-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathmath.py
executable file
·2274 lines (1798 loc) · 80.8 KB
/
math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
math functions
"""
from __future__ import print_function
import numpy as np
from paddle.common_ops_import import *
from paddle.tensor import cast
import paddle
from ..fluid import layers
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
from .manipulation import _print_warning_in_static_mode
# TODO: define math functions
# yapf: disable
from ..fluid.layers import abs #DEFINE_ALIAS
from ..fluid.layers import acos #DEFINE_ALIAS
from ..fluid.layers import asin #DEFINE_ALIAS
from ..fluid.layers import ceil #DEFINE_ALIAS
from ..fluid.layers import cos #DEFINE_ALIAS
from ..fluid.layers import sinh #DEFINE_ALIAS
from ..fluid.layers import cosh #DEFINE_ALIAS
# from ..fluid.layers import elementwise_add #DEFINE_ALIAS
# from ..fluid.layers import elementwise_div #DEFINE_ALIAS
# from ..fluid.layers import elementwise_floordiv #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mod #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mul #DEFINE_ALIAS
# from ..fluid.layers import elementwise_pow #DEFINE_ALIAS
# from ..fluid.layers import elementwise_sub #DEFINE_ALIAS
from ..fluid.layers import exp #DEFINE_ALIAS
from ..fluid.layers import floor #DEFINE_ALIAS
from ..fluid.layers import log #DEFINE_ALIAS
from ..fluid.layers import reciprocal #DEFINE_ALIAS
# from ..fluid.layers import reduce_max #DEFINE_ALIAS
# from ..fluid.layers import reduce_min #DEFINE_ALIAS
# from ..fluid.layers import reduce_prod #DEFINE_ALIAS
# from ..fluid.layers import reduce_sum #DEFINE_ALIAS
from ..fluid.layers import round #DEFINE_ALIAS
from ..fluid.layers import rsqrt #DEFINE_ALIAS
from ..fluid.layers import scale #DEFINE_ALIAS
from ..fluid.layers import square #DEFINE_ALIAS
from ..fluid.layers import stanh #DEFINE_ALIAS
from ..fluid.layers import atan #DEFINE_ALIAS
from ..fluid.layers import erf #DEFINE_ALIAS
from ..fluid.layers import sqrt #DEFINE_ALIAS
from ..fluid.layers import sin #DEFINE_ALIAS
from ..fluid.layers import multiplex #DEFINE_ALIAS
from ..fluid import layers
__all__ = [
'abs',
'acos',
'all',
'any',
'asin',
'atan',
'ceil',
'cos',
'cosh',
'cumsum',
'exp',
'floor',
'increment',
'log',
'log2',
'log10',
'logsumexp',
'mul',
'multiplex',
'pow',
'prod',
'reciprocal',
'round',
'rsqrt',
'scale',
'sign',
'sin',
'sinh',
'sqrt',
'square',
'stanh',
'sum',
'tanh',
'tanh_',
'add_n',
'max',
'maximum',
'min',
'minimum',
'mm',
'divide',
'floor_divide',
'remainder',
'mod',
'floor_mod',
'multiply',
'add',
'subtract',
'atan',
'logsumexp',
'inverse',
'log1p',
'erf',
'addmm',
'clip',
'trace',
'kron',
'isfinite',
'isinf',
'isnan',
'broadcast_shape',
'conj'
]
# yapf: enable.
_supported_int_dtype_ = [
VarDesc.VarType.UINT8,
VarDesc.VarType.INT8,
VarDesc.VarType.INT16,
VarDesc.VarType.INT32,
VarDesc.VarType.INT64,
]
_supported_float_dtype_ = [
VarDesc.VarType.FP32,
VarDesc.VarType.FP64,
]
def pow(x, y, name=None):
"""
Compute the power of tensor elements. The equation is:
.. math::
out = x^{y}
**Note**:
``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
Args:
x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1, 2, 3], dtype='float32')
# example 1: y is a float or int
res = paddle.pow(x, 2)
print(res)
# Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
# [1., 4., 9.])
res = paddle.pow(x, 2.5)
print(res)
# Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
# [1. , 5.65685415 , 15.58845711])
# example 2: y is a Tensor
y = paddle.to_tensor([2], dtype='float32')
res = paddle.pow(x, y)
print(res)
# Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
# [1., 4., 9.])
"""
# in dynamic graph mode
if in_dygraph_mode():
if isinstance(y, (int, float)):
return core.ops.pow(x, 'factor', y)
elif isinstance(y, (paddle.Tensor, Variable)):
return _elementwise_op_in_dygraph(
x, y, axis=-1, act=None, op_name='elementwise_pow')
else:
raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
# in static graph mode
else:
if isinstance(y, (int, float)):
helper = LayerHelper('pow', **locals())
inputs = {'X': x}
attrs = {'factor': y}
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
return out
elif isinstance(y, (paddle.Tensor, Variable)):
# TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
helper = LayerHelper('elementwise_pow', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
else:
raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
@dygraph_only
def _elementwise_op_in_dygraph(x,
y,
axis=-1,
act=None,
use_mkldnn=False,
op_name=None):
op = getattr(core.ops, op_name)
out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
return dygraph_utils._append_activation_in_dygraph(
out, act, use_mkldnn=use_mkldnn)
def _elementwise_op(helper):
op_type = helper.layer_type
original_op_type = helper.kwargs.get('original_op_type', op_type)
x = helper.kwargs.get('x', None)
y = helper.kwargs.get('y', None)
out = helper.kwargs.get('out', None)
assert x is not None, 'x cannot be None in {}'.format(original_op_type)
assert y is not None, 'y cannot be None in {}'.format(original_op_type)
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
original_op_type)
check_variable_and_dtype(
y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
original_op_type)
axis = helper.kwargs.get('axis', -1)
use_mkldnn = helper.kwargs.get('use_mkldnn', False)
name = helper.kwargs.get('name', None)
if out is None:
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type=op_type,
inputs={'X': x,
'Y': y},
outputs={'Out': out},
attrs={'axis': axis,
'use_mkldnn': use_mkldnn})
return helper.append_activation(out)
def add(x, y, name=None):
"""
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([2, 3, 4], 'float64')
y = paddle.to_tensor([1, 5, 2], 'float64')
z = paddle.add(x, y)
print(z) # [3., 8., 6. ]
"""
op_type = 'elementwise_add'
axis = -1
if in_dygraph_mode():
return _elementwise_op_in_dygraph(
x, y, axis=axis, op_name=op_type)
return _elementwise_op(LayerHelper(op_type, **locals()))
def subtract(x, y, name=None):
"""
Substract two tensors element-wise. The equation is:
.. math::
out = x - y
**Note**:
``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples:
.. code-block:: python
import numpy as np
import paddle
x = paddle.to_tensor([[1, 2], [7, 8]])
y = paddle.to_tensor([[5, 6], [3, 4]])
res = paddle.subtract(x, y)
print(res)
# [[-4, -4],
# [4, 4]]
x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
y = paddle.to_tensor([1, 0, 4])
res = paddle.subtract(x, y)
print(res)
# [[[ 0, 2, -1],
# [ 0, 2, -1]]]
x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
res = paddle.subtract(x, y)
print(res)
# [ 1., nan, nan]
x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
y = paddle.to_tensor([1, 4, 5], dtype='float64')
res = paddle.subtract(x, y)
print(res)
# [ 4., inf., -inf.]
"""
op_type = 'elementwise_sub'
axis = -1
act = None
if in_dygraph_mode():
return _elementwise_op_in_dygraph(
x, y, axis=axis, act=act, op_name=op_type)
return _elementwise_op(LayerHelper(op_type, **locals()))
def divide(x, y, name=None):
"""
Divide two tensors element-wise. The equation is:
.. math::
out = x / y
**Note**:
``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([2, 3, 4], dtype='float64')
y = paddle.to_tensor([1, 5, 2], dtype='float64')
z = paddle.divide(x, y)
print(z) # [2., 0.6, 2.]
