forked from jackschaedler/circles-sines-signals
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsignals.html
186 lines (165 loc) · 8.36 KB
/
signals.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
<html>
<head>
<title>Circles Sines and Signals - Signals</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript" src="third_party/d3/d3.min.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
jax: ["input/TeX","input/MathML","output/SVG"],
extensions: ["tex2jax.js","mml2jax.js","MathMenu.js","MathZoom.js"],
TeX: {
extensions: ["AMSmath.js","AMSsymbols.js","noErrors.js","noUndefined.js"]
}
});
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({ TeX: { extensions: ["color.js"] }});
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config(
{
SVG: {linebreaks: { automatic:true }},
displayAlign: "center"
}
);
</script>
<script type="text/javascript"
src="//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_SVG">
</script>
<link href='//fonts.googleapis.com/css?family=Lato:400,700' rel='stylesheet' type='text/css'>
<link href='//fonts.googleapis.com/css?family=Vollkorn:400italic,400' rel='stylesheet' type='text/css'>
<style>
@import url("fontello-b1d57784/css/fontello.css");
@import url("style.css");
</style>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-59785365-1', 'auto');
ga('send', 'pageview');
</script>
<link rel="icon" type="" href="favicon.ico"></head>
<body>
<div class="title">
<table width="900">
<tr>
<td width="90%">
<div class="bigheader" id="titleinfo">
</div>
</td>
</tr>
<tr>
<td width="70%">
<br/>
<div id="menu" class="menu" style="margin-left: 45; ">
<table> <tr id="menurow"> </tr> </table>
</div>
<!-- -->
</td>
</tr>
</table>
</div>
<div class="littleheader"> WHAT ARE SIGNALS?
<div class="subheader" style="font-size: 14px"> CONTINUOUS VS. DISCRETE </div>
</div>
<table class="figureTable">
<tr>
<td style="vertical-align: top;">
<div class="text" style="margin-left: 0px">
<p>
<i>Signals</i> often describe the behavior of physical phenomena. When a signal describes the change in some phenomenon over time, we refer to it as a <i> time-domain </i> signal.<sup>1</sup> We can think of real-world phenomena like the altitude of a plane, the temperature in a city, or the speed of an automobile as examples of time-domain signals.
</p>
<br/>
<table>
<tr class="figureCaption">
<td width="100%">
<b>Figure 1a.</b> Altitude of a Plane as it Travels from Paris to Berlin<br/><br/>
</td>
</tr>
<tr>
<td>
<svg id="plane" class="svgWithText" width="700" height="190" style="padding-top: 20px; margin-left: 20px;"></svg>
<script type="text/javascript" src="js/plane.js"></script>
</td>
</tr>
<tr class="figureCaption">
<td width="100%">
<br/><br/>
<b>Figure 1b.</b> Mean Temperature in Berlin, Germany, 2001.<br/><br/>
</td>
</tr>
<tr>
<td>
<svg id="fish" class="svgWithText" width="700" height="190" style="padding-top: 20px; margin-left: 20px;"></svg>
<script type="text/javascript" src="js/temperature.js"></script>
</td>
</tr>
<tr class="figureCaption">
<td width="100%">
<br/><br/>
<b>Figure 1c.</b> Speed of an Automobile Traveling Down Main St.<br/><br/>
</td>
</tr>
<tr>
<td>
<svg id="pressure" class="svgWithText" width="700" height="190" style="padding-top: 20px; margin-left: 20px;"></svg>
<script type="text/javascript" src="js/speed.js"></script>
</td>
</tr>
</table>
</div>
</td>
<td class="figureExplanation" style="">
<b>1.</b>
Don't let the "domain" terminology throw you. Recall that the domain of a function generally corresponds to the x-axis, and the "range" of a function corresponds to the y-axis. A time-domain signal simply has some unit of time running along its x-axis.<br/><br/>
</td>
</tr>
</table>
<table class="figureTable">
<tr>
<td style="vertical-align: top;">
<div class="text" style="margin-left: 0px">
<p>
The field of <i>digital signal processing</i> is concerned with measuring, recording, processing, and analyzing these sorts of real-world signals using computers. Computers are exceptionally fast and exceptionally dumb.<sup>2</sup> Their only real competency is the rapid reading, writing, and comparison of individual numbers. If you’re into jargon, you might say that computers are only capable of operating on <i>discrete</i> values. When all of these discrete values happen to be represented by ones and zeros, we refer to them as <i>digital</i> values. Digital signal processing is therefore all about processing signals which are encoded as lists of ones and zeros.
</p>
<p>
By contrast, real-world phenomena are <i>continuous</i> signals. Before you can process a continuous signal using a computer, it must be translated into a digital - and thus discrete - representation. I’d like to quickly argue via a visual thought experiment that a discrete signal will always be an <i>approximation</i> of its continuous counterpart.<sup>3</sup>
The following animation depicts the impossible task of “covering” a continuous curve using discrete points. Whenever the curve appears to be completely and thoroughly covered, we can simply zoom-in a bit further to reveal sections of the continuous curve which are not occluded. Click the Play button to start the animation.
</p>
<br/><br/>
<table>
<tr class="figureCaption">
<td width="100%">
<b>Figure 2.</b> Attempting to “Cover” a Continuous Signal Using Discrete Points<br/><br/><br/><br/>
</td>
</tr>
<tr>
<td>
<div id="animatedWrapper" class="animation" style="position: relative;">
<svg id="continuum" class="svgWithText" width="650" height="190" style="padding-top: 20px; margin-left: 30px;"></svg>
<script type="text/javascript" src="js/continuum.js"></script>
</div>
</td>
</tr>
</table>
<br/>
<p>Your intuition might lead you to think that our inability to <i>cover</i> a continuous signal using discrete points implies that it is impossible to represent continuous signals using discrete values. As it turns out, this is not true. Given the right conditions, it’s possible to perfectly represent a continuous signal using discrete points.<sup>4</sup> In the next few sections, we’ll re-train our intuition through the study of <i> sampling theory </i> and learn how to perfectly encode a continuous signal using discrete values.
</p><br/>
</div>
</td>
<td class="figureExplanation" style="">
<b>2.</b>
It's worth watching <a href="http://youtu.be/EKWGGDXe5MA">this video</a> from 1985 where Richard Feynman describes the fundamentally simplistic nature of computers by analogy with human file clerks.<br/><br/>
<br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/>
<b>3.</b>
If you find this sort of thought experiment interesting, it's worth reading up on the 5th century philosopher Zeno and his famous paradox of <i>Achilles and the Tortoise</i>. Zeno is sort of the grandfather of investigation into continuous vs. discrete time and space. Zeno was trying to make a point about the impossibility of motion, but we're more interested in his method for demonstrating that there are an infinite number of points between any two arbitrary points on a continuous line.<br/><br/>
<br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/>
<b>4.</b>
The best explanation of sampling is still Monty Montgomery's brilliant <a href="http://youtu.be/cIQ9IXSUzuM">video</a>.
</td>
</tr>
</table>
<div class="title" id="footer"></div><script type="text/javascript" src="menu.js"></script></body>
</html>