We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
按照官方文档https://github.com/PaddlePaddle/Paddle-Lite/blob/develop/docs/performance/benchmark_tools.md
./lite/tools/build_android.sh --toolchain=clang --with_benchmark=ON full_publish
编译出benchmark_bin,在Android的termux上运行
使用的模型也是官方提供
使用的开发板是khadas edge2, 其中大核是cortex-a76, 和 https://github.com/PaddlePaddle/Paddle-Lite/blob/develop/docs/performance/benchmark.md 中提到的Xiaomi MI9 骁龙 855 相同,主频我锁定在了2.2GHz
下面是运行的log
./benchmark_bin --uncombined_model_dir=ResNet50 --input_shape=1,3,224,224 --backend=arm --repeats=20 --warmup=5 ======= Opt Info ======= Load paddle model from ResNet50 Save optimized model to ResNet50/opt.nb ======= Device Info ======= Brand: rockchip Device: kedge2 Model: Edge2 Android Version: 13 Android API Level: 33 ======= Model Info ======= optimized_model_file: ResNet50/opt.nb input_data_path: All 1.f input_shape: 1,3,224,224 output tensor num: 1 --- output tensor 0 --- output shape(NCHW): 1 1000 output tensor 0 elem num: 1000 output tensor 0 mean value: 0.001 output tensor 0 standard deviation: 0.00187264 ======= Runtime Info ======= benchmark_bin version: 3c61295 threads: 1 power_mode: 0 warmup: 5 repeats: 20 result_path: ======= Backend Info ======= backend: arm cpu precision: fp32 ======= Perf Info ======= Time(unit: ms): init = 92.089 first = 592.211 min = 215.645 max = 216.656 avg = 215.811
./benchmark_bin --uncombined_model_dir=ResNet50_quant --input_shape=1,3,224,224 --backend=arm --repeats=20 --warmup=5 ======= Opt Info ======= Load paddle model from ResNet50_quant Save optimized model to ResNet50_quant/opt.nb ======= Device Info ======= Brand: rockchip Device: kedge2 Model: Edge2 Android Version: 13 Android API Level: 33 ======= Model Info ======= optimized_model_file: ResNet50_quant/opt.nb input_data_path: All 1.f input_shape: 1,3,224,224 output tensor num: 1 --- output tensor 0 --- output shape(NCHW): 1 1000 output tensor 0 elem num: 1000 output tensor 0 mean value: 0.001 output tensor 0 standard deviation: 0.0101229 ======= Runtime Info ======= benchmark_bin version: 3c61295 threads: 1 power_mode: 0 warmup: 5 repeats: 20 result_path: ======= Backend Info ======= backend: arm cpu precision: fp32 ======= Perf Info ======= Time(unit: ms): init = 35.849 first = 532.699 min = 281.046 max = 281.470 avg = 281.205
概括一下:cortex-a76 2.2GHz
而官方文档中给的MI9的性能数据为:cortex-a76 2.84GHz
The text was updated successfully, but these errors were encountered:
感谢您的反馈,我们会定位下这个具体的性能下降是什么原因导致的。您方便提供下您使用的PaddleLite的版本信息吗?谢谢!
Sorry, something went wrong.
您好,就是默认分支的最新commit: 3c61295
No branches or pull requests
按照官方文档https://github.com/PaddlePaddle/Paddle-Lite/blob/develop/docs/performance/benchmark_tools.md
编译出benchmark_bin,在Android的termux上运行
使用的模型也是官方提供
使用的开发板是khadas edge2, 其中大核是cortex-a76, 和 https://github.com/PaddlePaddle/Paddle-Lite/blob/develop/docs/performance/benchmark.md 中提到的Xiaomi MI9 骁龙 855 相同,主频我锁定在了2.2GHz
下面是运行的log
Resnet50
ResNet50_quant
概括一下:cortex-a76 2.2GHz
而官方文档中给的MI9的性能数据为:cortex-a76 2.84GHz
The text was updated successfully, but these errors were encountered: