-
Notifications
You must be signed in to change notification settings - Fork 7
/
make_hardshrink_synergynet.py
52 lines (44 loc) · 1.34 KB
/
make_hardshrink_synergynet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
import numpy as np
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
def forward(self, x):
x = x[..., np.newaxis]
yaw = x[:,0,:]
roll = x[:,1,:]
pitch = x[:,2,:]
shrunk_yaw = torch.clip(
yaw,
min=torch.tensor(-90.0, dtype=torch.float32),
max=torch.tensor(90.0, dtype=torch.float32),
)
eps = 1e-5
shrunk_roll = (roll * shrunk_yaw) / (shrunk_yaw + eps)
shrunk_pitch = (pitch * shrunk_yaw) / (shrunk_yaw + eps)
output = torch.cat([shrunk_yaw,shrunk_roll,shrunk_pitch], dim=1)
return output
if __name__ == "__main__":
model = Model()
import onnx
from onnxsim import simplify
MODEL = f'shrunk_synergynet'
onnx_file = f"{MODEL}.onnx"
x = torch.randn(1, 3)
torch.onnx.export(
model,
args=(x),
f=onnx_file,
opset_version=11,
input_names = ['shrunk_input'],
output_names=['synergynet_shrunk_output'],
)
model_onnx1 = onnx.load(onnx_file)
model_onnx1 = onnx.shape_inference.infer_shapes(model_onnx1)
onnx.save(model_onnx1, onnx_file)
model_onnx2 = onnx.load(onnx_file)
model_simp, check = simplify(model_onnx2)
onnx.save(model_simp, onnx_file)
import sys
sys.exit(0)