-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_sym.py
300 lines (235 loc) · 10.1 KB
/
train_sym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from tqdm import tqdm
import warnings
from sklearn.cluster import KMeans, SpectralClustering
import numpy as np
from sklearn.neighbors import NearestNeighbors
from Adam import adam
from LoadData_MCGC import *
from Metrics_O2MAC import metrics
# import argparse
import yaml
from Initialization import Initail_S
import math
warnings.filterwarnings("ignore")
# parser = argparse.ArgumentParser()
#
# parser.add_argument('--dataset', type=str, default="ACM", help="dataset")
def go_run(dataname, X, gnd):
N = X[0].shape[0]
I = np.eye(N)
# attibute matrix
num_view = len(X) - 1
print("Now {} are tested! It contains {} views".format(dataname, num_view))
# Graph filtering
if "Amazon" in dataname:
H = X[:2].copy()
Av = X[3]
for v in range(num_view):
k = 1
A = Av + I
D = np.sum(A, axis=1)
D = np.diagflat(D)
D = np.power(D, -0.5)
D[np.isinf(D)] = 0
A = D.dot(A).dot(D)
Ls = I - A
while k <= 2:
for v in range(num_view):
H[v] = (I - 0.5 * Ls).dot(H[v])
k += 1
else:
H = []
for v in range(num_view):
H.append(X[0])
Av = X[1]
for A_ in X[1:]:
k = 1
A = A_ + I
D = np.sum(A, axis=1)
D = np.diagflat(D)
D = np.power(D, -0.5)
D[np.isinf(D)] = 0
A = D.dot(A).dot(D)
Ls = I - A
while k <= 2:
for v in range(num_view):
H[v] = (I - 0.5 * Ls).dot(H[v])
k += 1
kkk = len(np.unique(gnd))
list_a = [0.001, 1, 10, 100, 1000]
gamas = [-1, -2, -3, -4, -5]
nada = [1 / num_view for i in range(num_view)]
epochs = 100
do_times = 3
H_Ht = []
for v in range(num_view):
H_Ht.append(H[v].dot(H[v].T))
print('Begin!\n')
#Getting NBrs
nbrs_inx = []
try:
for v in range(num_view):
idx = np.load("./nbrs10_{}_view{}.npy".format(dataname, v))
idx = idx.astype(np.int)
nbrs_inx.append(idx.astype(int))
except Exception:
for v in range(num_view):
X_nb = np.array(H[v])
nbrs_v = np.zeros((N, 10))
nbrs = NearestNeighbors(n_neighbors=11, algorithm='auto').fit(X_nb)
dis, idx = nbrs.kneighbors(X_nb)
for i in range(N):
for j in range(10):
nbrs_v[i][j] += idx[i][j + 1]
# svaing for cheap computing
np.save("./nbrs10_{}_view{}.npy".format(dataname, v), nbrs_v)
nbrs_inx.append(np.array(nbrs_v).astype(int))
best_S = np.zeros((N, N))
for a in list_a:
for gama in gamas:
re = []
nmi_epoch = 0
ari_epoch = 0
f1_epoch = 0
best_epoch = 0
#Initial
f = open('config.yaml')
config_data = yaml.load(f)
initial_a = config_data['{}'.format(dataname)]['alpha']
initial_gama = config_data['{}'.format(dataname)]['gama']
if dataname == "ACM":
S_re = np.load('./Initialization/ACM_initialS.npy'.format(dataname))
else:
S_re = Initail_S(H_v= H, av=Av, a=initial_a, gama=initial_gama)
# S_re = 0.5 * (np.fabs(S_) + np.fabs(S_.T))
best_S = best_S + S_re
print('Begin S\n')
acc_epoch = 0
for do_tims in range(do_times):
# checkPoint_1
trigger = 0
cut_point = 0
# 梯度更新
cf = None
loss_last = 1e16
for m in range(N):
S_re[m][m] = 0
for epoch in range(epochs):
# 取最近邻
if trigger >= 10:
break
grad = np.zeros((N, N))
H_Ht_S = []
# S = S_re.copy()
for v in range(num_view):
H_Ht_S.append(H_Ht[v].dot(S_re))
# 梯度更新
for i in tqdm(range(N)):
k0 = np.exp(S_re[i]).sum() - np.exp(S_re[i][i])
# H = S[:, i].sum() - 1
for j in range(i, N):
F11 = 0
F12 = 0
F2 = 0
for v in range(num_view):
