-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathevaluate.py
180 lines (139 loc) · 5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import sys
import os
import subprocess
import platform
import base64
import json
import openai
import argparse
from dotenv import load_dotenv
# "Objective for `operate`" : "Guideline for passing this test case given to GPT-4v"
TEST_CASES = {
"Go to Github.com": "A Github page is visible.",
"Go to Youtube.com and play a video": "The YouTube video player is visible.",
}
EVALUATION_PROMPT = """
Your job is to look at the given screenshot and determine if the following guideline is met in the image.
You must respond in the following format ONLY. Do not add anything else:
{{ "guideline_met": (true|false), "reason": "Explanation for why guideline was or wasn't met" }}
guideline_met must be set to a JSON boolean. True if the image meets the given guideline.
reason must be a string containing a justification for your decision.
Guideline: {guideline}
"""
SCREENSHOT_PATH = os.path.join("screenshots", "screenshot.png")
# Check if on a windows terminal that supports ANSI escape codes
def supports_ansi():
"""
Check if the terminal supports ANSI escape codes
"""
plat = platform.system()
supported_platform = plat != "Windows" or "ANSICON" in os.environ
is_a_tty = hasattr(sys.stdout, "isatty") and sys.stdout.isatty()
return supported_platform and is_a_tty
if supports_ansi():
# Standard green text
ANSI_GREEN = "\033[32m"
# Bright/bold green text
ANSI_BRIGHT_GREEN = "\033[92m"
# Reset to default text color
ANSI_RESET = "\033[0m"
# ANSI escape code for blue text
ANSI_BLUE = "\033[94m" # This is for bright blue
# Standard yellow text
ANSI_YELLOW = "\033[33m"
ANSI_RED = "\033[31m"
# Bright magenta text
ANSI_BRIGHT_MAGENTA = "\033[95m"
else:
ANSI_GREEN = ""
ANSI_BRIGHT_GREEN = ""
ANSI_RESET = ""
ANSI_BLUE = ""
ANSI_YELLOW = ""
ANSI_RED = ""
ANSI_BRIGHT_MAGENTA = ""
def format_evaluation_prompt(guideline):
prompt = EVALUATION_PROMPT.format(guideline=guideline)
return prompt
def parse_eval_content(content):
try:
res = json.loads(content)
print(res["reason"])
return res["guideline_met"]
except:
print(
"The model gave a bad evaluation response and it couldn't be parsed. Exiting..."
)
exit(1)
def evaluate_final_screenshot(guideline):
"""Load the final screenshot and return True or False if it meets the given guideline."""
with open(SCREENSHOT_PATH, "rb") as img_file:
img_base64 = base64.b64encode(img_file.read()).decode("utf-8")
eval_message = [
{
"role": "user",
"content": [
{"type": "text", "text": format_evaluation_prompt(guideline)},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"},
},
],
}
]
response = openai.chat.completions.create(
model="gpt-4o",
messages=eval_message,
presence_penalty=1,
frequency_penalty=1,
temperature=0.7,
)
eval_content = response.choices[0].message.content
return parse_eval_content(eval_content)
def run_test_case(objective, guideline, model):
"""Returns True if the result of the test with the given prompt meets the given guideline for the given model."""
# Run `operate` with the model to evaluate and the test case prompt
subprocess.run(
["operate", "-m", model, "--prompt", f'"{objective}"'],
stdout=subprocess.DEVNULL,
)
try:
result = evaluate_final_screenshot(guideline)
except OSError:
print("[Error] Couldn't open the screenshot for evaluation")
return False
return result
def get_test_model():
parser = argparse.ArgumentParser(
description="Run the self-operating-computer with a specified model."
)
parser.add_argument(
"-m",
"--model",
help="Specify the model to evaluate.",
required=False,
default="gpt-4-with-ocr",
)
return parser.parse_args().model
def main():
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
model = get_test_model()
print(f"{ANSI_BLUE}[EVALUATING MODEL `{model}`]{ANSI_RESET}")
print(f"{ANSI_BRIGHT_MAGENTA}[STARTING EVALUATION]{ANSI_RESET}")
passed = 0
failed = 0
for objective, guideline in TEST_CASES.items():
print(f"{ANSI_BLUE}[EVALUATING]{ANSI_RESET} '{objective}'")
result = run_test_case(objective, guideline, model)
if result:
print(f"{ANSI_GREEN}[PASSED]{ANSI_RESET} '{objective}'")
passed += 1
else:
print(f"{ANSI_RED}[FAILED]{ANSI_RESET} '{objective}'")
failed += 1
print(
f"{ANSI_BRIGHT_MAGENTA}[EVALUATION COMPLETE]{ANSI_RESET} {passed} test{'' if passed == 1 else 's'} passed, {failed} test{'' if failed == 1 else 's'} failed"
)
if __name__ == "__main__":
main()