Day 21 of #100DaysOfCode
- Intermediate Machine Learning Course
- House price prediction
-
Kaggle's Intermediate Machine Learning course
-
- Lesson 4: Pipelines - My Notebook
-
- Lesson 5: Cross Validation - My Notebook
-
- Lesson 6: XGBoost - My Notebook
-
- Lesson 7: Data Leakage - My Notebook
- Intermediate Machine Learning Course
- Using Pipelines to write structural code
- Cross validation using
cross_val_score
, (use when data is less, takes more time thantrain_test_split
) - XGBoost using
XtremeGradientRegressor
akaXGBRegressor
- Data Leakage, how to handle data leakage
- House price prediction
- One by Imputing missing values, doing Ordinal Encoding using
RandomForestRegressor
. - One mostly same as above but used more features
- One using
Cross Validation
andPipelines
withRandomForestRegressor
.
- Jupyter Notebook
- Python 3.10.2
- Numpy 1.22.4
- pandas 1.4.2
- Matplotlib 3.5.2
- Seaborn 0.11.2
- scikit-learn 1.1.1
- XGBoost 1.6.1
- L4 - Pipelines.ipynb
- L5 - Cross_validation.ipynb
- L6 - XGBoost.ipynb
- L7 - Data_leakage.ipynb
- House_price_prediction_4.ipynb
- House_price_prediction_5.ipynb
- House_price_prediction_6.ipynb
Today I learned how to use pipelines to write cleaner code, cross validation using cross_val_score, XGBRegressor and how to handle data(Target) leakage and train_test_contamination. Also, did house price prediction using cross validation.