-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
697 lines (551 loc) · 29.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<!-- Meta tags for social media banners, these should be filled in appropriatly as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description" content="DESCRIPTION META TAG">
<meta property="og:title" content="SOCIAL MEDIA TITLE TAG"/>
<meta property="og:description" content="SOCIAL MEDIA DESCRIPTION TAG TAG"/>
<meta property="og:url" content="URL OF THE WEBSITE"/>
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X630-->
<meta property="og:image" content="static/image/your_banner_image.png" />
<meta property="og:image:width" content="1200"/>
<meta property="og:image:height" content="630"/>
<meta name="twitter:title" content="TWITTER BANNER TITLE META TAG">
<meta name="twitter:description" content="TWITTER BANNER DESCRIPTION META TAG">
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X600-->
<meta name="twitter:image" content="static/images/your_twitter_banner_image.png">
<meta name="twitter:card" content="summary_large_image">
<!-- Keywords for your paper to be indexed by-->
<meta name="keywords" content="KEYWORDS SHOULD BE PLACED HERE">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Uni-NaVid</title>
<link rel="icon" type="image/x-icon" href="static/images/icon_2.png">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="static/css/bulma.min.css">
<link rel="stylesheet" href="static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="static/css/bulma-slider.min.css">
<link rel="stylesheet" href="static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="static/css/index.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
</head>
<body>
<style>
.video-container {
width: 30%; /* 每个容器宽度为页面宽度的32%,根据实际情况调整 */
display: inline-block; /* 使容器并列排列 */
margin: 1%; /* 添加外边距 */
vertical-align: top;
}
video {
width: 100%; /* 视频宽度填满容器 */
display: block; /* 确保视频占满整个容器宽度 */
}
.description {
text-align: center; /* 文字居中对齐 */
}
.text-image-container {
display: flex; /* 使用弹性盒模型布局 */
align-items: flex-start; /* 上端对齐 */
justify-content: center;
}
ul {
text-align: left; /* 确保文本左对齐 */
list-style-position: inside; /* 列表标记与文本对齐 */
font-size: 16px;
list-style-type: circle; /* 使用圆形作为项目符号 */
}
</style>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<img src="static/images/icon.jpg" alt="icon" style="width: 22%;">
<h1 class="title is-1 publication-title">A Video-based Vision-Language-Action Model for Unifying Embodied Navigation Tasks</h1>
<div class="is-size-5 publication-authors">
<!-- Paper authors -->
<!-- <span class="author-block"><a href="FIRST AUTHOR PERSONAL LINK" target="_blank">Jiazhao Zhang</a><sup>1,2,*</sup>,</span> -->
<span class="author-block">
<a href="https://jzhzhang.github.io/">Jiazhao Zhang</a><sup>1,2</sup>
<a href="https://pku-epic.github.io/Uni-NaVid/">Kunyu Wang</a><sup>3</sup>
<a href="https://wsakobe.github.io/">Shaoan Wang</a><sup>1,2</sup>
<a href="https://pku-epic.github.io/Uni-NaVid/">Minghan Li</a><sup>2</sup>
<a href="https://github.com/lhrrhl0419">Haoran Liu</a><sup>1,2</sup>
</span>
<span class="author-block" style="display: block;">
<a href="https://songlin.github.io/">Songlin Wei</a><sup>1,2</sup>
<a href="https://www.wangzhongyuan.com/">Zhongyuan Wang</a><sup>3</sup>
<a href="https://scholar.google.com/citations?user=X7M0I8kAAAAJ">Zhizheng Zhang</a><sup>2,3,†</sup>
<a href="https://hughw19.github.io/">He Wang</a><sup>1,2,3,†</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<!-- <span class="author-block">Institution Name<br>Conferance name and year</span> -->
<span class="author-block"><sup>1</sup>Peking University
<sup>2</sup>GalBot
<sup>3</sup>Beijing Academy of Artificial Intelligence
</span>
</div>
<div class="is-size-5 publication-authors">
†Equal Advising
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Arxiv PDF link -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2412.06224" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- Supplementary PDF link -->
<!-- <span class="link-block">
<a href="https://www.youtube.com/watch?v=IHkDuJZV0I8" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-video"></i>
</span>
<span>Code (Comming soon)</span>
</a>
</span> -->
<!-- Github link -->
<span class="link-block">
<a target="_blank"
class="external-link button is-normal is-rounded is-light">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- ArXiv abstract Link -->
<!-- <span class="link-block">
<a href="https://arxiv.org/abs/2402.15852" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>Paper</span>
</a>
</span> -->
</div>
</div>
<!-- <div class="text">
Robotics: Science and Systems (RSS 2024)
</div> -->
</div>
</div>
</div>
</div>
</section>
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop has-text-centered">
<h2>
<!-- <h2 class=""> <img src="static/images/highlight_logo.png" width="50"> Highlights</h2> -->
<div class="text-image-container title is-3">
<div>
<img src="static/images/highlight_logo.png" alt="示例图片" width="50">
</div>
<div class="text">
<p>Highlights</p>
</div>
</div>
</h2>
<!-- <p> <b>Real-world demos by following simple instructions, such as walking to a single landmark.</b></p> -->
<ul>
