-
Notifications
You must be signed in to change notification settings - Fork 127
/
Copy pathcross_encoder.py
334 lines (284 loc) · 12.7 KB
/
cross_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import os
import json
import math
import multiprocessing
import random
import numpy as np
import logging
import time
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
os.environ['FLAGS_eager_delete_tensor_gb'] = '0' # enable gc
import paddle.fluid as fluid
from rocketqa.reader import reader_ce_predict, reader_ce_train
from rocketqa.model.ernie import ErnieConfig
from rocketqa.model.cross_encoder_predict import create_predict_model
from rocketqa.model.cross_encoder_train import create_train_model
from rocketqa.utils.args import print_arguments, check_cuda, prepare_logger
from rocketqa.utils.init import init_pretraining_params
from rocketqa.utils.finetune_args import parser
from rocketqa.utils.optimization import optimization
class CrossEncoder(object):
def __init__(self, conf_path, use_cuda=False, device_id=0, batch_size=1, **kwargs):
if "model_path" in kwargs:
args = self._parse_args(conf_path, model_path=kwargs["model_path"])
else:
args = self._parse_args(conf_path)
if "model_name" in kwargs:
args.model_name = kwargs["model_name"].replace('/', '-')
else:
args.model_name = "my_ce"
args.use_cuda = use_cuda
args.batch_size = batch_size
self.ernie_config = ErnieConfig(args.ernie_config_path)
if use_cuda:
dev_list = fluid.cuda_places()
place = dev_list[device_id]
dev_count = 1
else:
place = fluid.CPUPlace()
dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
self.exe = fluid.Executor(place)
self.predict_reader = reader_ce_predict.CEPredictorReader(
vocab_path=args.vocab_path,
label_map_config=args.label_map_config,
max_seq_len=args.max_seq_len,
total_num=args.train_data_size,
do_lower_case=args.do_lower_case,
in_tokens=args.in_tokens,
random_seed=args.random_seed,
tokenizer=args.tokenizer,
for_cn=args.for_cn,
task_id=args.task_id)
self.startup_prog = fluid.Program()
if args.random_seed is not None:
self.startup_prog.random_seed = args.random_seed
self.test_prog = fluid.Program()
with fluid.program_guard(self.test_prog, self.startup_prog):
with fluid.unique_name.guard():
self.test_pyreader, self.graph_vars = create_predict_model(
args,
pyreader_name=args.model_name + '_test_reader',
ernie_config=self.ernie_config,
is_prediction=True,
joint_training=self.joint_training)
self.test_prog = self.test_prog.clone(for_test=True)
self.exe = fluid.Executor(place)
self.exe.run(self.startup_prog)
if not args.init_checkpoint:
raise ValueError("args 'init_checkpoint' should be set if"
"only doing validation or testing!")
init_pretraining_params(
self.exe,
args.init_checkpoint,
main_program=self.startup_prog)
self.args = args
def _parse_args(self, conf_path, model_path=''):
args, unknown = parser.parse_known_args()
with open(conf_path, 'r', encoding='utf8') as json_file:
config_dict = json.load(json_file)
args.do_train = False
args.do_val = False
args.do_test = True
args.use_fast_executor = True
args.max_seq_len = config_dict['max_seq_len']
args.ernie_config_path = model_path + config_dict['model_conf_path']
args.vocab_path = model_path + config_dict['model_vocab_path']
args.init_checkpoint = model_path + config_dict['model_checkpoint_path']
if "for_cn" in config_dict:
args.for_cn = config_dict["for_cn"]
if "joint_training" in config_dict:
self.joint_training = config_dict['joint_training']
else:
self.joint_training = 0
return args
def _parse_train_args(self, train_set, epoch, save_model_path, config_dict):
self.args.train_set = train_set
self.args.save_model_path = save_model_path
self.args.epoch = epoch
if "save_steps" in config_dict:
self.args.save_steps = config_dict['save_steps']
else:
self.args.save_steps = 0
if "batch_size" in config_dict:
self.args.batch_size = config_dict['batch_size']
if 'learning_rate' in config_dict:
self.args.learning_rate = config_dict['learning_rate']
else:
self.args.learning_rate = 2e-5
if 'log_folder' in config_dict:
self.args.log_folder = config_dict['log_folder']
def matching(self, query, para, title=[]):
assert len(para) == len(query)
data = []
if len(title) != 0:
assert len(para) == len(title)
for q, t, p in zip(query, title, para):
data.append(q + '\t' + t + '\t' + p)
else:
for q, p in zip(query, para):
data.append(q + '\t\t' + p)
self.test_pyreader.decorate_tensor_provider(
self.predict_reader.data_generator(
data,
batch_size=self.args.batch_size,
shuffle=False))
self.test_pyreader.start()
fetch_list = [self.graph_vars["probs"].name]
while True:
try:
fetch_result = self.exe.run(program=self.test_prog,
fetch_list=fetch_list)
np_probs = fetch_result[0]
if self.joint_training == 0:
for data_prob in np_probs[:, 1].reshape(-1).tolist():
yield data_prob
else:
for data_prob in np_probs.reshape(-1).tolist():
yield data_prob
except fluid.core.EOFException:
self.test_pyreader.reset()
break
return
def train(self, train_set, epoch, save_model_path, **kwargs):
self._parse_train_args(train_set, epoch, save_model_path, kwargs)
args = self.args
check_cuda(args.use_cuda)
log = logging.getLogger()
if self.args.log_folder == '':
self.args.log_folder = '.'
