-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
PPLCNet_x1_0.yaml
149 lines (141 loc) · 3.29 KB
/
PPLCNet_x1_0.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
save_interval: 5
eval_during_train: True
eval_interval: 1
epochs: 30
print_batch_step: 20
use_visualdl: False
# used for static mode and model export
image_shape: [3, 192, 256]
save_inference_dir: "./inference"
use_multilabel: True
# model architecture
Arch:
name: "PPLCNet_x1_0"
pretrained: True
class_num: 19
use_ssld: True
lr_mult_list: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
infer_add_softmax: False
# loss function config for traing/eval process
Loss:
Train:
- MultiLabelLoss:
weight: 1.0
weight_ratio: True
size_sum: True
Eval:
- MultiLabelLoss:
weight: 1.0
weight_ratio: True
size_sum: True
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.0125
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0005
# data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiLabelDataset
image_root: "dataset/VeRi/"
cls_label_path: "dataset/VeRi/train_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [256, 192]
- TimmAutoAugment:
prob: 0.0
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: [256, 192]
- Padv2:
size: [276, 212]
pad_mode: 1
fill_value: 0
- RandomCropImage:
size: [256, 192]
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.5
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: True
shuffle: True
loader:
num_workers: 8
use_shared_memory: True
Eval:
dataset:
name: MultiLabelDataset
image_root: "dataset/VeRi/"
cls_label_path: "dataset/VeRi/test_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [256, 192]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 8
use_shared_memory: True
Infer:
infer_imgs: ./deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [256, 192]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: VehicleAttribute
color_threshold: 0.5
type_threshold: 0.5
Metric:
Eval:
- ATTRMetric: