-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver2.py
415 lines (351 loc) · 15.8 KB
/
server2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#import flwr as fl
# Start Flower server
#fl.server.start_server(
# server_address="0.0.0.0:8080",
# config=fl.server.ServerConfig(num_rounds=3),
#)
import sys
from logging import WARNING
from typing import Dict, List, Tuple
import numpy as np
import pandas as pd
from typing import Callable, Dict, List, Optional, Tuple, Union
import copy
import plotHistory
import flwr as fl
from flwr.common import (
EvaluateIns,
EvaluateRes,
FitIns,
FitRes,
MetricsAggregationFn,
NDArrays,
Parameters,
Scalar,
ndarrays_to_parameters,
parameters_to_ndarrays,
)
from flwr.server.strategy.aggregate import aggregate, weighted_loss_avg #aggregate_inplace
from flwr.server.client_manager import ClientManager
from flwr.server.client_proxy import ClientProxy
from flwr.server.strategy import Strategy, fedavg
from flwr.common import Metrics
from flwr.common.logger import log
import FCM_FTS
from pyFTS.benchmarks import Measures
from pyFTS.fcm import Activations
from pyFTS.partitioners import Grid
from pyFTS.common import Membership as mf
import lossFunction
from aggregate_inplace import aggregate_inplace
NUM_CLIENTS = 3
numRounds = 3
# # Create clients partition
# df1 = pd.read_csv('nrel_DHHL_1.csv')
# df2 = pd.read_csv('nrel_DHHL_2.csv')
# df3 = pd.read_csv('nrel_DHHL_3.csv')
# #df4 = pd.read_csv('https://query.data.world/s/56i2vkijbvxhtv5gagn7ggk3zw3ksi', sep=';')
# serverSet = {}
# serverSet[0] = df1['value'].values[8000:10000]
# serverSet[1] = df2['value'].values[8000:10000]
# serverSet[2] = df3['value'].values[8000:10000]
# #clients[3] = df4['glo_avg'].values[:8000]
# drawnClient = np.random.randint(0,3)
# testset = serverSet[drawnClient]
minMax = np.array([0, 1])
partitioner = Grid.GridPartitioner(data=minMax, npart=3, mf=mf.trimf)
model = FCM_FTS.FCM_FTS(partitioner=partitioner, order=2, num_fcms=2,
activation_function=Activations.relu,
loss=lossFunction.func, param=True)
initialParameters = model.get_parameters()
print("=================== Initial Param ===========================")
print(initialParameters)
#print("FitRes:")
#for x in ClientProxy.get_parameters():
# print(x)
class HRFTSStrategy(Strategy):
# def __init__(self):
# super().__init__()
# def aggregate_fit(
# self,
# server_round: int,
# results: List[Tuple[ClientProxy, FitRes]],
# failures: List[Union[Tuple[ClientProxy, FitRes], BaseException]],
# ) -> Tuple[Optional[Parameters], Dict[str, Scalar]]:
# for _, fit_res in results:
# print(fit_res.parameters)
def __init__(
self,
*,
fraction_fit: float = 1.0,
fraction_evaluate: float = 1.0,
min_fit_clients: int = 2,
min_evaluate_clients: int = 2,
min_available_clients: int = 2,
evaluate_fn: Optional[
Callable[
[int, NDArrays, Dict[str, Scalar]],
Optional[Tuple[float, Dict[str, Scalar]]],
]
] = None,
on_fit_config_fn: Optional[Callable[[int], Dict[str, Scalar]]] = None,
on_evaluate_config_fn: Optional[Callable[[int], Dict[str, Scalar]]] = None,
accept_failures: bool = True,
initial_parameters: Optional[Parameters] = None,
fit_metrics_aggregation_fn: Optional[MetricsAggregationFn] = None,
evaluate_metrics_aggregation_fn: Optional[MetricsAggregationFn] = None,
inplace: bool = True,
) -> None:
super().__init__()
if (
min_fit_clients > min_available_clients
or min_evaluate_clients > min_available_clients
):
log(WARNING, WARNING_MIN_AVAILABLE_CLIENTS_TOO_LOW)
self.fraction_fit = fraction_fit
self.fraction_evaluate = fraction_evaluate
self.min_fit_clients = min_fit_clients
self.min_evaluate_clients = min_evaluate_clients
self.min_available_clients = min_available_clients
self.evaluate_fn = evaluate_fn
self.on_fit_config_fn = on_fit_config_fn
self.on_evaluate_config_fn = on_evaluate_config_fn
self.accept_failures = accept_failures
self.initial_parameters = initial_parameters
self.fit_metrics_aggregation_fn = fit_metrics_aggregation_fn
self.evaluate_metrics_aggregation_fn = evaluate_metrics_aggregation_fn
self.inplace = inplace
def __repr__(self) -> str:
"""Compute a string representation of the strategy."""
rep = f"FedAvg(accept_failures={self.accept_failures})"
return rep
def num_fit_clients(self, num_available_clients: int) -> Tuple[int, int]:
"""Return the sample size and the required number of available clients."""
num_clients = int(num_available_clients * self.fraction_fit)
return max(num_clients, self.min_fit_clients), self.min_available_clients
def num_evaluation_clients(self, num_available_clients: int) -> Tuple[int, int]:
"""Use a fraction of available clients for evaluation."""
num_clients = int(num_available_clients * self.fraction_evaluate)
return max(num_clients, self.min_evaluate_clients), self.min_available_clients
def initialize_parameters(
self, client_manager: ClientManager
) -> Optional[Parameters]:
"""Initialize global model parameters."""
initial_parameters = self.initial_parameters
self.initial_parameters = None # Don't keep initial parameters in memory
return initial_parameters
def evaluate(
self, server_round: int, parameters: Parameters
) -> Optional[Tuple[float, Dict[str, Scalar]]]:
"""Evaluate model parameters using an evaluation function."""
if self.evaluate_fn is None:
# No evaluation function provided
return None
parameters_ndarrays = parameters_to_ndarrays(parameters)
eval_res = self.evaluate_fn(server_round, parameters_ndarrays, {})
if eval_res is None:
return None
loss, metrics = eval_res
return loss, metrics
def configure_fit(
self, server_round: int, parameters: Parameters, client_manager: ClientManager
) -> List[Tuple[ClientProxy, FitIns]]:
"""Configure the next round of training."""
config = {}
if self.on_fit_config_fn is not None:
# Custom fit config function provided
config = self.on_fit_config_fn(server_round)
fit_ins = FitIns(parameters, config)
# Sample clients
sample_size, min_num_clients = self.num_fit_clients(
client_manager.num_available()
)
clients = client_manager.sample(
num_clients=sample_size, min_num_clients=min_num_clients
)
# Return client/config pairs
return [(client, fit_ins) for client in clients]
def configure_evaluate(
self, server_round: int, parameters: Parameters, client_manager: ClientManager
) -> List[Tuple[ClientProxy, EvaluateIns]]:
"""Configure the next round of evaluation."""
# Do not configure federated evaluation if fraction eval is 0.
if self.fraction_evaluate == 0.0:
return []
# Parameters and config
config = {}
if self.on_evaluate_config_fn is not None:
# Custom evaluation config function provided
config = self.on_evaluate_config_fn(server_round)
evaluate_ins = EvaluateIns(parameters, config)
# Sample clients
sample_size, min_num_clients = self.num_evaluation_clients(
client_manager.num_available()
)
clients = client_manager.sample(
num_clients=sample_size, min_num_clients=min_num_clients
)
# Return client/config pairs
return [(client, evaluate_ins) for client in clients]
def aggregate_fit(
self,
server_round: int,
results: List[Tuple[ClientProxy, FitRes]],
failures: List[Union[Tuple[ClientProxy, FitRes], BaseException]],
) -> Tuple[Optional[Parameters], Dict[str, Scalar]]:
"""Aggregate fit results using weighted average."""
if not results:
return None, {}
# Do not aggregate if there are failures and failures are not accepted
if not self.accept_failures and failures:
return None, {}
if self.inplace:
print("================= Results ===========================")
for _, fit_res in results:
print(parameters_to_ndarrays(fit_res.parameters))
# Does in-place weighted average of results
minResult = np.inf
maxResult = -np.inf
#aggResults = copy.deepcopy(results)
#print("================== Results =====================")
for i in range(len(results)):
# print("========= res ===============")
minResult = min(parameters_to_ndarrays(results[i][1].parameters)[0], minResult)
maxResult = max(parameters_to_ndarrays(results[i][1].parameters)[1], maxResult)
aggParam = (parameters_to_ndarrays(results[i][1].parameters)[2:])
#aggResults.append((results[i][0], ))
aggDelete = parameters_to_ndarrays(results[i][1].parameters)
del aggDelete[0:2]
aggDeleteParam = ndarrays_to_parameters(aggDelete)
results[i][1].parameters = aggDeleteParam
#print(parameters_to_ndarrays(aggResults[i][1].parameters))
#print(parameters_to_ndarrays(results[0][1]))
#print(aggResults)
#print(minResult)
#print(maxResult)
#print("==================== Results =======================")
#for _, fit_res in results:
# print(parameters_to_ndarrays(fit_res.parameters))
#print("=============================== Aggregated =========================")
aggregated_ndarrays = aggregate_inplace(results)
#print(aggregated_ndarrays)
aggregated_ndarrays.insert(0, minResult)
aggregated_ndarrays.insert(1, maxResult)
#print(aggregated_ndarrays)
#print("================= Results ===========================")
#for _, fit_res in results:
# print(parameters_to_ndarrays(fit_res.parameters)[2:])
else:
#print("================= Results ===========================")
#for _, fit_res in results:
# print(fit_res.num_examples[2:])
# Convert results
weights_results = [
(parameters_to_ndarrays(fit_res.parameters), fit_res.num_examples)
for _, fit_res in results
]
aggregated_ndarrays = aggregate(weights_results)
parameters_aggregated = ndarrays_to_parameters(aggregated_ndarrays)
# Aggregate custom metrics if aggregation fn was provided
metrics_aggregated = {}
if self.fit_metrics_aggregation_fn:
fit_metrics = [(res.num_examples, res.metrics) for _, res in results]
metrics_aggregated = self.fit_metrics_aggregation_fn(fit_metrics)
elif server_round == 1: # Only log this warning once
log(WARNING, "No fit_metrics_aggregation_fn provided")
return parameters_aggregated, metrics_aggregated
def aggregate_evaluate(
self,
server_round: int,
results: List[Tuple[ClientProxy, EvaluateRes]],
failures: List[Union[Tuple[ClientProxy, EvaluateRes], BaseException]],
) -> Tuple[Optional[float], Dict[str, Scalar]]:
"""Aggregate evaluation losses using weighted average."""
if not results:
return None, {}
# Do not aggregate if there are failures and failures are not accepted
if not self.accept_failures and failures:
return None, {}
# Aggregate loss
loss_aggregated = weighted_loss_avg(
[
(evaluate_res.num_examples, evaluate_res.loss)
for _, evaluate_res in results
]
)
# Aggregate custom metrics if aggregation fn was provided
metrics_aggregated = {}
if self.evaluate_metrics_aggregation_fn:
eval_metrics = [(res.num_examples, res.metrics) for _, res in results]
metrics_aggregated = self.evaluate_metrics_aggregation_fn(eval_metrics)
elif server_round == 1: # Only log this warning once
log(WARNING, "No evaluate_metrics_aggregation_fn provided")
return loss_aggregated, metrics_aggregated
def aggregate_fit(
server_round: int,
results: List[Tuple[ClientProxy, FitRes]],
failures: List[Union[Tuple[ClientProxy, FitRes], BaseException]],
) -> Tuple[Optional[Parameters], Dict[str, Scalar]]:
for _, fit_res in results:
print(fit_res.parameters)
# def get_evaluate_fn(testset: testset):
# """Return an evaluation function for server-side (i.e. centralised) evaluation."""
# # The `evaluate` function will be called after every round by the strategy
# def evaluate(
# server_round: int,
# parameters: fl.common.NDArrays,
# config: Dict[str, fl.common.Scalar],
# ):
# model.set_parameters(parameters)
# #print(model.get_parameters())
# forecasted = model.predict(testset)
# _rmse = Measures.rmse(testset, forecasted, model.order-1)
# x = np.max(testset) - np.min(testset)
# nrmse = _rmse/x
# #rmse = model.evaluate(test)
# return nrmse, {"rmse": _rmse, "nrmse": nrmse}
# return evaluate
# Define metric aggregation function
def weighted_average(metrics: List[Tuple[int, Metrics]]) -> Metrics:
# Multiply accuracy of each client by number of examples used
print("===================================== Metrics =======================================")
#print(metrics)
#print("===================================================================================")
clientId = [m["Client id"] for _, m in metrics]
rmseEachClient = [m["rmse"] for _, m in metrics]
nrmseEachClient = [m["nrmse"] for _, m in metrics]
rmse = [num_examples * m["rmse"] for num_examples, m in metrics]
nrmse = [num_examples * m["nrmse"] for num_examples, m in metrics]
examples = [num_examples for num_examples, _ in metrics]
# Aggregate and return custom metric (weighted average)
return {"rmse":sum(rmse) / sum(examples),
"nrmse": sum(nrmse) / sum(examples),
"clientsRMSE":rmseEachClient, "clientsNRMSE":nrmseEachClient, 'ClientId':clientId}
# Define strategy
strategy = HRFTSStrategy(evaluate_metrics_aggregation_fn=weighted_average,
initial_parameters=ndarrays_to_parameters(initialParameters))
#strategy = fl.server.strategy.FedAvg(
# evaluate_metrics_aggregation_fn=weighted_average,
# evaluate_fn=get_evaluate_fn(testset), # global evaluation function
# #initial_parameters=fl.common.ndarrays_to_parameters(model.get_parameters()),
# #on_fit_config_fn=configure_fit_fn(),
#
# )
#print("Initial Parameters")
#print(parameters_to_ndarrays(strategy.initial_parameters))
#numberOfExperiments = 3
i = int(sys.argv[1])
print('======================================================================================================')
print('================================== Experiment ' + str(i+1) + '========================================')
print('======================================================================================================')
# Start Flower server
history = fl.server.start_server(
server_address="0.0.0.0:8080",
config=fl.server.ServerConfig(num_rounds=numRounds),
#strategy=fl.server.strategy.FedAvg(),
strategy=strategy,
)
plotHistory.plot(history, i)
#print(getDataset.datasetDir)
#print(history)
#print(f"{history.metrics_centralized = }")