<li><b>Embodied Navigation Task Unification:</b> Uni-NaVid is a navigation generalist integrating various embodied navigation tasks into one model, including Vision-and-Language Navigation (VLN), Object Navigation (ObjectNav), Embodied Question Answering (EQA), and Human-following tasks.</li>
<li><b>Task Synergy Aginst Data Hungry:</b> Uni-NaVid incorporates 3.6 million navigation samples spanning different tasks and achieves significant performance improvements across diverse navigation benchmarks through effective task synergy.</li>
<li><b>High Efficiency and Non-blocking Deployment:</b> Uni-NaVid adopts an online token merging strategy for achieving about 5 Hz model inference, and preficts action for multiple future steps for enabling non-blocking deployment in the real world.</li>
<li><b>Impressive Sim-to-Real Results:</b> Uni-NaVid can generate both actions and languages by combining simulated action data and Internet semantics for a unified cotraining. This exhibits impressive sim-to-real generalizability in real-world environments.</li>
</ul>
</div>
</div>
</section>
<!-- <ul>
<li><b>Unifying Embodied Navigation Tasks:</b> Uni-NaVid is the first video-based Vision-Language Model (VLM) designed to unify diverse navigation tasks, including VLN, ObjectNav, EQA, and human-following tasks.</li>
<li><b>High efficiency VLM that enable a deployment-friendly model:</b> Uni-NaVid processes natural language instructions as input and outputs either actions or textual responses to complete the given instructions.</li>
<li><b>High Efficiency:</b> Uni-NaVid employs an online token merging strategy, achieving nearly 5 Hz inference, which enables non-blocking real-world deployment.</li>
<li><b>Largest General Navigation Dataset:</b> Uni-NaVid includes 3.6 million navigation samples spanning VLN, ObjectNav, EQA, and human-following tasks.</li>
<li><b>Real-World Development Support:</b> Uni-NaVid achieves state-of-the-art performance across general navigation benchmarks and demonstrates strong generalizability in real-world environments.</li>
</ul> -->
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop has-text-centered">
<h2>
<!-- <h2 class=""> <img src="static/images/highlight_logo.png" width="50"> Highlights</h2> -->
<div class="text-image-container title is-3">
<div>
<img src="static/images/teaser.png" alt="teaser" >
</div>
<!-- <div class="text">
<p>Highlights</p>
</div> -->
</div>
</h2>
</div>
</div>
</section>
<!-- Teaser video 1 -->
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop has-text-centered">
<h2 class="title is-3">Performance on Compositional Navigation Tasks </h2>
<p> <b>We deploy Uni-Navid in real-world environments to complete compositional instructions for multiple navigation tasks.</b></p>
<!-- <p> <b>Real-world demos by following simple instructions, such as walking to a single landmark.</b></p> -->
<div id="results-carousel-teaser1" class="carousel results-carousel">
<div class="item item-video1_1">
<video poster="" id="video1_1" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/com_navigation/video_1.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video1_3">
<video poster="" id="video18" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/com_navigation/video_3.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video1_5">
<video poster="" id="video19" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/com_navigation/video_5.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video1_9">
<video poster="" id="video9" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/com_navigation/video_9.mp4"
type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</section>
<!-- End teaser video 1 -->
<!-- Teaser video 2 -->
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop has-text-centered">
<h2 class="title is-3">Performance on Individual Navigation Task </h2>
<p> <b>We deploy Uni-Navid in real-world environments to complete instructions for individual navigation tasks.</b></p>
<!-- <p> <b>Real-world demos by following complex instructions, which consist of several simple instructions.</b></p> -->
<div id="results-carousel-teaser2" class="carousel results-carousel">
<div class="item item-video2_2">
<video poster="" id="video10" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/simple_navigation/video_2.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video2_4">
<video poster="" id="video11" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/simple_navigation/video_4.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video2_6">
<video poster="" id="video12" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/simple_navigation/video_6.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video2_7">
<video poster="" id="video12" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/simple_navigation/video_7.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video2_8">
<video poster="" id="video12" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/simple_navigation/video_8.mp4"
type="video/mp4">
</video>
</div>
</div>
<!-- <h2 class="subtitle has-text-centered">
Real-world demo of our proposed video-based VLM, NaVid, for vision-and-language navigation. Given the human instruction, NaVid only takes online RGB video frames as input and outputs a language action for robotic execution.