if not os.path.exists(self.args.log_folder):
os.makedirs(self.args.log_folder)
prepare_logger(log, save_to_file=self.args.log_folder + '/log.train')
print_arguments(args, log)
dev_count = 1
reader = reader_ce_train.CETrainReader(
vocab_path=args.vocab_path,
label_map_config=args.label_map_config,
max_seq_len=args.max_seq_len,
total_num=args.train_data_size,
do_lower_case=args.do_lower_case,
in_tokens=args.in_tokens,
random_seed=args.random_seed,
tokenizer=args.tokenizer,
for_cn=args.for_cn,
task_id=args.task_id)
startup_prog = fluid.Program()
if args.random_seed is not None:
startup_prog.random_seed = args.random_seed
train_data_generator = reader.data_generator(
input_file=args.train_set,
batch_size=args.batch_size,
epoch=args.epoch,
dev_count=dev_count,
shuffle=True,
phase="train")
num_train_examples = reader.get_num_examples(args.train_set)
if self.args.save_steps == 0:
self.args.save_steps = int(math.ceil(num_train_examples * self.args.epoch / self.args.batch_size / 2))
max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count
warmup_steps = int(max_train_steps * args.warmup_proportion)
log.info("Device count: %d" % dev_count)
log.info("Num train examples: %d" % num_train_examples)
log.info("Max train steps: %d" % max_train_steps)
log.info("Num warmup steps: %d" % warmup_steps)
log.info("Learning rate: %f" % self.args.learning_rate)
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_prog):
with fluid.unique_name.guard():
train_pyreader, graph_vars = create_train_model(
args,
pyreader_name='train_reader',
ernie_config=self.ernie_config)
scheduled_lr = optimization(
loss=graph_vars["loss"],
warmup_steps=warmup_steps,
num_train_steps=max_train_steps,
learning_rate=args.learning_rate,
train_program=train_program,
startup_prog=startup_prog,
weight_decay=args.weight_decay,
scheduler=args.lr_scheduler,
use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
incr_every_n_steps=args.incr_every_n_steps,
decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
incr_ratio=args.incr_ratio,
decr_ratio=args.decr_ratio)
if args.verbose:
if args.in_tokens:
lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
program=train_program,
batch_size=args.batch_size // args.max_seq_len)
else:
lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
program=train_program, batch_size=args.batch_size)
log.info("Theoretical memory usage in training: %.3f - %.3f %s" %
(lower_mem, upper_mem, unit))
self.exe.run(startup_prog)
init_pretraining_params(
self.exe,
args.init_checkpoint,
main_program=startup_prog)
train_pyreader.decorate_tensor_provider(train_data_generator)
train_pyreader.start()
if warmup_steps > 0:
graph_vars["learning_rate"] = scheduled_lr
steps = 0
time_begin = time.time()
current_epoch = 0
last_epoch = 0
total_loss = []
while True:
try:
steps += 1
if steps % args.skip_steps != 0:
self.exe.run(fetch_list=[], program=train_program)
else:
current_example, current_epoch = reader.get_train_progress()
time_end = time.time()
used_time = time_end - time_begin
train_fetch_list = [
graph_vars["loss"], graph_vars["accuracy"]
]
outputs = self.exe.run(fetch_list=train_fetch_list, program=train_program)
tmp_loss = np.mean(outputs[0])
tmp_acc = np.mean(outputs[1])
total_loss.append(tmp_loss)
log.info(
"epoch: %d, progress: %d/%d, step: %d, ave loss: %f, "
"ave acc: %f, speed: %f steps/s" %
(current_epoch, current_example * dev_count, num_train_examples,
steps, np.mean(total_loss), tmp_acc,
args.skip_steps / used_time))
time_begin = time.time()
if steps % args.save_steps == 0:
save_path = os.path.join(args.save_model_path,
"step_" + str(steps))
fluid.io.save_persistables(self.exe, save_path, train_program)
if last_epoch != current_epoch:
last_epoch = current_epoch
except fluid.core.EOFException:
save_path = os.path.join(args.save_model_path, "step_" + str(steps))
fluid.io.save_persistables(self.exe, save_path, train_program)
train_pyreader.reset()
break