-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathpipe_utils.py
381 lines (337 loc) · 12.3 KB
/
pipe_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import os
import ast
import argparse
import glob
import yaml
import copy
import numpy as np
from python.keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--config",
type=str,
default=None,
help=("Path of configure"),
required=True)
parser.add_argument(
"--image_file", type=str, default=None, help="Path of image file.")
parser.add_argument(
"--image_dir",
type=str,
default=None,
help="Dir of image file, `image_file` has a higher priority.")
parser.add_argument(
"--video_file",
type=str,
default=None,
help="Path of video file, `video_file` or `camera_id` has a highest priority."
)
parser.add_argument(
"--video_dir",
type=str,
default=None,
help="Dir of video file, `video_file` has a higher priority.")
parser.add_argument(
"--model_dir", nargs='*', help="set model dir in pipeline")
parser.add_argument(
"--camera_id",
type=int,
default=-1,
help="device id of camera to predict.")
parser.add_argument(
"--enable_attr",
type=ast.literal_eval,
default=False,
help="Whether use attribute recognition.")
parser.add_argument(
"--enable_action",
type=ast.literal_eval,
default=False,
help="Whether use action recognition.")
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Directory of output visualization files.")
parser.add_argument(
"--run_mode",
type=str,
default='paddle',
help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
)
parser.add_argument(
"--enable_mkldnn",
type=ast.literal_eval,
default=False,
help="Whether use mkldnn with CPU.")
parser.add_argument(
"--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
parser.add_argument(
"--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
parser.add_argument(
"--trt_max_shape",
type=int,
default=1280,
help="max_shape for TensorRT.")
parser.add_argument(
"--trt_opt_shape",
type=int,
default=640,
help="opt_shape for TensorRT.")
parser.add_argument(
"--trt_calib_mode",
type=bool,
default=False,
help="If the model is produced by TRT offline quantitative "
"calibration, trt_calib_mode need to set True.")
parser.add_argument(
"--do_entrance_counting",
action='store_true',
help="Whether counting the numbers of identifiers entering "
"or getting out from the entrance. Note that only support one-class"
"counting, multi-class counting is coming soon.")
parser.add_argument(
"--secs_interval",
type=int,
default=2,
help="The seconds interval to count after tracking")
parser.add_argument(
"--draw_center_traj",
action='store_true',
help="Whether drawing the trajectory of center")
return parser
class Times(object):
def __init__(self):
self.time = 0.
# start time
self.st = 0.
# end time
self.et = 0.
def start(self):
self.st = time.time()
def end(self, repeats=1, accumulative=True):
self.et = time.time()
if accumulative:
self.time += (self.et - self.st) / repeats
else:
self.time = (self.et - self.st) / repeats
def reset(self):
self.time = 0.
self.st = 0.
self.et = 0.
def value(self):
return round(self.time, 4)
class PipeTimer(Times):
def __init__(self):
super(PipeTimer, self).__init__()
self.total_time = Times()
self.module_time = {
'det': Times(),
'mot': Times(),
'attr': Times(),
'kpt': Times(),
'action': Times(),
'reid': Times()
}
self.img_num = 0
def get_total_time(self):
total_time = self.total_time.value()
total_time = round(total_time, 4)
average_latency = total_time / max(1, self.img_num)
qps = 0
if total_time > 0:
qps = 1 / average_latency
return total_time, average_latency, qps
def info(self):
total_time, average_latency, qps = self.get_total_time()
print("------------------ Inference Time Info ----------------------")
print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
self.img_num))
for k, v in self.module_time.items():
v_time = round(v.value(), 4)
if v_time > 0:
print("{} time(ms): {}".format(k, v_time * 1000))
print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
average_latency * 1000, qps))
return qps
def report(self, average=False):
dic = {}
dic['total'] = round(self.total_time.value() / max(1, self.img_num),
4) if average else self.total_time.value()
dic['det'] = round(self.module_time['det'].value() /
max(1, self.img_num),
4) if average else self.module_time['det'].value()
dic['mot'] = round(self.module_time['mot'].value() /
max(1, self.img_num),
4) if average else self.module_time['mot'].value()
dic['attr'] = round(self.module_time['attr'].value() /
max(1, self.img_num),
4) if average else self.module_time['attr'].value()
dic['kpt'] = round(self.module_time['kpt'].value() /
