forked from VlachosGroup/NH3-Matlab-Microkinetic-Model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamm_BEP_LSR.m
103 lines (88 loc) · 3.62 KB
/
amm_BEP_LSR.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
function [ Ea,A6_LSR,A6_Strain,Q ] = amm_BEP_LSR( T,Stoic,Ea,s,strain)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
global R_e Q_name STYPE_TERRACE
%% Liner Scaling Relationships
% Qi = Qi,ref + ALPHAi * (Q_target - Q_ref)
Q_ref = 102.35; % N binding energy on reference metal (Pt) [kcal/mol]
%Q_target = 102.35; Q_name = 'Pt'; % N binding energy on Pt
%Q_target = 110.00; Q_name = 'Ni'; % N binding energy on Ni
%Q_target = 112.07; Q_name = 'Rh'; % N binding energy on Rh
%Q_target = 115.30; Q_name = 'Co'; % N binding energy on Co
Q_target = 134.21; Q_name = 'Ru'; % N binding energy on Ru
%Q_target = 136.75; Q_name = 'Fe'; % N binding energy on Fe
%Q_target = 138.36; Q_name = 'Re'; % N binding energy on Re
%Q_target = 154.18; Q_name = 'Mo'; % N binding energy on Mo
%Q_target = 134.6595; Q_name = 'Unk';
% ALPHAi LSR slopes
alpha(1) = 0.62036; % N2 [Terrace]
alpha(2) = 1; % N [Terrace]
alpha(3) = 0.17; % H [Terrace]
alpha(4) = 0.14; % NH3 [Terrace]
alpha(5) = 0.41; % NH2 [Terrace]
alpha(6) = 0.71; % NH [Terrace]
alpha(7) = 0.62036; % N2 [Step]
alpha(8) = 1.057; % N [Step]
alpha(9) = 0.18; % H [Step]
alpha(10) = 0.14; % NH3 [Step]
alpha(11) = 0.391; % NH2 [Step]
alpha(12) = 0.708; % NH [Step]
% Qi,ref (zero coverage reference binding energy of the species) [kcal/mol]
Qi_ref(1) = -2.0779; % N2 [Terrace]
Qi_ref(2) = Q_ref; % N [Terrace]
Qi_ref(3) = 57.4245; % H [Terrace]
Qi_ref(4) = 12.2999; % NH3 [Terrace]
Qi_ref(5) = 45.8833; % NH2 [Terrace]
Qi_ref(6) = 82.5372; % NH [Terrace]
Qi_ref(7) = 9.451; % N2 [Step]
Qi_ref(8) = 106.224; % N [Step]
Qi_ref(9) = 58.0824; % H [Step]
Qi_ref(10) = 22.6759; % NH3 [Step]
Qi_ref(11) = 63.9298; % NH2 [Step]
Qi_ref(12) = 91.8554; % NH [Step]
Q = Qi_ref + alpha * (Q_target - Q_ref);
A6_LSR = (alpha * (Q_target - Q_ref))'/R_e;
%% Catalyst surface strain
StrainCoef = [-0.04 -0.02 0.0 0.02 0.04];
StrainN2 = [0.15 0.11 0.00 -0.13 -0.21]*23.05875998694585/R_e;
StrainN = [0.53 0.27 0.00 -0.30 -0.48]*23.05875998694585/R_e;
StrainH = [0.12 0.05 0.00 -0.07 -0.10]*23.05875998694585/R_e;
StrainNH3 = [0.08 0.05 0.00 -0.11 -0.18]*23.05875998694585/R_e;
StrainNH2 = [0.12 0.07 0.00 -0.09 -0.15]*23.05875998694585/R_e;
StrainNH = [0.26 0.14 0.00 -0.17 -0.27]*23.05875998694585/R_e;
A6_Strain = zeros(12,1);
if strain ~= 0
A6_Strain(1) = polyval(polyfit(StrainCoef,StrainN2,1), strain);
A6_Strain(2) = polyval(polyfit(StrainCoef,StrainN,1), strain);
A6_Strain(3) = polyval(polyfit(StrainCoef,StrainH,1), strain);
A6_Strain(4) = polyval(polyfit(StrainCoef,StrainNH3,1), strain);
A6_Strain(5) = polyval(polyfit(StrainCoef,StrainNH2,1), strain);
A6_Strain(6) = polyval(polyfit(StrainCoef,StrainNH,1), strain);
end
%
%% Bronsted-Evans-Polanyi Relationships for activation barriers from Hrxn
% (Ea)=m(deltaHrxn)+b
% m coefficients
m(1) = 0.68; %N2 dissociation (Terrace) [Orig 0.681]
m(2) = 0.69; %N2 dissociation (Step)
m(3) = 0.29; %NH dehydrogenation
m(4) = 0.52; %NH2 dehydrogenation
m(5) = 0.71; %NH3 dehydrogenation
% b constant
b(1) = 51.27; %N2 dissociation (Terrace) [Orig 54.27]
b(2) = 40.44; %N2 dissociation (Step)
b(3) = 23.23; %NH dehydrogenation
b(4) = 19.78; %NH2 dehydrogenation
b(5) = 23.69; %NH3 dehydrogenation
A6_Cov = amm_coverage(s);
[~,HORT,~,~] = amm_thermo(T,A6_LSR,A6_Cov,A6_Strain);
HRXN = HORT * Stoic'*T*R_e;
if STYPE_TERRACE
Ea(2) = m(1) * HRXN(2) + b(1);
else
Ea(2) = m(2) * HRXN(2) + b(2);
end
Ea(4) = m(5) * HRXN(4) + b(5);
Ea(5) = m(4) * HRXN(5) + b(4);
Ea(6) = m(3) * HRXN(6) + b(3);
end