"""
op_type = 'elementwise_div'
axis = -1
act = None
if in_dygraph_mode():
return _elementwise_op_in_dygraph(
x, y, axis=axis, act=act, op_name=op_type)
return _elementwise_op(LayerHelper(op_type, **locals()))
def floor_divide(x, y, name=None):
"""
Floor divide two tensors element-wise. The equation is:
.. math::
out = x // y
**Note**:
``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
Args:
x (Tensor): the input tensor, it's data type should be int32, int64.
y (Tensor): the input tensor, it's data type should be int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([2, 3, 8, 7])
y = paddle.to_tensor([1, 5, 3, 3])
z = paddle.floor_divide(x, y)
print(z) # [2, 0, 2, 2]
"""
op_type = 'elementwise_floordiv'
axis = -1
if in_dygraph_mode():
return _elementwise_op_in_dygraph(
x, y, axis=axis, op_name=op_type)
return _elementwise_op(LayerHelper(op_type, **locals()))
def remainder(x, y, name=None):
r"""
Mod two tensors element-wise. The equation is:
.. math::
out = x \% y
**Note**:
``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([2, 3, 8, 7])
y = paddle.to_tensor([1, 5, 3, 3])
z = paddle.remainder(x, y)
print(z) # [0, 3, 2, 1]
"""
op_type = 'elementwise_mod'
axis = -1
if in_dygraph_mode():
return _elementwise_op_in_dygraph(
x, y, axis=axis, op_name=op_type)
return _elementwise_op(LayerHelper(op_type, **locals()))
mod = remainder #DEFINE_ALIAS
floor_mod = remainder #DEFINE_ALIAS
def multiply(x, y, name=None):
"""
multiply two tensors element-wise. The equation is:
.. math::
out = x * y
**Note**:
``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
Args:
x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([[1, 2], [3, 4]])
y = paddle.to_tensor([[5, 6], [7, 8]])
res = paddle.multiply(x, y)
print(res) # [[5, 12], [21, 32]]
x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
y = paddle.to_tensor([2])
res = paddle.multiply(x, y)
print(res) # [[[2, 4, 6], [2, 4, 6]]]
"""
op_type = 'elementwise_mul'
act = None
axis = -1
if in_dygraph_mode():
return _elementwise_op_in_dygraph(
x, y, axis=axis, act=act, op_name=op_type)
if x.dtype != y.dtype:
raise TypeError(
'Input tensors must be same type, but received type of x: %s, type of y: %s '
% (x.dtype, y.dtype))
return _elementwise_op(LayerHelper(op_type, **locals()))
def maximum(x, y, name=None):
"""
Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
.. math::
out = max(x, y)
**Note**:
``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples:
.. code-block:: python
import numpy as np
import paddle
x = paddle.to_tensor([[1, 2], [7, 8]])
y = paddle.to_tensor([[3, 4], [5, 6]])
res = paddle.maximum(x, y)
print(res)
# [[3, 4],
# [7, 8]]
x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
y = paddle.to_tensor([3, 0, 4])
res = paddle.maximum(x, y)
print(res)
# [[3, 2, 4],
# [3, 2, 4]]
x = paddle.to_tensor([2, 3, 5], dtype='float32')
y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
res = paddle.maximum(x, y)
print(res)
# [ 2., nan, nan]
x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
res = paddle.maximum(x, y)
print(res)
# [ 5., 3., inf.]
"""
op_type = 'elementwise_max'
axis = -1
act = None
if in_dygraph_mode():
return _elementwise_op_in_dygraph(
x, y, axis=axis, act=act, op_name=op_type)
return _elementwise_op(LayerHelper(op_type, **locals()))
def minimum(x, y, name=None):
"""
Compare two tensors and returns a new tensor containing the element-wise minima. The equation is:
.. math::
out = min(x, y)
**Note**:
``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples:
.. code-block:: python
import numpy as np
import paddle
x = paddle.to_tensor([[1, 2], [7, 8]])
y = paddle.to_tensor([[3, 4], [5, 6]])
res = paddle.minimum(x, y)
print(res)
# [[1, 2],
# [5, 6]]
x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
y = paddle.to_tensor([3, 0, 4])
res = paddle.minimum(x, y)
print(res)
# [[[1, 0, 3],
# [1, 0, 3]]]
x = paddle.to_tensor([2, 3, 5], dtype='float32')
y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
res = paddle.minimum(x, y)
print(res)
# [ 1., nan, nan]
x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
res = paddle.minimum(x, y)
print(res)
# [ 1., -inf., 5.]
"""
op_type = 'elementwise_min'
axis = -1
act = None
if in_dygraph_mode():
return _elementwise_op_in_dygraph(
x, y, axis=axis, act=act, op_name=op_type)
return _elementwise_op(LayerHelper(op_type, **locals()))
for func in [
add,
multiply
]:
proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])
additional_args_lines = [
"name (string, optional): Name of the output. \
Default is None. It's used to print debug info for developers. Details: \
:ref:`api_guide_Name` "
]
func.__doc__ = _generate_doc_string_(
op_proto,
additional_args_lines=additional_args_lines,
skip_attrs_set={"x_data_format", "y_data_format", "axis",
"use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
}) + """\n""" + str(func.__doc__)
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
"""
Computes the sum of tensor elements over the given dimension.
