, step=step, alpha=alpha, resolution=resolution, fid=fid,
run_id=args.run_id)
if __name__ == '__main__':
from configurations import update_config
# if you get "ModuleNotFoundError: No module named 'past'" do - 'pip install future'
# Yes I know what you are thinking. Keep calm keep coding
# Number of critic steps, fractiona vlue is allowed.
# 1/2 = generator is trained twice for every critic training
# n_critic = 1/8
# n_critic = 1/4
n_critic = 1
parser = argparse.ArgumentParser(description='Progressive Growing of GANs')
args, dataset, flame_param_est = update_config(parser)
if not args.debug:
fid_computer = compute_fid.FidComputer(database_root_dir=cnst.ffhq_images_root_dir,
true_img_stats_dir=cnst.true_img_stats_dir)
else:
fid_computer = None
os.makedirs(f'{args.chk_pt_dir}/checkpoint/{str(args.run_id)}', exist_ok=True)
os.makedirs(f'{args.chk_pt_dir}/sample/{str(args.run_id)}', exist_ok=True)
generator = StyledGenerator(embedding_vocab_size=args.embedding_vocab_size,
rendered_flame_ascondition=args.rendered_flame_as_condition,
normal_maps_as_cond=args.normal_maps_as_cond,
core_tensor_res=args.core_tensor_res,
n_mlp=args.nmlp_for_z_to_w,
apply_sqrt2_fac_in_eq_lin=args.apply_sqrt_in_eq_linear)
# from my_utils.print_model_summary import summary
# summary(generator, (3, 2, 2), device='cpu')
from my_utils.graph_writer import graph_writer
graph_writer.draw(generator, f'Style_gan_mdl_run_id{args.run_id}.png', (16, 38),
torch.zeros((1, int(3*(int(args.normal_maps_as_cond)+int(args.rendered_flame_as_condition))),
2, 2)))
generator = nn.DataParallel(generator).cuda()
discrim_embd_pred_dim = None
if args.embedding_vocab_size != 1:
discrim_embd_pred_dim = generator.module.get_embddings().shape[1]
dscrm_cnd_channels = 3 + int(args.normal_maps_as_cond) * 3 + int(args.rendered_flame_as_condition) * 3
discriminator_flm = Discriminator(size=args.max_size, num_color_chnls=dscrm_cnd_channels,
channel_multiplier=2)
graph_writer.draw(discriminator_flm, f'Style_gan_Discriminator_run_id{args.run_id}.png', (16, 38),
[torch.zeros((1, dscrm_cnd_channels, args.max_size, args.max_size))])
discriminator_flm = nn.DataParallel(discriminator_flm).cuda()
g_running = nn.DataParallel(StyledGenerator(embedding_vocab_size=args.embedding_vocab_size,
rendered_flame_ascondition=args.rendered_flame_as_condition,
normal_maps_as_cond=args.normal_maps_as_cond,
core_tensor_res=args.core_tensor_res,
n_mlp=args.nmlp_for_z_to_w)).cuda()
g_running.train(False)
g_reg_ratio = 4 / (4 + 1)
d_reg_ratio = 16 / (16 + 1)
g_optimizer = optim.Adam(generator.module.parameters(), lr=0.002*g_reg_ratio,
betas=(0.0, 0.99**g_reg_ratio))
tot_gen_params = 0
for gen_params in generator.parameters():
tot_gen_params += np.prod(gen_params.shape)
print(f'generator n_params: {tot_gen_params}')
tot_discrim_params = 0
for discrim_params in discriminator_flm.parameters():
tot_discrim_params += np.prod(discrim_params.shape)
print(f'discriminator n_params: {tot_discrim_params}')
d_optimizer_flm = optim.Adam(discriminator_flm.parameters(), lr=0.002*d_reg_ratio,
betas=(0.0, 0.99**d_reg_ratio))
# generic_utils.accumulate(g_running, generator, 0)
used_sampless = 0
step = int(math.log2(args.init_size)) - 2
if args.ckpt is not None:
ckpt = torch.load(args.ckpt)
generator.load_state_dict(ckpt['generator'])
g_optimizer.load_state_dict(ckpt['g_optimizer'])
discriminator_flm.load_state_dict(ckpt['discriminator_flm'])
d_optimizer_flm.load_state_dict(ckpt['d_optimizer_flm'])
g_running.load_state_dict(ckpt['generator_running'])
other_training_vars = np.load(args.ckpt.replace('.model', '.npz'))
used_sampless = other_training_vars['used_sampless']
step = other_training_vars['step']
print('<=============================== Model state restored! ==============================>')
train(args, dataset, generator, discriminator_flm, fid_computer, flame_param_est, used_sampless,
step)