max(1, self.img_num),
4) if average else self.module_time['kpt'].value()
dic['action'] = round(
self.module_time['action'].value() / max(1, self.img_num),
4) if average else self.module_time['action'].value()
dic['img_num'] = self.img_num
return dic
def merge_model_dir(args, model_dir):
# set --model_dir DET=ppyoloe/ to overwrite the model_dir in config file
task_set = ['DET', 'ATTR', 'MOT', 'KPT', 'ACTION', 'REID']
if not model_dir:
return args
for md in model_dir:
md = md.strip()
k, v = md.split('=', 1)
k_upper = k.upper()
assert k_upper in task_set, 'Illegal type of task, expect task are: {}, but received {}'.format(
task_set, k)
args[k_upper].update({'model_dir': v})
return args
def merge_cfg(args):
with open(args.config) as f:
pred_config = yaml.safe_load(f)
def merge(cfg, arg):
merge_cfg = copy.deepcopy(cfg)
for k, v in cfg.items():
if k in arg:
merge_cfg[k] = arg[k]
else:
if isinstance(v, dict):
merge_cfg[k] = merge(v, arg)
return merge_cfg
args_dict = vars(args)
model_dir = args_dict.pop('model_dir')
pred_config = merge_model_dir(pred_config, model_dir)
pred_config = merge(pred_config, args_dict)
return pred_config
def print_arguments(cfg):
print('----------- Running Arguments -----------')
buffer = yaml.dump(cfg)
print(buffer)
print('------------------------------------------')
def get_test_images(infer_dir, infer_img):
"""
Get image path list in TEST mode
"""
assert infer_img is not None or infer_dir is not None, \
"--infer_img or --infer_dir should be set"
assert infer_img is None or os.path.isfile(infer_img), \
"{} is not a file".format(infer_img)
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
# infer_img has a higher priority
if infer_img and os.path.isfile(infer_img):
return [infer_img]
images = set()
infer_dir = os.path.abspath(infer_dir)
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
assert len(images) > 0, "no image found in {}".format(infer_dir)
print("Found {} inference images in total.".format(len(images)))
return images
def crop_image_with_det(batch_input, det_res, thresh=0.3):
boxes = det_res['boxes']
score = det_res['boxes'][:, 1]
boxes_num = det_res['boxes_num']
start_idx = 0
crop_res = []
for b_id, input in enumerate(batch_input):
boxes_num_i = boxes_num[b_id]
if boxes_num_i == 0:
continue
boxes_i = boxes[start_idx:start_idx + boxes_num_i, :]
score_i = score[start_idx:start_idx + boxes_num_i]
res = []
for box, s in zip(boxes_i, score_i):
if s > thresh:
crop_image, new_box, ori_box = expand_crop(input, box)
if crop_image is not None:
res.append(crop_image)
crop_res.append(res)
return crop_res
def normal_crop(image, rect):
imgh, imgw, c = image.shape
label, conf, xmin, ymin, xmax, ymax = [int(x) for x in rect.tolist()]
org_rect = [xmin, ymin, xmax, ymax]
if label != 0:
return None, None, None
xmin = max(0, xmin)
ymin = max(0, ymin)
xmax = min(imgw, xmax)
ymax = min(imgh, ymax)
return image[ymin:ymax, xmin:xmax, :], [xmin, ymin, xmax, ymax], org_rect
def crop_image_with_mot(input, mot_res, expand=True):
res = mot_res['boxes']
crop_res = []
new_bboxes = []
ori_bboxes = []
for box in res:
if expand:
crop_image, new_bbox, ori_bbox = expand_crop(input, box[1:])
else:
crop_image, new_bbox, ori_bbox = normal_crop(input, box[1:])
if crop_image is not None:
crop_res.append(crop_image)
new_bboxes.append(new_bbox)
ori_bboxes.append(ori_bbox)
return crop_res, new_bboxes, ori_bboxes
def parse_mot_res(input):
mot_res = []
boxes, scores, ids = input[0]
for box, score, i in zip(boxes[0], scores[0], ids[0]):
xmin, ymin, w, h = box
res = [i, 0, score, xmin, ymin, xmin + w, ymin + h]
mot_res.append(res)
return {'boxes': np.array(mot_res)}
def refine_keypoint_coordinary(kpts, bbox, coord_size):
"""
This function is used to adjust coordinate values to a fixed scale.
"""
tl = bbox[:, 0:2]
wh = bbox[:, 2:] - tl
tl = np.expand_dims(np.transpose(tl, (1, 0)), (2, 3))
wh = np.expand_dims(np.transpose(wh, (1, 0)), (2, 3))
target_w, target_h = coord_size
res = (kpts - tl) / wh * np.expand_dims(
np.array([[target_w], [target_h]]), (2, 3))
return res
def parse_mot_keypoint(input, coord_size):
parsed_skeleton_with_mot = {}
ids = []
skeleton = []
for tracker_id, kpt_seq in input:
ids.append(tracker_id)
kpts = np.array(kpt_seq.kpts, dtype=np.float32)[:, :, :2]
kpts = np.expand_dims(np.transpose(kpts, [2, 0, 1]),
-1) #T, K, C -> C, T, K, 1
bbox = np.array(kpt_seq.bboxes, dtype=np.float32)
skeleton.append(refine_keypoint_coordinary(kpts, bbox, coord_size))
parsed_skeleton_with_mot["mot_id"] = ids
parsed_skeleton_with_mot["skeleton"] = skeleton
return parsed_skeleton_with_mot