Args:
x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
:attr:`None`, sum all elements of :attr:`x` and return a
Tensor with a single element, otherwise must be in the
range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
the dimension to reduce is :math:`rank + axis[i]`.
dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
of output is the same as input Tensor `x`.
keepdim (bool, optional): Whether to reserve the reduced dimension in the
output Tensor. The result Tensor will have one fewer dimension
than the :attr:`x` unless :attr:`keepdim` is true, default
value is False.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: Results of summation operation on the specified axis of input Tensor `x`,
it's data type is the same as `x`.
Raises:
ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
TypeError: The type of :attr:`axis` must be int, list or tuple.
Examples:
.. code-block:: python
import paddle
# x is a Tensor with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresponding output tensor.
x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
[0.1, 0.2, 0.6, 0.7]])
out1 = paddle.sum(x) # [3.5]
out2 = paddle.sum(x, axis=0) # [0.3, 0.5, 1.1, 1.6]
out3 = paddle.sum(x, axis=-1) # [1.9, 1.6]
out4 = paddle.sum(x, axis=1, keepdim=True) # [[1.9], [1.6]]
# y is a Tensor with shape [2, 2, 2] and elements as below:
# [[[1, 2], [3, 4]],
# [[5, 6], [7, 8]]]
# Each example is followed by the corresponding output tensor.
y = paddle.to_tensor([[[1, 2], [3, 4]],
[[5, 6], [7, 8]]])
out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
"""
if axis is not None and not isinstance(axis, (list, tuple)):
axis = [axis]
if not axis:
reduce_all_flag = True
else:
if len(axis) == len(x.shape):
reduce_all_flag = True
else:
reduce_all_flag = False
attrs = {
'dim': axis if axis != None and axis != [] and axis != () else [0],
'keep_dim': keepdim,
'reduce_all': reduce_all_flag
}
dtype_flag = False
if dtype is not None:
if dtype in ['float64', 'int64']:
if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
(convert_dtype(x.dtype) == "int32" and dtype == "int64"):
attrs.update({
'in_dtype': x.dtype,
'out_dtype': convert_np_dtype_to_dtype_(dtype)
})
dtype_flag = True
if in_dygraph_mode():
axis = axis if axis != None and axis != [] else [0]
if dtype_flag:
return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
'reduce_all', reduce_all_flag, 'in_dtype',
x.dtype, 'out_dtype',
convert_np_dtype_to_dtype_(dtype))
else:
return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
'reduce_all', reduce_all_flag)
check_variable_and_dtype(
x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
if dtype is not None:
check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
x_dtype = convert_dtype(x.dtype)
if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
(x_dtype == "int64" and dtype == "int32"):
raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
"which may cause data type overflows. Please reset attr(dtype) of sum."
.format(x_dtype, dtype))
check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')
helper = LayerHelper('sum', **locals())
if dtype_flag:
out = helper.create_variable_for_type_inference(
dtype=convert_np_dtype_to_dtype_(dtype))
else:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='reduce_sum',
inputs={'X': x},
outputs={'Out': out},
attrs=attrs)
return out
@templatedoc(op_type="sum")
def add_n(inputs, name=None):
"""
This OP is used to sum one or more Tensor of the input.
For example:
.. code-block:: text
Case 1:
Input:
input.shape = [2, 3]
input = [[1, 2, 3],
[4, 5, 6]]
Output:
output.shape = [2, 3]
output = [[1, 2, 3],
[4, 5, 6]]
Case 2:
Input:
First input:
input1.shape = [2, 3]
Input1 = [[1, 2, 3],
[4, 5, 6]]
The second input:
input2.shape = [2, 3]
input2 = [[7, 8, 9],
[10, 11, 12]]
Output:
output.shape = [2, 3]
output = [[8, 10, 12],
[14, 16, 18]]
Args:
inputs (Tensor|list(Tensor)): A Tensor list. The shape and data type of the list elements should be consistent.
Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
Examples:
.. code-block:: python
import paddle
input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
output = paddle.add_n([input0, input1])
# [[8., 10., 12.],
# [14., 16., 18.]]
"""
if in_dygraph_mode():
if isinstance(inputs, Variable):
inputs = [inputs]
return core.ops.sum(inputs, 'use_mkldnn', False)
helper = LayerHelper('add_n', **locals())
check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
if isinstance(inputs, list) or isinstance(inputs, tuple):
if len(inputs) > 0:
for input in inputs:
check_variable_and_dtype(input, "inputs", \
['float32', 'float64', 'int32', 'int64'], 'add_n')
else:
check_variable_and_dtype(inputs, "inputs", \
['float32', 'float64', 'int32', 'int64'], 'add_n')
out = helper.create_variable_for_type_inference(
dtype=helper.input_dtype('inputs'))
helper.append_op(
type='sum',
inputs={'X': inputs},
outputs={'Out': out},
attrs={'use_mkldnn': False})
return out
def mm(input, mat2, name=None):
"""
Applies matrix multiplication to two tensors.
Currently, the input tensors' rank can be any, but when the rank of any
inputs is bigger than 3, this two inputs' rank should be equal.
Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
nontransposed, the prepended or appended dimension :math:`1` will be
removed after matrix multiplication.
This op does not support broadcasting. See paddle.matmul.
Args:
input (Tensor): The input tensor which is a Tensor.
mat2 (Tensor): The input tensor which is a Tensor.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: The product Tensor.
Examples:
.. code-block:: python
import paddle
input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
out = paddle.mm(input, mat2)
print(out)
# [[11., 14., 17., 20.],
# [23., 30., 37., 44.],
# [35., 46., 57., 68.]])
"""
if in_dygraph_mode():
out = _varbase_creator(dtype=input.dtype)
core.ops.matmul(input, mat2, out)
return out
def __check_input(x, y):
var_names = {'x': x, 'y': y}
for name, val in var_names.items():
check_variable_and_dtype(val, name,
['float16', 'float32', 'float64'], 'mm')
x_shape = list(x.shape)
y_shape = list(y.shape)
if len(x_shape) == 1:
x_shape = [1] + x_shape
if len(y_shape) == 1:
y_shape = y_shape + [1]
# check the inner 2 dimensions
if x_shape[-1] != y_shape[-2]:
if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
raise ValueError(
"After performing an optional transpose, Input X's width should be "
"equal to Y's width for multiplication "
"prerequisites. But received X's shape: %s, Y's shape: %s\n"
% (x_shape, y_shape))
if len(y_shape) > 2 and len(x_shape) > 2:
for i, dim_x in enumerate(x_shape[:-2]):
# don't check neg shape
if dim_x < 0 or y_shape[i] < 0:
continue
if dim_x != y_shape[i]:
raise ValueError(
"When the matrix is larger than 2 dimensions, the higher "
"dimensional values of the two matrices need to be equal. "
"But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
"Y's shape: %s.\n" % (i, i, x_shape, y_shape))
__check_input(input, mat2)
helper = LayerHelper('mm', **locals())
out = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type='matmul', inputs={'X': input,
'Y': mat2}, outputs={'Out': out})
return out
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
"""
**addmm**
This operator is used to perform matrix multiplication for input $x$ and $y$.
$input$ is added to the final result.
The equation is:
.. math::
Out = alpha * x * y + beta * input
$Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.
Args:
input (Tensor): The input Tensor to be added to the final result.
x (Tensor): The first input Tensor for matrix multiplication.
y (Tensor): The second input Tensor for matrix multiplication.
beta (float): Coefficient of $input$.
alpha (float): Coefficient of $x*y$.
name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
Returns:
Tensor: The output Tensor of addmm op.
Examples:
.. code-block:: python
import paddle
x = paddle.ones([2,2])
y = paddle.ones([2,2])
input = paddle.ones([2,2])
out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
print(out)
# [[10.5 10.5]
# [10.5 10.5]]
"""
input_shape = input.shape
x_shape = x.shape