</h2> -->
</div>
</div>
</section>
<!-- End teaser video 2 -->
<!-- Paper abstract -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column ">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
A practical navigation agent must be capable of handling a wide range of interaction demands, such as following instructions, searching objects, answering questions, tracking people, and more.Existing models for embodied navigation fall short of serving as practical generalists in the real world, as they are often constrained by specific task configurations or pre-defined maps with discretized waypoints. In this work, we present Uni-NaVid, the first video-based vision-language-action (VLA) model designed to unify diverse embodied navigation tasks and enable seamless navigation for mixed long-horizon tasks in unseen real-world environments. Uni-NaVid achieves this by harmonizing the input and output data configurations for all commonly used embodied navigation tasks and thereby integrating all tasks in one model. For training \name, we collect 3.6 million navigation data samples in total from four essential navigation sub-tasks and foster synergy in learning across them. Extensive experiments on comprehensive navigation benchmarks clearly demonstrate the advantages of unification modeling in Uni-NaVid and show it achieves state-of-the-art performance. Additionally, real-world experiments confirm the model's effectiveness and efficiency, shedding light on its strong generalizability.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<!-- YouTube Video-->
<!-- \textbf{Pipeline of \name.} Our method takes only single-view RGB frames $\{\mathbf{x}_1, \cdots, \mathbf{x}_T\}$ and a natural language instruction $\cI$ as input. For each frame, we extract 64 visual tokens using the vision encoder and then use online token merging to accelerate the model while retaining compact visual information. The merged tokens and instruction tokens are sent to the large language model to obtain actions for navigation or answers for embodied question-answering. -->
<!-- The inputs of NaVid consist of the RGB frames from the online video observation {x<sub>0</sub>, · · · , x<sub>t</sub>} along with the human instruction I. For each frame, we use an observation encoder to extract the visual information with the instruction to obtain observation tokens, including, instruction-queried tokens (orange blocks) and instruction-agnostic tokens (blue blocks). At the current step t, the history frames and current frame x<sub>t</sub> are encoded as observation tokens, with 4 and 64 instruction-agnostic tokens for history frames and current frames, respectively. Besides, our method obtains language tokens by a text encoder. Finally, split by the special tokens [HIS], [OBS], and [NAV], we concatenate the observation tokens and language tokens and send the tokens to the Vicuna-7B then obtain the next-step action. -->
<!-- Method Overview -->
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<!-- <div class="column is-four-fifths"> -->
<div class="content">
<h2 class="title is-3">Method Overview</h2>
<img src="static/images/method.png" alt="NaVid" class="center-image blend-img-background">
<div class="level-set has-text-justified">
<p class="has-text-justified">
<b>The overview of Uni-NaVid.</b> Our method takes only single-view RGB frames { x<sub>1</sub>, · · ·, x<sub>T</sub> } and a natural language instruction as input. For each frame, we extract 64 visual tokens using the vision encoder and then use online token merging to accelerate the model while retaining compact visual information. The merged tokens and instruction tokens are sent to the large language model to obtain actions for navigation or answers for embodied question-answering.
</p>
</div>
</div>
<!-- </div> -->
</div>
</div>
</div>
</section>
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<!-- <div class="column is-four-fifths"> -->
<div class="content">
<h2 class="title is-3">Data Collection (Navigation 3.6M + VQA 2.3M)</h2>
<img src="static/images/data_ratio.png" alt="NaVid" class="center-image blend-img-background" width="75%">
<div class="level-set has-text-justified">
<p class="has-text-justified">
<div><b style="color: #89a2d4;">Vision-and-Language Navigation
</b>: requires the agent to comprehend language instructions in order to follow the described path. We collect 2.4M samples based on both VLN-CE R2R and VLN-CE RxR.</div>
<div><b style="color: #e9aa7f;">Object Goal Navigation</b>: involves the agent navigating an environment to locate a specific object based on provided visual or linguistic cues. We gather 483k samples from datasets on Habitat Matterport 3D datase</div>
<div><b style="color: #f5d46d;">Embodied Question Answering</b>: requires the agent to navigate to the related area for question answering. We collect 240k video-action samples and 10k video-answering samples on the EQA dataset on Matterport 3D environments.</div>
<div><b style="color: #a5c788;">Human Following</b>: requires the agent to track and follow a human target with a specific description in dynamic and crowded environment. We collect 544k human-following navigation samples.</div>
</p>
<p class="has-text-justified">
<!-- <b>We initialize the encoders and Vicuna-7B using pre-trained weights, and our model requires only one epoch for the training process.</b> -->
</p>
</div>
</div>
<!-- </div> -->
</div>
</div>
</div>
</section>
<!-- End video carousel R2R -->
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop has-text-centered">
<h2 class="title is-3">Vision-and-Language Navigation </h2>
<h3 class="title is-5">VLN-CE RxR Val-Unseen</h2>
<div id="results-carousel-teaser1" class="carousel results-carousel">
<div class="item item-video12">
<video poster="" id="video12" autoplay playsinline controls muted height="100%">
<source src="static/videos/vln/3332.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video10">
<video poster="" id="video10" autoplay playsinline controls muted height="100%">
<source src="static/videos/vln/298.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video11">
<video poster="" id="video11" autoplay playsinline controls muted height="100%">
<source src="static/videos/vln/912.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video13">
<video poster="" id="video13" autoplay playsinline controls muted height="100%">
<source src="static/videos/vln/3425.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video14">
<video poster="" id="video14" autoplay playsinline controls muted height="100%">
<source src="static/videos/vln/3695.mp4"
type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</section>
<!-- Image carousel 3 RxR -->
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop has-text-centered">
<h2 class="title is-3"> Object Goal Navigation</h2>
<h2 class="title is-5"> HM3D ObjectNav </h2>
<div id="results-carousel-teaser1" class="carousel results-carousel">
<div class="item item-video16">
<video poster="" id="video16" autoplay playsinline controls muted height="100%">
<source src="static/videos/objnav/0_3.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video17">
<video poster="" id="video17" autoplay playsinline controls muted height="100%">
<source src="static/videos/objnav/0_4.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video18">
<video poster="" id="video18" autoplay playsinline controls muted height="100%">
<source src="static/videos/objnav/1_1.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video19">
<video poster="" id="video19" autoplay playsinline controls muted height="100%">
<source src="static/videos/objnav/1_78.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video19">
<video poster="" id="video19" autoplay playsinline controls muted height="100%">
<source src="static/videos/objnav/2_78.mp4"
type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</section>
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop has-text-centered">
<h2 class="title is-3">Embodied Question Answering</h2>
<h2 class="title is-5"> MP3D-EQA </h2>
<div id="results-carousel-teaser1" class="carousel results-carousel">
<div class="item item-video20">
<video poster="" id="video20" autoplay playsinline controls muted height="100%">
<source src="static/videos/eqa/5_49.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video16">
<video poster="" id="video16" autoplay playsinline controls muted height="100%">
<source src="static/videos/eqa/0_2.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video17">
<video poster="" id="video17" autoplay playsinline controls muted height="100%">
<source src="static/videos/eqa/1_25.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video18">
<video poster="" id="video18" autoplay playsinline controls muted height="100%">
<source src="static/videos/eqa/1_65.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video19">
<video poster="" id="video19" autoplay playsinline controls muted height="100%">
<source src="static/videos/eqa/2_16.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video19">
<video poster="" id="video19" autoplay playsinline controls muted height="100%">
<source src="static/videos/eqa/4_16.mp4"
type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</section>
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop has-text-centered">
<h2 class="title is-3">Human Following</h2>
<!-- <h2 class="title is-5"> Requiring the agent to follow a person who satisfies the description. </h2> -->
<div id="results-carousel-teaser1" class="carousel results-carousel">
<div class="item item-video16">
<video poster="" id="video16" autoplay playsinline controls muted height="100%">
<source src="static/videos/following/1_topdown.mp4"
type="video/mp4">
<!-- <track src="subtitles_en.vtt" kind="subtitles" srclang="en" label="English"> -->
</video>
</div>
<div class="item item-video17">
<video poster="" id="video17" autoplay playsinline controls muted height="100%">
<source src="static/videos/following/2_topdown.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video18">
<video poster="" id="video18" autoplay playsinline controls muted height="100%">
<source src="static/videos/following/3_topdown.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video19">
<video poster="" id="video19" autoplay playsinline controls muted height="100%">
<source src="static/videos/following/4_topdown.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video19">
<video poster="" id="video19" autoplay playsinline controls muted height="100%">
<source src="static/videos/following/5_topdown.mp4"
type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</section>
<!-- BibTex citation -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@misc{zhang2024uninavid,
title={Uni-NaVid: A Video-based Vision-Language-Action Model for Unifying Embodied Navigation Tasks},
author={Jiazhao Zhang and Kunyu Wang and Shaoan Wang and Minghan Li and Haoran Liu and Songlin Wei and Zhongyuan Wang and Zhizheng Zhang and He Wang},
year={2024},
journal = {arXiv preprint arXiv:2412.06224}
}</code></pre>
</div>
</section>
<!--End BibTex citation -->
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This page was built using the <a href="https://github.com/eliahuhorwitz/Academic-project-page-template" target="_blank">Academic Project Page Template</a> which was adopted from the <a href="https://nerfies.github.io" target="_blank">Nerfies</a> project page.
You are free to borrow the of this website, we just ask that you link back to this page in the footer. <br> This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
</body>
</html>