F11 = F11 + nada[v] * H_Ht[v][i][j]
F12 = F12 + nada[v] * H_Ht_S[v][i][j]
if i != j:
if j in nbrs_inx[v][i]:
F2 = F2 + nada[v] * (-1 + 10 * np.exp(S_re[i][j]) / k0)
else:
F2 = F2 + nada[v] * (10 * np.exp(S_re[i][j]) / k0)
F1 = -2 * F11 + 2 * F12
grad[i][j] = a * F2 + F1
grad[j][i] = grad[i][j]
loss_all_node = 0
loss_view = 0
for v in range(num_view):
for i in (range(N)):
k0 = np.exp(S_re[i]).sum() - np.exp(S_re[i][i])
loss_nbr = 0
for z in range(10):
if nbrs_inx[v][i][z] != i:
loss_nbr = loss_nbr - np.log(np.exp(S_re[i][nbrs_inx[v][i][z]]) / k0)
loss_all_node = loss_all_node + loss_nbr
loss_view = loss_view + np.linalg.norm(
H[v].T - H[v].T.dot(S_re)) ** 2
loss_S_re = a * loss_all_node + loss_view
# checkPoint_1
oder = math.log10(loss_S_re)
oder = int(oder)
oder = min(oder, 3)
Tol = 1 * math.pow(10, -oder)
# print("Now Tol======>{}".format(Tol))
if math.fabs(loss_S_re - loss_last) <= math.fabs(Tol * loss_S_re):
break
else:
loss_last = loss_S_re
if loss_S_re > loss_last:
cut_point += 1
if cut_point > 2:
if trigger >= 5:
break
S_re, cf = adam(S_re, grad, cf)
#Clustering
C = 0.5 * (np.fabs(S_re) + np.fabs(S_re.T))
u, s, v = sp.linalg.svds(C, k=kkk, which='LM')
# 聚类
kmeans = KMeans(n_clusters=kkk, random_state=23).fit(u)
predict_labels = kmeans.predict(u)
# predict_labels = SpectralClustering(n_clusters=kkk, gamma=-4).fit_predict(u)
# 几个metric
re_ = metrics.clustering_metrics(gnd, predict_labels)
ac, nm, ari, f1 = re_.evaluationClusterModelFromLabel(gama, kkk, a)
print("Now ACC ==>{}".format(ac))
if ac > acc_epoch:
acc_epoch = ac
best_S = S_re
nmi_epoch = nm
ari_epoch = ari
f1_epoch = f1
best_epoch = do_tims * epochs + epoch
else:
trigger += 1
print(acc_epoch)
# loss = np.linalg.norm((X.T - X.T.dot(S_re))) ** 2 + loss_all_node
# num_los = loss
# print('epoch {} time, loss is {} \n'.format(epoch, loss))
# print('num{} time, loss is {} \n'.format(epoch, loss))
# 更新lambda
for v in range(num_view):
loss_all_node = 0
for i in tqdm(range(N)):
k0 = np.exp(S_re[i]).sum() - np.exp(S_re[i][i])
loss_nbr = 0
for z in range(10):
if nbrs_inx[v][i][z] != i:
loss_nbr = loss_nbr - np.log(np.exp(S_re[i][nbrs_inx[v][i][z]]) / k0)
loss_all_node = loss_all_node + loss_nbr
nada[v] = (-((np.linalg.norm(
H[v].T - H[v].T.dot(best_S)) ** 2 + a * loss_all_node) / gama)) ** (1 / (gama - 1))
# nada[j] = (-((np.linalg.norm(X_bar[j].T - (X_bar[j].T).dot(S)))**2 + a * (np.linalg.norm(S - A_[j])) ** 2 ) / gama) ** (1 / (gama - 1))
print("nada{}值".format(v))
print(nada[v])
re.append(acc_epoch)
re.append(nmi_epoch)
re.append(ari_epoch)
re.append(f1_epoch)
re.append(best_epoch)
# np.savetxt('Mv_ACM_nbrs_{}a_{}bestU.txt'.format(num_nbr, a),best_S, delimiter=',')
# np.savetxt('{}_nbrs10_a{}_gama{}_bestRe_sym_test1.txt'.format(dataname, a, gama), re, delimiter=',')
print(re)
# np.savetxt("{}_nbrs10_bestS.txt".format(dataname), best_S, delimiter=',')
# np.savetxt('SingleView_nbrs{}_a{}__epoch{}_S.txt'.format(num_nbr,a, epoch), S_re, delimiter=',')
# print("Saved!")
if __name__ == "__main__":
Switcher = {
0: Acm,
1: Dblp,
2: Imdb,
3: mine_Amazon_normolized,
4: mine_Amazon_normolized_com,
}
for i, dataname in enumerate(["ACM", "DBLP", "IMDB", "Amazon photos", "Amazon Computers"]):
X, gnd = Switcher[i]()
go_run(X=X, gnd=gnd, dataname=dataname)